Zheng Wang


pdf bib
Jointly Learning Entity and Relation Representations for Entity Alignment
Yuting Wu | Xiao Liu | Yansong Feng | Zheng Wang | Dongyan Zhao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Entity alignment is a viable means for integrating heterogeneous knowledge among different knowledge graphs (KGs). Recent developments in the field often take an embedding-based approach to model the structural information of KGs so that entity alignment can be easily performed in the embedding space. However, most existing works do not explicitly utilize useful relation representations to assist in entity alignment, which, as we will show in the paper, is a simple yet effective way for improving entity alignment. This paper presents a novel joint learning framework for entity alignment. At the core of our approach is a Graph Convolutional Network (GCN) based framework for learning both entity and relation representations. Rather than relying on pre-aligned relation seeds to learn relation representations, we first approximate them using entity embeddings learned by the GCN. We then incorporate the relation approximation into entities to iteratively learn better representations for both. Experiments performed on three real-world cross-lingual datasets show that our approach substantially outperforms state-of-the-art entity alignment methods.


pdf bib
Marrying Up Regular Expressions with Neural Networks: A Case Study for Spoken Language Understanding
Bingfeng Luo | Yansong Feng | Zheng Wang | Songfang Huang | Rui Yan | Dongyan Zhao
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The success of many natural language processing (NLP) tasks is bound by the number and quality of annotated data, but there is often a shortage of such training data. In this paper, we ask the question: “Can we combine a neural network (NN) with regular expressions (RE) to improve supervised learning for NLP?”. In answer, we develop novel methods to exploit the rich expressiveness of REs at different levels within a NN, showing that the combination significantly enhances the learning effectiveness when a small number of training examples are available. We evaluate our approach by applying it to spoken language understanding for intent detection and slot filling. Experimental results show that our approach is highly effective in exploiting the available training data, giving a clear boost to the RE-unaware NN.


pdf bib
Learning with Noise: Enhance Distantly Supervised Relation Extraction with Dynamic Transition Matrix
Bingfeng Luo | Yansong Feng | Zheng Wang | Zhanxing Zhu | Songfang Huang | Rui Yan | Dongyan Zhao
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Distant supervision significantly reduces human efforts in building training data for many classification tasks. While promising, this technique often introduces noise to the generated training data, which can severely affect the model performance. In this paper, we take a deep look at the application of distant supervision in relation extraction. We show that the dynamic transition matrix can effectively characterize the noise in the training data built by distant supervision. The transition matrix can be effectively trained using a novel curriculum learning based method without any direct supervision about the noise. We thoroughly evaluate our approach under a wide range of extraction scenarios. Experimental results show that our approach consistently improves the extraction results and outperforms the state-of-the-art in various evaluation scenarios.