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Introduction
(Chen and Liu, 2016-book)

 Classic Machine Learning (ML) paradigm: 

isolated single-task learning

 Given a dataset, run an ML algo. to build a model

 Without considering the past learned knowledge

 Existing ML algorithms such as

 SVM, NB, DT, Deep NN, CRF, and topic models

 Have been very successful in practice

 Let’s call this: Machine Learning (ML) 1.0
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Introduction: ML 1.0 

 Weaknesses of “isolated learning”

 Knowledge learned is not retained or accumulated

 Needs a large number of training examples 

 Suitable for well-defined & narrow tasks in restricted env.

 Human beings never learn in isolation

 We retain knowledge & use it to learn more knowlg.

 Learn effectively from a few or no examples

 Our knowledge learned and accumulated in the past 

 which allows us to learn with little data or effort
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Introduction: An Example

 Nobody has ever given me 1000 positive and 

1000 negative online reviews and ask me 

 to build a classifier to classify Camera reviews

 In fact, I don’t need any training data

 I have accumulated so much knowledge 
 about how people praise and criticize things

 If I don’t have the accumulated knowledge, NO

 E.g., I don’t know Arabic and if someone gives me 

2000 training reviews in Arabic, I cannot do it.
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Introduction: ML 2.0
Thrun, 1996b; Silver et al 2013; Chen and Liu, 2014a, 2016-book

 Statistical ML is getting increasingly mature

 It’s time for Lifelong Machine Learning (LML)

 Retain/accumulate learned knowledge in the past &

use it to help future learning

 become more knowledgeable & better at learning

 Learn by mimicking “human learning”

 Let us call this paradigm Machine Learning 2.0

 Without LML, it is unlikely we can build a truly 

intelligent system. 
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Outline

 A motivating example

 What is lifelong machine learning?

 Related learning paradigms

 Lifelong supervised learning

 Lifelong unsupervised learning

 Semi-supervised never-ending learning

 Lifelong reinforcement learning

 Summary
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A Motivating Example
(Liu, 2012, 2015)

 My interest in LML stemmed from extensive 

experiences on sentiment analysis in a startup 

company many years ago. 

 Sentiment analysis (SA)

 Sentiment and target aspect: “The screen is great, 

but the voice quality is poor.”

 Positive about screen but negative about voice quality

 Extensive knowledge sharing across tasks/domains

 Sentiment expressions & aspects
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Knowledge Shared Across Domains

 After working on many SA projects for clients, 

I realized

 a lot of concept sharing across domains

 as we see more and more domains, fewer and 

fewer things are new. 

 Easy to see sharing of sentiment words, 

 e.g., good, bad, poor, terrible, etc. 

 There is also a great deal of aspect sharing 

 product feature sharing
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Sharing of Product Features 

 Observation: A great deal of product features 

(or aspects) overlapping across domains 

 Every product review domain has the aspect price

 Most electronic products share the aspect battery

 Many also share the aspect of screen.

 Many also share sound quality

 ….

 It is rather “silly” not to exploit such sharing in 

learning or extraction.
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What does that Mean for Learning?

 How to systematically exploit such sharing? 

 Retain/accumulate knowledge learned in the past.

 Leverage the knowledge for new task learning

 I.e., lifelong machine learning (LML)

 This leads to our own work

 Lifelong topic modeling (Chen and Liu 2014a, b) 

 Lifelong sentiment classification (Chen et al 2015) 

 Several others
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LML is Suitable for NLP

 Knowledge, easily shared across domains

 Words and phrases almost have the same meaning in 

different domains or tasks.  

 Sentences in all domains follow the same syntax

 Knowledge, useful in different types of tasks. 

 NLP problems are closely related to each other

 POS tagging, coreference resolution, entity recognition, … 

 Big data provides a great opportunity for LML

 Learn a large amount of knowledge to become 

 More and more knowledgeable & better at learning
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LML is Useful in General

 LML is suitable for all learning

 It is hard to imagine:

 We have to learn everything from scratch 

whenever we encounter a new problem or 

environment.

 If that were the case, 

 Intelligence is unlikely
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Definition of LML
(Thrun 1995, Chen and Liu, 2016 – new book)

 The learner has performed learning on a 

sequence of tasks, from 1 to N.

 When faced with the (N+1)th task, it uses the 

relevant knowledge in its knowledge base (KB) 

to help learning for the (N+1)th task.

 After learning (N+1)th task, KB is updated with 

learned results from (N+1)th task.
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Key Characteristics of LML
(Chen and Liu, 2016 – new book)

 Continuous learning process

 Knowledge accumulation in KB

 Use of past knowledge to help future learning
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Lifelong Machine Learning System
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Components of LML

 Knowledge Base (KB)

 Past Information Store (PIS)

 Data, intermediate and final results 

 Meta-Knowledge Miner (MKM)

 Meta-mining of PIS and MKS

 Meta-Knowledge Store (MKS)

 mined knowledge

 Knowledge Reasoner (KR)

 Make inference to generate more knowledge

 Most current systems don’t have all these
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Components of LML (Contd)

 Knowledge-Based Learner (KBL)

 Leverage past knowledge in KB in new learning

 Task Knowledge Miner (TKM): identify/mine knowledge 

suitable for the task

 Learner

 Task Manager

 Receives and manages arriving tasks

 Output

 Model for the current task
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Two Types of Knowledge

 Global knowledge: Many existing LML 

methods assume that there is a global latent 

structure among tasks that are shared by all 
(Bou Ammar et al., 2014, Ruvolo and Eaton, 2013b, Tanaka and 

Yamamura, 1997, Thrun, 1996b, Wilson et al., 2007)

 This global structure can be learned and 

leveraged in the new task learning.

 These methods grew out of multi-task learning.
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Two Types of Knowledge (Contd)

 Local knowledge: Many other methods do not 

assume such a global latent structure among 

tasks (Chen and Liu, 2014a,b, Chen et al., 2015, Fei et al., 2016, 

Liu et al., 2016, Shu et al., 2016)

 During the learning of a new task, 

 they select the pieces of prior knowledge to use 

based on the need of the new task.

 Called local knowledge because they are not 

assumed to form a coherent global structure. 
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Two Kinds of Tasks

 Independent tasks: each task is independent 

of other tasks

 Each task can be learned independently, although 

using knowledge gained in other tasks may help 

this task learning

 Much of the current research assume this.

 Dependent tasks: each task has some 

dependency on some other tasks, e.g., 

 Cumulative learning (Fei et al 2016)
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Transfer learning

 Source domain(s): With labeled training data

 Target domain: With little/no labeled training data

 Goal: leverage the information from the source 

domain(s) to help learning in the target domain

 Only optimize the target domain/task learning
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A Large Body of Literature

 Transfer learning has been a popular research 

topic and researched in many fields, e.g., 

 Machine learning

 Data mining

 Natural language processing

 Computer vision

 (Taylor and Stone, 2009, Pan & Yang, 2010). 

presented excellent surveys with extensive 

references. 
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One Transfer Learning Technique

 Structural correspondence learning (SCL) 

(Blitzer et al., 2006)

 Pivot features

 Have the same characteristics or behaviors in 

both domains

 Non-pivot features which are correlated with many 

of the same pivot features are assumed to 

correspond
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Choosing Pivot Features

 For different applications, pivot features may 

be chosen differently, for example,

 For part-of-speech tagging, frequently-occurring 

words in both domains are good choices (Blitzer 

et al., 2006)

 For sentiment classification, pivot features are 

words that frequently-occur in both domains and 

also have high mutual information with the source 

label (Blitzer et al., 2007). 
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Finding Feature Correspondence

 Compute the correlations of each pivot 

feature with non-pivot features in both 

domains by building binary pivot predictors

 Using unlabeled data (predicting whether the pivot 

feature l occurs in the instance)

 The weight vector        encodes the covariance of 

the non-pivot features with the pivot feature
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Finding Feature Correspondence

 Positive values in       :

 Indicate that those non-pivot features are 

positively correlated with the pivot feature l in the 

source or the target

 Produce a correlation matrix 
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Computing Low Dim. Approximation

 SVD is employed to compute a low-

dimensional linear approximation 

 : mapping from original space to new space

 The final set of features used for training and 

for testing: original features x +   x
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Multi-Task Learning

 Problem statement: Co-learn multiple related 

tasks simultaneously:

 All tasks have labeled data and are treated equally

 Goal: optimize learning/performance across all 

tasks through shared knowledge

 Rationale: introduce inductive bias in the joint 

hypothesis space of all tasks (Caruana, 1997)

 By exploiting the task relatedness structure, or 

shared knowledge
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One Multi-Task Model: GO-MTL
(Kumar et al., ICML 2012)

 GO-MTL: Grouping and Overlap in Multi-Task 

Learning

 Does not assume that all tasks are related

 Applicable to classification and regression
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GO-MTL Assumptions

 All task models share latent basic model 

components

 Each task model is a linear combination of 

shared latent components

 The linear weight is sparse, to use a small 

number of latent components
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Notations

 N tasks in total

 k (< N) latent basis model components

 Each basis task is represented by l (a 

vector of size d)

 For all latent tasks, L = (l1, l2, …, lk)

 L is learned from N individual tasks.

 E.g., weights/parameters of logistic regression or 

linear regression
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The Approach

 st is a linear weight vector and is assumed to 

be sparse.

 Stacking st (θt) for all tasks, we get S (Θ). S

captures the task grouping structure.
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Objective Function in GO-MTL
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Optimization Strategy

 Alternating optimization strategy to reach a local 

minimum.

 For a fixed L, optimize st:

 For a fixed S, optimize L:
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A Large Body of Literature

 Two tutorials on MTL

 Multi-Task Learning: Theory, Algorithms, and 

Applications. SDM-2012, by Jiayu Zhou, Jianhui

Chen, Jieping Ye

 Multi-Task Learning Primer. IJCNN’15, by Cong Li 

and Georgios C. Anagnostopoulos
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Transfer, Multitask  Lifelong

 Transfer learning vs. LML

 Transfer learning is not continuous

 No retention or accumulation of knowledge

 Only one directional: help target domain
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Transfer, Multitask  Lifelong

 Transfer learning vs. LML

 Transfer learning is not continuous

 No retention or accumulation of knowledge

 Only one directional: help target domain

 Multitask learning vs. LML

 Multitask learning retains no knowledge except data

 Hard to re-learn all when tasks are numerous

 Online (incremental) multi-task learning is LML
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Online Learning

 The training data points come in a sequential 

order (online setting)

 Computationally infeasible to train over the entire 

dataset

 Different from LML

 Still performs the same learning task over time

 LML aims to learn from a sequence of different 

tasks, retain and accumulate knowledge
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Lifelong Supervised Learning (LSL)

 The learner has performed learning on a 

sequence of supervised learning tasks, from 

1 to N.

 When faced with the (N+1)th task, it uses the 

relevant knowledge and labeled training data 

of the (N+1)th task to help learning for the 

(N+1)th task.
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Early Work on Lifelong Learning
(Thrun, 1996b)

 Concept learning tasks: The functions are 

learned over the lifetime of the learner, f1, f2, 

f3, …  F.

 Each task: learn the function f: I  {0, 1}. 

f(x)=1 means x is a particular concept.

 For example, fdog(x)=1 means x is a dog.

 For nth task, we have its training data X

 Also the training data Xk of k =1 , 2, …, n-1 tasks.
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Intuition

 The paper proposed a few approaches based 

on two learning algorithms,

 Memory-based, e.g., kNN or shepard’s method

 Neural networks

 Intuition: when we learn fdog(x), we can use 

functions or knowledge learned from previous 

tasks, such as fcat(x), fbird(x), ftree(x), etc.

 Data for fcat(X), fbird(X), ftree(X)… are support sets.
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Memory based Lifelong Learning

 First method: use the support sets to learn a 

new representation, or function

g: I  I’

 which maps input vectors to a new space. The 

new space is the input space for the final kNN

 Adjust g to minimize the energy function

 g is a neural network, trained with Back-Prop. 

kNN is then applied for the nth (new) task
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Second Method

 It learns a distance function using support sets

d: I  I  [0, 1]

 It takes two input vectors x and x’ from a pair of 

examples <x, y>, <x’, y’> of the same support set 

Xk (k = 1, 2, , …, n-1)

 d is trained with neural network using back-prop, 

and used as a general distance function 

 Training examples are:
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Making Decision

 Given the new task training set Xn and a test 

vector x, for each +ve example, (x’, y’=1)Xn, 

 d(x, x’) is the probability that x is a member of the 

target concept. 

 Decision is made by using votes from positive 

examples, <x1, 1>, <x2, 1>, … Xn combined 

with Bayes’ rule
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LML Components in this Case 

 KB

 Store all the support sets. 

 Distance function d(x, x’): the probability of 

example x and x’ being the same concept.

 KBL

 Voting with Bayes’ rule. 
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Neural Network approaches

 Approach 1: based on that in (Caruana, 1993, 

1997), which is actually a batch multitask 

learning approach.

 Simultaneously minimize the error on both the 

support sets {Xk} and the training set Xn

 Approach 2: an explanation-based neural 

network (EBNN)
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Neural Network approaches
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Task Clustering (TC)
(Thrun and O’Sullivan, 1996)

 In general, not all previous N-1 tasks are 

similar to the Nth (new) task

 Based on a similar idea to the lifelong 

memory-based methods in (Thrun, 1996b)

 It clusters previous tasks into groups or clusters

 When the (new) Nth task arrives, it first

 selects the most similar cluster and then

 uses the distance function of the cluster for 

classification in the Nth task
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Some Other Early works on LML

 Constructive inductive learning to deal with learning 

problem when the original representation space is 

inadequate for the problem at hand (Michalski, 1993)

 Incremental learning primed on a small, incomplete set 

of primitive concepts (Solomonoff, 1989)

 Explanation-based neural networks MTL (Thrun, 1996a)

 MTL method of functional (parallel) transfer (Silver & 

Mercer, 1996)

 Lifelong reinforcement learning (Tanaka & Yamamura, 

1997)

 Collaborative interface agents (Metral & Maes, 1998)
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ELLA
(Ruvolo & Eaton, 2013a)

 ELLA: Efficient Lifelong Learning Algorithm 

 It is based on GO-MTL (Kumar et al., 2012)

 A batch multitask learning method

 ELLA is online multitask learning method

 ELLA is more efficient and can handle a large 

number of tasks 

 Becomes a lifelong learning method

 The model for a new task can be added efficiently.

 The model for each past task can be updated rapidly.
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Inefficiency of GO-MTL

 Since GO-MTL is a batch multitask learning 

method, the optimization goes through all tasks 

and their training instances (Kumar et al., 2012).

 Very inefficient and impractical for a large 

number of tasks.

 It cannot incrementally add a new task efficiently
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Initial Objective Function of ELLA

 Objective Function (Average rather than sum)
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Approximate Equation (1)

 Eliminate the dependence on all of the past 

training data through inner summation

 By using the second-order Taylor expansion of   

around  =  (t) where 

  (t) is an optimal predictor learned on only the 

training data on task t.
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Removing inner summation
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Simplify optimization

 GO-MTL: when computing a single candidate L, 

an optimization problem must be solved to re-

compute the value of each s (t).

 ELLA: after s (t) is computed given the training 

data for task t, it will not be updated when 

training on other tasks. Only L will be changed. 

 Note: (Ruvolo and Eaton, 2013b) added the mechanism 

to actively select the next task to learn.
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ELLA Accuracy Result
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 ELLA vs. GO-MTL

Batch MTL is GO-MTL



ELLA Speed Result
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 ELLA vs. GO-MTL

ELLA is 1K times faster than GO-MTL on all 

tasks, 30K times on a new task



LML Components of ELLA

 KB

 Stores all the task data

 Matrix L for K basis tasks and S

 KBL

 Each task parameter vector is a linear combination of 

KS, i.e.,  (t) = Ls(t)

 Alternating optimization solving
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Lifelong Sentiment Classification
(Chen, Ma, and Liu 2015)

 “I bought a cellphone a few days ago. It is such 

a nice phone. The touch screen is really cool. 

The voice quality is great too. ....” 

 Goal: classify docs or sentences as + or -.

 Need to manually label a lot of training data for 

each domain, which is highly labor-intensive

 Can we not label for every domain or at 

least not label so many docs/sentences?
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A Simple Lifelong Learning Method

Assuming we have worked on a large number of 

past domains with all their training data D

 Build a classifier using D, test on new domain

 Note - using only one past/source domain as in 

transfer learning is not good.

 In many cases – improve accuracy by as much 

as 19% (= 80%-61%). Why?

 In some others cases – not so good, e.g., it 

works poorly for toy reviews. Why? “toy”
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Lifelong Sentiment Classification
(Chen, Ma and Liu, 2015)

 It adopts a Bayesian optimization framework 

for LML using stochastic gradient decent

 Lifelong learning uses

 Word counts from the past data as priors.

 Penalty terms to deal with domain dependent 

sentiment words and reliability of knowledge.

EMNLP-2016, Austin Texas 65



Naïve Bayesian Text Classification

 Key parameter

 Only depends on the count of words in each 

class
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Stored Information

 Probabilities of a word appearing in positive or 

negative

and 

 Word counts

 Number of times that a word appears in positive 

class: 

 Number of times that a word appears in negative 

class: 
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Knowledge Base
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 Two types of knowledge

 Document-level knowledge

 Domain-level knowledge



Knowledge Base
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Knowledge Base
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 Domain-level knowledge



Objective Function
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 Maximize the probably difference

 cj: labeled class in groundtruth

 cf: all classes other than cj



Exploiting Knowledge via Penalties

 Penalty terms for two types of knowledge

 Document-level knowledge

 Domain-level knowledge
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Exploiting Knowledge via Penalties

 Penalty terms for two types of knowledge

 Document-level knowledge

 Domain-level knowledge

 t is the new task
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Exploiting Knowledge via Penalties

 Penalty terms for two types of knowledge

 Document-level knowledge

 Domain-level knowledge

 RW : ratio of #tasks where w is positive / #all tasks
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One Result of LSC model
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 Better F1-score (left) and accuracy (right) with 

more past tasks



LML Components of LSC
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 KB

 Word counts from previous tasks

 Document-level knowledge

 Domain-level knowledge

 KBL

 LSC algorithm with regularization



Cumulative Learning 
(Fei et al., 2016)

 Cumulative learning

 Incrementally adding a new class without re-

training the whole model from scratch

 Learner becomes more knowledgeable

 Detecting unseen classes in test data

 Traditional supervised learning cannot do this

 It needs open classification

 Self-learning: detect unseen/new things and 

learn them. 
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Cumulative Learning is LML

 At time point t, a t-class classifier F𝑡 learned 

from past datasets 𝐷𝑡 = {𝐷1, 𝐷2, ... , 𝐷𝑡} of 

classes 𝑌𝑡 = {𝑙1, 𝑙2, ..., 𝑙𝑡}. 

 F𝑡 classifies each test instance x to either one of the 

known classes in 𝑌𝑡 or the unknown class 𝑙0.

 y = Ft(x), y  {𝑙1, 𝑙2, ..., 𝑙𝑡, 𝑙0}

 At time point t+1, a class 𝑙𝑡+1 (Dt+1) is added, F𝑡

is updated to a (t+1)-class classifier F𝑡+1

 y = Ft+1(x), y  {𝑙1, 𝑙2, ..., 𝑙𝑡, 𝑙𝑡+1, 𝑙0}
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Learning cumulatively

 How to incrementally add a class without 

retraining from scratch?

 “Human learning”: uses the past knowledge Ft

to help learn the new class lt+1.

 Find similar classes SC from known classes 𝑌𝑡. E.g

 Old classes: 𝑌𝑡 = {movie, cat, politics, soccer}.

 New class: lt+1= basketball

 SC = {soccer}

 Building Ft+1 by focusing on separating lt+1 and SC.
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Cumulative Learning Algorithm

 Ft = {f1, f2, …, ft}, a set of binary classifiers. 

 Identifying a set of similar classes SC to the 

new class lt+1 by

 Using each fi to classify instances in 𝐷𝑡+1.

 SC is the set of classes that accept many from 𝐷𝑡+1

 Build ft+1 for 𝑙t+1 using classes in SC as 

negative data.

 Update each classifier for classes in SC by 

adding class 𝑙t+1 as an extra negative class.
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Open Classification
(Fei and Liu, 2016)

 Traditional classification makes the closed 

world assumption:

 Classes in testing have been seen in training

 i.e., no new classes in the test data

 Not true in many real-life environments.

 New data may contain unseen class documents

 We need open (world) classification

 Detect the unseen class of documents 
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Open Classification

 Open space risk formulation (see Fei & Liu 2016)

 Don’t give each class too much open space

 SVM is one half space for each class: too much

 Ideally, a “ball” to cover each class 𝑙i
 Each “ball” is a binary classifier fi
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Open World Learning

 Build a set of 1-vs-rest classifiers, one for each 

training class 𝑙i. 

 The set of 1-vs-rest classifiers Ft = {f1, f2, …, ft+1} 

works together to classify

 Each binary classifier produces a probability P(y|x)

 l0 : class of unknown
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CBS Learning 

 To detect unseen classes, Fei and Liu (2016)

proposed CBS learning: 

 Center-based similarity (CBS) space learning.

 It performs space transformation

 Each document vector d is transformed to a CBS 

space vector

(1) Compute centers ci for the positive class 

(2) Compute similarities of each document to ci. 

 This gives us a new data set in the CSB space. 
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Space Transformation and Learning

 We can use many similarity measures. 

 After space transformation, we can run SVM 

to build a classification in the CBS space

 CBS learning basically finds a ball for each class
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Why does CBS Learning Work?

 SVM classifier

 SVM classification (test)

 Wrong classification
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Why does CBS Learning Work?

 CBS classifier

 CBS classification (test)

 Correct now
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Evaluation

Datasets

 Amazon reviews of 100 domains.

 20 classes in 20newsgroup.
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LML Components in this Case
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 KB

 Previous model Ft = {f1, f2, …, ft} 

 Training data from previous tasks

 KBL

 Cumulative learning algorithm



20 Minutes Break
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Outline

 A motivating example

 What is lifelong machine learning?

 Related learning paradigms

 Lifelong supervised learning

 Lifelong unsupervised learning

 Semi-supervised never-ending learning

 Lifelong reinforcement learning

 Summary
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LTM: Lifelong Topic Modeling
(Chen and Liu, ICML-2014)

 Topic modeling (Blei et al 2003) finds topics from 

a collection of documents. 

 A document is a distribution over topics

 A topic is a distribution over terms/words, e.g.,

 {price, cost, cheap, expensive, …}
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LTM: Lifelong Topic Modeling
(Chen and Liu, ICML-2014)

 Topic modeling (Blei et al 2003) finds topics from 

a collection of documents. 

 A document is a distribution over topics

 A topic is a distribution over terms/words, e.g.,

 {price, cost, cheap, expensive, …}

 Question: how to find good past knowledge 

and use it to help new topic modeling tasks?

 Data: product reviews in the sentiment 

analysis context 
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Sentiment Analysis (SA) Context

 “The size is great, but pictures are poor.” 

 Aspects (product features): size, picture 

 Why lifelong learning can help SA?

 Online reviews: Excellent data with extensive 

sharing of aspect/concepts across domains

 A large volume for all kinds of products 

 Why big (and diverse) data? 

 Learn a broad range of reliable knowledge. More 

knowledge makes future learning easier.
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Key Observation in Practice

 A fair amount of aspect overlapping across 

reviews of different products or domains

 Every product review domain has the aspect price, 

 Most electronic products share the aspect battery

 Many also share the aspect of screen.

 This sharing of concepts / knowledge across 

domains is true in general, not just for SA.

 It is rather “silly” not to exploit such sharing in 

learning
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Problem setting

 Given a large set of document collections (big 

data), D = {D1, D2, …,DN}, learn from each Di to 

produce the results Si. Let S = Ui Si.

 S is called topic base

 Goal: Given a test/new collection Dt, learn from 

Dt with the help of S (and possibly D).

 Dt in D or Dt not in D

 The results learned this way should be better than 

those without the guidance of S (and D)
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What knowledge?

 Should be in the same aspect/topic

=> Must-Links

e.g., {picture, photo}

 Should not be in the same aspect/topic 

=> Cannot-Links

e.g., {battery, picture}
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LTM System
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LTM Model
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 Step 1: Run a topic model (e.g., LDA) on each 
domain Di to produce a set of topics Si called 
Topic Base

 Step 2: Mine prior knowledge (must-links) and 
use knowledge to guide modeling.



LTM Model
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Knowledge Mining Function
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 Topic matching: find similar topics from topic 
base for each topic in the new domain

 Pattern mining: find frequent itemsets from the 
matched topics



An Example

 Given a newly discovered topic:

{price, book, cost, seller, money}

 We find 3 matching topics from topic base S

 Domain 1: {price, color, cost, life, picture}

 Domain 2: {cost, screen, price, expensive, voice}

 Domain 3: {price, money, customer, expensive}
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An Example

 Given a newly discovered topic:

{price, book, cost, seller, money}

 We find 3 matching topics from topic base S

 Domain 1: {price, color, cost, life, picture}

 Domain 2: {cost, screen, price, expensive, voice}

 Domain 3: {price, money, customer, expensive}

 If we require words to appear in at least two

domains, we get two must-links (knowledge):

 {price, cost} and {price, expensive}.

 Each set is likely to belong to the same aspect/topic. 
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Knowledge Mining Function
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Model Inference: Gibbs Sampling 

 How to use the must-links knowledge?

 e.g., {price, cost} & {price, expensive}

 Graphical model: same as LDA

 But the model inference is very different 

 Generalized Pólya Urn Model (GPU)

 Idea: When assigning a topic t to a word w, 

also assign a fraction of t to words in must-

links sharing with w. 
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Simple Pólya Urn Model (SPU) 
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Simple Pólya Urn Model (SPU) 
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Simple Pólya Urn Model (SPU) 
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Simple Pólya Urn Model (SPU) 
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Simple Pólya Urn Model (SPU) 
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Simple Pólya Urn Model (SPU) 
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The rich get richer!



Interpreting LDA Under SPU
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Interpreting LDA Under SPU 
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Interpreting LDA Under SPU 
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Generalized Pólya Urn Model (GPU) 
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Generalized Pólya Urn Model (GPU) 
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Generalized Pólya Urn Model (GPU) 
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Generalized Pólya Urn Model (GPU) 
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Applying GPU

EMNLP-2016, Austin Texas 119

Topic 0

price



Applying GPU

EMNLP-2016, Austin Texas 120

Topic 0

price

price

mone

y

cost



Gibbs Sampling
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Experiment Results
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LML Components of LTM
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 KB

 Stores topics/aspects generated in the past 

tasks

 Knowledge: Must-Links

 KBL

 LTM is based on Generalized Pólya Urn Model



AMC: Modeling with Small Datasets
(Chen and Liu, KDD-2014)

 The LTM model is not sufficient when the 

data is small for each task because 

 It cannot produce good initial topics for matching 

to identify relevant past topics.

 AMC mines must-links differently

 Mine must-links from the PIS without considering 

the target task/data
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Cannot-Links

 In this case, we need to mine cannot-links, 

which is tricky because

 There is a huge number of cannot-links O(V2)

 V is the vocabulary size

 We thus need to focus on only those terms 

that are relevant to target data Dt.

 That is, we need to embed the process of finding 

cannot-links in the sampling 
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AMC System
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Overall Algorithm

 Sampling becomes much more complex

 It proposed M-GPU model (multi-generalized 

Polya urn model)
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Our Proposed M-GPU Model
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Our Proposed M-GPU Model
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Our Proposed M-GPU Model
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Our Proposed M-GPU Model

EMNLP-2016, Austin Texas 131

Topic 0 Topic 1 Topic 2

color
{price, color}



Our Proposed M-GPU Model
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Our Proposed M-GPU Model
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Our Proposed M-GPU Model
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AMC results
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AMC results
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LML Components of AMC
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 KB

 Stores topics/aspects generated in the past 

tasks

 Knowledge: Must-Links and Cannot-Links

 KBL

 AMC is based on multi-generalized Pólya Urn 

Model



LAST Model

 Lifelong aspect-based sentiment topic model 

(Wang et al., 2016)

 Knowledge

 Aspect-opinion pair, e.g., {shipping, quick}

 Aspect-aspect pair, e.g., {shipping, delivery}

 Opinion-opinion pair, e.g, {quick, fast}
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Lifelong Information Extraction 
(Liu et al., 2016)

 Specifically: aspect extraction

 “The size is great, but pictures are poor.” 

 Aspects (product features): size, picture 

 An effective approach

 Double Propagation (DP) (Qiu et al 2011): a 

syntactic rule-based extraction method 

 Still has a lot of room for improvement.
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Problem and Solution

 Problem of syntactic rule-based methods

 hard to design a set of rules to perform extraction 

with high precision and recall.

 Possible solution

 Use prior knowledge mined by exploiting the 

abundance of reviews for all kinds of products

since many products share aspects.

 e.g., many electronic products have aspect battery.
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How to Use Prior Knowledge?

 Use extracted aspects from reviews of a 

large number of other products to help extract 

aspects from reviews of the current product.

 Using recommendation.

 This work uses DP as the base and improve

its results dramatically through

 aspect recommendation.

EMNLP-2016, Austin Texas 141



Overall Algorithm
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 Algorithm AER, short for Aspect Extraction based on 

Recommendation.

Step 1: Base extraction

Step 2: Recommendation



Step 1: Base Extraction

 Use the DP method (DPextract) to extract an 

initial (or base) set 𝑇− of aspects employing a 

set 𝑅− of high precision rules.

 Set 𝑇−of extracted aspects has very high 

precision but low recall.

 Extract a set 𝑇+ of aspects from a larger set 

𝑅+ of high recall rules also using DPextract.

 Set 𝑇+of extracted aspects has very high recall

but low precision. 
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Step 2: Recommendation

 Recommend more aspects using 𝑇− as the 

base to improve the recall. To ensure 

recommendation quality, AER requires 

 Aspects must be from 𝑇 = 𝑇+ − 𝑇−.

 Two forms of recommendation 

 similarity-based (Sim-recom) and 

 association-based (AR-recom).
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Similarity-based Recommendation

 Solve the problem of missing synonymous 

aspects.

 e.g., we can recommend “photo” and “image” 

through “picture” as they are similar in meaning.

 Employ word vectors trained from a large 

corpus of 5.8 million reviews for similarity 

comparison.

 But can also be trained using past data
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Algorithm Sim-recom

 For each term t ∈ 𝑇, if the similarity between t and any 

term in 𝑇− is at least 𝜖, then recommend t as an aspect
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Association-based Recommendation

 It aims to solve the problem of missing 

correlated or co-occurring aspects.

 e.g., we can recommend “battery” through 

“picture” as they are highly related -- pictures    

are taken by digital devices which need batteries.

 To mine aspect associations, 

 apply association rule mining to aspects extracted

from reviews of previous products/domains.
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Association Rule Generation

 The set of aspects extracted from each 

domain  in the past forms a transaction in DB. 

 Apply an association rule mining algorithm to 

DB to generate a set of rules.
 An association rule in could be:

picture, display  video, purchase
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Algorithm AR-recom

 For each association rule r ∈ 𝑅𝑎, 

 if ante(r) is a subset of 𝑇−, then recommend the terms 

in cons(r) ∩ 𝑇 as aspects. 
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Evaluation

 Compared Approaches

 SimR uses only aspect similarities for 

recommendation.

 ARR uses only aspect associations for 

recommendation.

 AER uses both aspect similarities and 

associations for recommendation.
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Experimental Results (Overall results)
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LML Components of AER
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 Word vectors

 Aspects extracted from previous tasks

 Learned association rules

 KBL

 DP + Two forms of recommendations



Lifelong Relaxation Labeling
(Shu et al., 2016)

 Relaxation Labeling (RL) is an unsupervised 

graph-based label propagation algorithm.

 Unsupervised classification

 It is augmented with lifelong learning 

(Lifelong-RL) to exploit past knowledge 

learned from previous tasks. 
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Relaxation Labeling (RL)

 Graph consists of nodes and edges. 

 Node: object to be labeled 

 Edge: a binary relationship between two nodes. 

 Each node ni in the graph is associated with 

a multinomial distribution P(L(ni))

 L(ni) is the label of ni on a label set Y .

 Each edge has two conditional distributions: 

 P(L(ni) | L(nj)) and P(L(nj) | L(ni))
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Relaxation Labeling (contd)

 Neighbors Ne(ni) of a node ni are associated 

with a weight distribution w(nj | ni)

 RL iteratively updates the label distribution of 

each node until convergence. 

 Initially, we have P0(L(ni)). Let Pr+1(L(ni)) be 

the change of P(L(ni)) at iteration r + 1.
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Relaxation Labeling (contd)

 Updated label distribution for iteration r + 1 is 

computed as follows:

 The final label of node ni is its highest 

probable label.

y))
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What past knowledge can be used?

Lifelong-RL uses two forms of knowledge

 Prior edges: graphs are usually not given or 

fixed but are built based on text data. 

 If the data is small, many edges may be missing

 But such edges may existing in the graphs of 

some previous tasks 

 Prior labels: initial P0(L(ni)) is quite hard to 

set, but results from previous tasks can be 

used to set it more accurately. 
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Lifelong-RL for a SA task
(Shu et al., 2016)
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 Problem: opinion target labeling 

 Separating entities and aspects

 Example: “Although the engine is slightly weak, 

this car is great.” 

 Entity: car; Aspect: engine

 Target extract often cannot distinguish the two

 Suitable for lifelong learning

 Shared edges, and shared entities and aspects 

and their labels across domains



Lifelong-RL architecture

 Relation modifiers indicate edges. 

 Type modifiers and prior labels help set P0(L(ni)) 
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LML Components of Lifelong-RL
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 KB

 Edges from previous tasks

 Node labels from previous tasks

 KBL

 Relaxation labeling 



Outline

 A motivating example

 What is lifelong machine learning?

 Related learning paradigms

 Lifelong supervised learning

 Lifelong unsupervised learning

 Semi-supervised never-ending learning

 Lifelong reinforcement learning

 Summary
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Never Ending Language Learner
(Carlson et al., 2010; Mitchell et al., 2015)

 NELL: Never Ending Language Learner

 Perhaps the only live LML system 

 it has been reading the Web to extract certain 

types of information (or knowledge) 

 24/7 since January 2010.

 NELL has accumulated millions of facts 

with attached confidence weights 

 called beliefs,
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Input to NELL

 An ontology defining a set of target 

categories and relations to be learned, 

 a handful of seed training examples for each, and

 a set of coupling constraints about categories and 

relations (Person & Sport are mutually exclusive).

 Webpages crawled from the Web

 Interactions with human trainers to correct 

some mistakes made by NELL
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Goal of NELL

 Reading - extract facts from webpages to 

populate the initial ontology

 category of a noun or noun phrase, e.g., Los 

Angeles is a city

 relations of a pair of noun phrases 

 hasMajor(Stanford, Computer Science)

 Learn to perform the above extraction tasks 

better each day. 
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Knowledge Base
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 Instance of category: which noun phrases 

refer to which specified semantic categories 

 For example, Los Angeles is in the category city.

 Relationship of a pair of noun phrases, e.g., 

given a name of an organization and the 

location, check if 

 hasOfficesIn(<organization>, <location>).

 …



NELL Knowledge Fragment
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Semi-supervised Learning

 Training examples

 human-labeled instances in NELL’s ontology

 labeled examples contributed over time through 

NELL’s crowdsourcing website, 

 a set of NELL self-labeled training examples 

corresponding to NELL’s current knowledge base, 

 a large amount of unlabeled Web text. 

 2nd and 3rd sets of the training examples 

propel NELL’s lifelong learning
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NELL Architecture
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Coupled Pattern Learner (CPL)

 CPL: extractors extracting both category and 

relation instances using contextual patterns.

 Examples

 Category pattern: “mayor of X” and 

 Relation pattern: “X plays for Y”

 Such patterns can also be learned. 

 Mutual exclusion & type-checking constraints 

 filter candidate facts to ensure quality
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Coupled SEAL (CSEAL)

 CSEAL: an extraction and learning system 

that extracts facts from semi-structured 

webpages using wrapper induction

 Based on set expansion or PU learning

 Wrapper: html strings specifying the left and right 

context of an entity.

 Mutual exclusion & type-checking 

constraints: 

 filtered out likely errors
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Coupled Morphological Classifier (CMC)

 CMC: a set of binary classifiers, one for each 

category, 

 To classify whether the extracted candidate 

facts/beliefs by other subsystems are indeed of 

their respective categories.

 Positive training examples: 

 beliefs in the current knowledge base.

 Negative training examples

 beliefs satisfying mutual exclusion constraints 
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Rule Learner (RL)

 Its goal is to learn probabilistic Horn clauses 

 to use them to infer new relations from the 

existing relations in the knowledge base. 

 Reasoning capability 

 represents an important advance of NELL 

 It does not exist in most current LML systems.
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Coupling Constraints in NELL

 Multi-view co-training coupling constraint

 Agreement: the same category or relation learned 

from different data sources, or views.

 Subset/superset coupling constraint

 When a new category is added to NELL’s ontology, 

its parents (supersets) are also specified.

 Horn clause coupling constraint

 E.g., “X living in Chicago” and “Chicago being a city 

in U.S.”   “X lives in U.S.”
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LML Components of NELL
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 Extracted facts and relations

 Reasoning capability

 KBL

 All the learners and extractors



ALICE: Lifelong Info. Extraction
(Banko and Etzioni 2007)

 Similar to NELL, Alice performs similar 

continuous/lifelong information extraction of

 concepts and their instances, 

 attributes of concepts, and 

 various relationships among them. 

 The knowledge is iteratively updated

 Extraction based on syntactic patterns like 

 (<x> such as <y>) and (fruit such as <y>),
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Lifelong Strategy

 The output knowledge upon completion of a 

learning task is used in two ways: 

 to update the current domain theory (i.e., domain 

concept hierarchy and abstraction) and 

 to generate subsequent learning tasks.

 This behavior makes Alice a lifelong agent

 i.e., Alice uses the knowledge acquired during the 

nth task to specify its future learning agenda. 
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Outline

 A motivating example

 What is lifelong machine learning?

 Related learning paradigms

 Lifelong supervised learning

 Lifelong unsupervised learning

 Semi-supervised never-ending learning

 Lifelong reinforcement learning

 Summary

EMNLP-2016, Austin Texas 177



Reinforcement Learning

 An agent learns actions through trial and error 

interactions with a dynamic environment

 The agent gets reward/penalty after each action

 Each action changes the state of the 

environment

 The agent usually needs a large amount of 

quality experience (cost is high)
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Lifelong Reinforcement Learning (LRL)

 Utilize the experience accumulated from other 

tasks

 Learn faster in a new task with fewer interactions
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Example LRL Works

 Lifelong robot learning with knowledge 

memorization (Thrun and Mitchell 1995)

 Treating each environment as a task (Tanaka 

and Yamamura 1997)

 Hierarchical Bayesian approach (Wilson et al., 

2007) 

 Policy Gradient Efficient Lifelong Learning 

Algorithm (PG-ELLA) (Bou Ammar et al., 2014)
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Outline

 A motivating example

 What is lifelong machine learning?

 Related learning paradigms

 Lifelong supervised learning

 Lifelong unsupervised learning

 Semi-supervised never-ending learning

 Lifelong reinforcement learning

 Summary
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Summary

 This tutorial gave an introduction to LML with a 

focus on NLP applications

 Existing LML research is still in its infancy

 Understanding of LML is very limited

 Current research mainly focuses on 

 Only one type of tasks in a system

 LML needs big data – to learn a large amount 

of reliable knowledge of different types.

 The more we know the better we can learn
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Summary 
(Chen and Liu 2016-book)

There are many challenges for LML, e.g.,

 Correctness of knowledge 

 Applicability of knowledge

 Knowledge representation and reasoning

 Learn with tasks of multiple types 

 Self-motivated learning

 Compositional learning

 Learning in interaction with humans & systems
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Coming Soon (Nov 2016)
(Chen and Liu 2016-book)

 Introduction

 Related Learning Paradigms

 Lifelong Supervised Learning

 Lifelong Unsupervised Learning

 Lifelong Semi-supervised Learning 

for Information Extraction

 Lifelong Reinforcement Learning

 Conclusion
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Thank You! 

Q & A
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