Yuichiroh Matsubayashi


2018

pdf bib
A Melody-Conditioned Lyrics Language Model
Kento Watanabe | Yuichiroh Matsubayashi | Satoru Fukayama | Masataka Goto | Kentaro Inui | Tomoyasu Nakano
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

This paper presents a novel, data-driven language model that produces entire lyrics for a given input melody. Previously proposed models for lyrics generation suffer from the inability of capturing the relationship between lyrics and melody partly due to the unavailability of lyrics-melody aligned data. In this study, we first propose a new practical method for creating a large collection of lyrics-melody aligned data and then create a collection of 1,000 lyrics-melody pairs augmented with precise syllable-note alignments and word/sentence/paragraph boundaries. We then provide a quantitative analysis of the correlation between word/sentence/paragraph boundaries in lyrics and melodies. We then propose an RNN-based lyrics language model conditioned on a featurized melody. Experimental results show that the proposed model generates fluent lyrics while maintaining the compatibility between boundaries of lyrics and melody structures.

pdf bib
Distance-Free Modeling of Multi-Predicate Interactions in End-to-End Japanese Predicate-Argument Structure Analysis
Yuichiroh Matsubayashi | Kentaro Inui
Proceedings of the 27th International Conference on Computational Linguistics

Capturing interactions among multiple predicate-argument structures (PASs) is a crucial issue in the task of analyzing PAS in Japanese. In this paper, we propose new Japanese PAS analysis models that integrate the label prediction information of arguments in multiple PASs by extending the input and last layers of a standard deep bidirectional recurrent neural network (bi-RNN) model. In these models, using the mechanisms of pooling and attention, we aim to directly capture the potential interactions among multiple PASs, without being disturbed by the word order and distance. Our experiments show that the proposed models improve the prediction accuracy specifically for cases where the predicate and argument are in an indirect dependency relation and achieve a new state of the art in the overall F1 on a standard benchmark corpus.

pdf bib
Multi-dialect Neural Machine Translation and Dialectometry
Kaori Abe | Yuichiroh Matsubayashi | Naoaki Okazaki | Kentaro Inui
Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation

2017

pdf bib
Revisiting the Design Issues of Local Models for Japanese Predicate-Argument Structure Analysis
Yuichiroh Matsubayashi | Kentaro Inui
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

The research trend in Japanese predicate-argument structure (PAS) analysis is shifting from pointwise prediction models with local features to global models designed to search for globally optimal solutions. However, the existing global models tend to employ only relatively simple local features; therefore, the overall performance gains are rather limited. The importance of designing a local model is demonstrated in this study by showing that the performance of a sophisticated local model can be considerably improved with recent feature embedding methods and a feature combination learning based on a neural network, outperforming the state-of-the-art global models in F1 on a common benchmark dataset.

2016

pdf bib
Modeling Discourse Segments in Lyrics Using Repeated Patterns
Kento Watanabe | Yuichiroh Matsubayashi | Naho Orita | Naoaki Okazaki | Kentaro Inui | Satoru Fukayama | Tomoyasu Nakano | Jordan Smith | Masataka Goto
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This study proposes a computational model of the discourse segments in lyrics to understand and to model the structure of lyrics. To test our hypothesis that discourse segmentations in lyrics strongly correlate with repeated patterns, we conduct the first large-scale corpus study on discourse segments in lyrics. Next, we propose the task to automatically identify segment boundaries in lyrics and train a logistic regression model for the task with the repeated pattern and textual features. The results of our empirical experiments illustrate the significance of capturing repeated patterns in predicting the boundaries of discourse segments in lyrics.

pdf bib
Modeling Context-sensitive Selectional Preference with Distributed Representations
Naoya Inoue | Yuichiroh Matsubayashi | Masayuki Ono | Naoaki Okazaki | Kentaro Inui
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This paper proposes a novel problem setting of selectional preference (SP) between a predicate and its arguments, called as context-sensitive SP (CSP). CSP models the narrative consistency between the predicate and preceding contexts of its arguments, in addition to the conventional SP based on semantic types. Furthermore, we present a novel CSP model that extends the neural SP model (Van de Cruys, 2014) to incorporate contextual information into the distributed representations of arguments. Experimental results demonstrate that the proposed CSP model successfully learns CSP and outperforms the conventional SP model in coreference cluster ranking.

2014

pdf bib
Modeling Structural Topic Transitions for Automatic Lyrics Generation
Kento Watanabe | Yuichiroh Matsubayashi | Kentaro Inui | Masataka Goto
Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing

2012

pdf bib
Framework of Semantic Role Assignment based on Extended Lexical Conceptual Structure: Comparison with VerbNet and FrameNet
Yuichiroh Matsubayashi | Yusuke Miyao | Akiko Aizawa
Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics

pdf bib
Building Japanese Predicate-argument Structure Corpus using Lexical Conceptual Structure
Yuichiroh Matsubayashi | Yusuke Miyao | Akiko Aizawa
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

2011

pdf bib
Safety Information Mining — What can NLP do in a disaster—
Graham Neubig | Yuichiroh Matsubayashi | Masato Hagiwara | Koji Murakami
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf bib
Mining Coreference Relations between Formulas and Text using Wikipedia
Minh Nghiem Quoc | Keisuke Yokoi | Yuichiroh Matsubayashi | Akiko Aizawa
Proceedings of the Second Workshop on NLP Challenges in the Information Explosion Era (NLPIX 2010)

2009

pdf bib
A Comparative Study on Generalization of Semantic Roles in FrameNet
Yuichiroh Matsubayashi | Naoaki Okazaki | Jun’ichi Tsujii
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP