Yicheng Zou


pdf bib
A Lexicon-Based Graph Neural Network for Chinese NER
Tao Gui | Yicheng Zou | Qi Zhang | Minlong Peng | Jinlan Fu | Zhongyu Wei | Xuanjing Huang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recurrent neural networks (RNN) used for Chinese named entity recognition (NER) that sequentially track character and word information have achieved great success. However, the characteristic of chain structure and the lack of global semantics determine that RNN-based models are vulnerable to word ambiguities. In this work, we try to alleviate this problem by introducing a lexicon-based graph neural network with global semantics, in which lexicon knowledge is used to connect characters to capture the local composition, while a global relay node can capture global sentence semantics and long-range dependency. Based on the multiple graph-based interactions among characters, potential words, and the whole-sentence semantics, word ambiguities can be effectively tackled. Experiments on four NER datasets show that the proposed model achieves significant improvements against other baseline models.


pdf bib
A Lexicon-Based Supervised Attention Model for Neural Sentiment Analysis
Yicheng Zou | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 27th International Conference on Computational Linguistics

Attention mechanisms have been leveraged for sentiment classification tasks because not all words have the same importance. However, most existing attention models did not take full advantage of sentiment lexicons, which provide rich sentiment information and play a critical role in sentiment analysis. To achieve the above target, in this work, we propose a novel lexicon-based supervised attention model (LBSA), which allows a recurrent neural network to focus on the sentiment content, thus generating sentiment-informative representations. Compared with general attention models, our model has better interpretability and less noise. Experimental results on three large-scale sentiment classification datasets showed that the proposed method outperforms previous methods.