Yanyang Li


2023

pdf bib
Learning Preference Model for LLMs via Automatic Preference Data Generation
Shijia Huang | Jianqiao Zhao | Yanyang Li | Liwei Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Despite the advanced capacities of the state-of-the-art large language models (LLMs), they suffer from issues of hallucination, stereotype, etc. Preference models play an important role in LLM alignment, yet training preference models predominantly rely on human-annotated data. This reliance limits their versatility and scalability. In this paper, we propose learning the preference model for LLMs via automatic preference data generation (AutoPM). Our approach involves both In-Breadth Data Generation, which elicits pairwise preference data from LLMs following the helpful-honest-harmless (HHH) criteria, and In-Depth Data Generation, which enriches the dataset with responses spanning a wide quality range. With HHH-guided preference data, our approach simultaneously enables the LLMs to learn human preferences and align with human values. Quantitative assessments on five benchmark datasets demonstrate the reliability and potential of AutoPM, pointing out a more general and scalable way to improve LLM performance.

pdf bib
CLEVA: Chinese Language Models EVAluation Platform
Yanyang Li | Jianqiao Zhao | Duo Zheng | Zi-Yuan Hu | Zhi Chen | Xiaohui Su | Yongfeng Huang | Shijia Huang | Dahua Lin | Michael Lyu | Liwei Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

With the continuous emergence of Chinese Large Language Models (LLMs), how to evaluate a model’s capabilities has become an increasingly significant issue. The absence of a comprehensive Chinese benchmark that thoroughly assesses a model’s performance, the unstandardized and incomparable prompting procedure, and the prevalent risk of contamination pose major challenges in the current evaluation of Chinese LLMs. We present CLEVA, a user-friendly platform crafted to holistically evaluate Chinese LLMs. Our platform employs a standardized workflow to assess LLMs’ performance across various dimensions, regularly updating a competitive leaderboard. To alleviate contamination, CLEVA curates a significant proportion of new data and develops a sampling strategy that guarantees a unique subset for each leaderboard round. Empowered by an easy-to-use interface that requires just a few mouse clicks and a model API, users can conduct a thorough evaluation with minimal coding. Large-scale experiments featuring 23 Chinese LLMs have validated CLEVA’s efficacy.

pdf bib
MVP-Tuning: Multi-View Knowledge Retrieval with Prompt Tuning for Commonsense Reasoning
Yongfeng Huang | Yanyang Li | Yichong Xu | Lin Zhang | Ruyi Gan | Jiaxing Zhang | Liwei Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advances in pre-trained language models (PLMs) have facilitated the development ofcommonsense reasoning tasks. However, existing methods rely on multi-hop knowledgeretrieval and thus suffer low accuracy due toembedded noise in the acquired knowledge. In addition, these methods often attain highcomputational costs and nontrivial knowledgeloss because they encode the knowledge independently of the PLM, making it less relevant to the task and thus resulting in a poorlocal optimum. In this work, we propose MultiView Knowledge Retrieval with Prompt Tuning (MVP-Tuning). MVP-Tuning leveragessimilar question-answer pairs in the training setto improve knowledge retrieval and employsa single prompt-tuned PLM to model knowledge and input text jointly. We conduct our experiments on five commonsense reasoning QAbenchmarks to show that MVP-Tuning outperforms all other baselines in 4 out of 5 datasetswith less than 2% trainable parameters. MVPTuning even gets a new state-of-the-art resulton OpenBookQA and is number one on theleaderboard.

2022

pdf bib
Probing Structured Pruning on Multilingual Pre-trained Models: Settings, Algorithms, and Efficiency
Yanyang Li | Fuli Luo | Runxin Xu | Songfang Huang | Fei Huang | Liwei Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Structured pruning has been extensively studied on monolingual pre-trained language models and is yet to be fully evaluated on their multilingual counterparts. This work investigates three aspects of structured pruning on multilingual pre-trained language models: settings, algorithms, and efficiency. Experiments on nine downstream tasks show several counter-intuitive phenomena: for settings, individually pruning for each language does not induce a better result; for algorithms, the simplest method performs the best; for efficiency, a fast model does not imply that it is also small. To facilitate the comparison on all sparsity levels, we present Dynamic Sparsification, a simple approach that allows training the model once and adapting to different model sizes at inference. We hope this work fills the gap in the study of structured pruning on multilingual pre-trained models and sheds light on future research.

pdf bib
S2SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder for Text-to-SQL Parsers
Binyuan Hui | Ruiying Geng | Lihan Wang | Bowen Qin | Yanyang Li | Bowen Li | Jian Sun | Yongbin Li
Findings of the Association for Computational Linguistics: ACL 2022

The task of converting a natural language question into an executable SQL query, known as text-to-SQL, is an important branch of semantic parsing. The state-of-the-art graph-based encoder has been successfully used in this task but does not model the question syntax well. In this paper, we propose S2SQL, injecting Syntax to question-Schema graph encoder for Text-to-SQL parsers, which effectively leverages the syntactic dependency information of questions in text-to-SQL to improve the performance. We also employ the decoupling constraint to induce diverse relational edge embedding, which further improves the network’s performance. Experiments on the Spider and robustness setting Spider-Syn demonstrate that the proposed approach outperforms all existing methods when pre-training models are used, resulting in a performance ranks first on the Spider leaderboard.

pdf bib
Multi-Path Transformer is Better: A Case Study on Neural Machine Translation
Ye Lin | Shuhan Zhou | Yanyang Li | Anxiang Ma | Tong Xiao | Jingbo Zhu
Findings of the Association for Computational Linguistics: EMNLP 2022

For years the model performance in machine learning obeyed a power-law relationship with the model size. For the consideration of parameter efficiency, recent studies focus on increasing model depth rather than width to achieve better performance. In this paper, we study how model width affects the Transformer model through a parameter-efficient multi-path structure. To better fuse features extracted from different paths, we add three additional operations to each sublayer: a normalization at the end of each path, a cheap operation to produce more features, and a learnable weighted mechanism to fuse all features flexibly. Extensive experiments on 12 WMT machine translation tasks show that, with the same number of parameters, the shallower multi-path model can achieve similar or even better performance than the deeper model. It reveals that we should pay more attention to the multi-path structure, and there should be a balance between the model depth and width to train a better large-scale Transformer.

pdf bib
FlowEval: A Consensus-Based Dialogue Evaluation Framework Using Segment Act Flows
Jianqiao Zhao | Yanyang Li | Wanyu Du | Yangfeng Ji | Dong Yu | Michael Lyu | Liwei Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Despite recent progress in open-domain dialogue evaluation, how to develop automatic metrics remains an open problem. We explore the potential of dialogue evaluation featuring dialog act information, which was hardly explicitly modeled in previous methods. However, defined at the utterance level in general, dialog act is of coarse granularity, as an utterance can contain multiple segments possessing different functions. Hence, we propose segment act, an extension of dialog act from utterance level to segment level, and crowdsource a large-scale dataset for it. To utilize segment act flows, sequences of segment acts, for evaluation, we develop the first consensus-based dialogue evaluation framework, FlowEval. This framework provides a reference-free approach for dialog evaluation by finding pseudo-references. Extensive experiments against strong baselines on three benchmark datasets demonstrate the effectiveness and other desirable characteristics of our FlowEval, pointing out a potential path for better dialogue evaluation.

pdf bib
Eliciting Knowledge from Large Pre-Trained Models for Unsupervised Knowledge-Grounded Conversation
Yanyang Li | Jianqiao Zhao | Michael Lyu | Liwei Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent advances in large-scale pre-training provide large models with the potential to learn knowledge from the raw text. It is thus natural to ask whether it is possible to leverage these large models as knowledge bases for downstream tasks. In this work, we answer the aforementioned question in unsupervised knowledge-grounded conversation. We explore various methods that best elicit knowledge from large models. Our human study indicates that, though hallucinations exist, large models post the unique advantage of being able to output common sense and summarize facts that cannot be directly retrieved from the search engine. To better exploit such generated knowledge in dialogue generation, we treat the generated knowledge as a noisy knowledge source and propose the posterior-based reweighing as well as the noisy training strategy. Empirical results on two benchmarks show advantages over the state-of-the-art methods.

2021

pdf bib
Bag of Tricks for Optimizing Transformer Efficiency
Ye Lin | Yanyang Li | Tong Xiao | Jingbo Zhu
Findings of the Association for Computational Linguistics: EMNLP 2021

Improving Transformer efficiency has become increasingly attractive recently. A wide range of methods has been proposed, e.g., pruning, quantization, new architectures and etc. But these methods are either sophisticated in implementation or dependent on hardware. In this paper, we show that the efficiency of Transformer can be improved by combining some simple and hardware-agnostic methods, including tuning hyper-parameters, better design choices and training strategies. On the WMT news translation tasks, we improve the inference efficiency of a strong Transformer system by 3.80x on CPU and 2.52x on GPU.

pdf bib
Weight Distillation: Transferring the Knowledge in Neural Network Parameters
Ye Lin | Yanyang Li | Ziyang Wang | Bei Li | Quan Du | Tong Xiao | Jingbo Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge distillation has been proven to be effective in model acceleration and compression. It transfers knowledge from a large neural network to a small one by using the large neural network predictions as targets of the small neural network. But this way ignores the knowledge inside the large neural networks, e.g., parameters. Our preliminary study as well as the recent success in pre-training suggests that transferring parameters are more effective in distilling knowledge. In this paper, we propose Weight Distillation to transfer the knowledge in parameters of a large neural network to a small neural network through a parameter generator. On the WMT16 En-Ro, NIST12 Zh-En, and WMT14 En-De machine translation tasks, our experiments show that weight distillation learns a small network that is 1.88 2.94x faster than the large network but with competitive BLEU performance. When fixing the size of small networks, weight distillation outperforms knowledge distillation by 0.51 1.82 BLEU points.

pdf bib
Stacked Acoustic-and-Textual Encoding: Integrating the Pre-trained Models into Speech Translation Encoders
Chen Xu | Bojie Hu | Yanyang Li | Yuhao Zhang | Shen Huang | Qi Ju | Tong Xiao | Jingbo Zhu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Encoder pre-training is promising in end-to-end Speech Translation (ST), given the fact that speech-to-translation data is scarce. But ST encoders are not simple instances of Automatic Speech Recognition (ASR) or Machine Translation (MT) encoders. For example, we find that ASR encoders lack the global context representation, which is necessary for translation, whereas MT encoders are not designed to deal with long but locally attentive acoustic sequences. In this work, we propose a Stacked Acoustic-and-Textual Encoding (SATE) method for speech translation. Our encoder begins with processing the acoustic sequence as usual, but later behaves more like an MT encoder for a global representation of the input sequence. In this way, it is straightforward to incorporate the pre-trained models into the system. Also, we develop an adaptor module to alleviate the representation inconsistency between the pre-trained ASR encoder and MT encoder, and develop a multi-teacher knowledge distillation method to preserve the pre-training knowledge. Experimental results on the LibriSpeech En-Fr and MuST-C En-De ST tasks show that our method achieves state-of-the-art BLEU scores of 18.3 and 25.2. To our knowledge, we are the first to develop an end-to-end ST system that achieves comparable or even better BLEU performance than the cascaded ST counterpart when large-scale ASR and MT data is available.

2020

pdf bib
The NiuTrans System for WNGT 2020 Efficiency Task
Chi Hu | Bei Li | Yinqiao Li | Ye Lin | Yanyang Li | Chenglong Wang | Tong Xiao | Jingbo Zhu
Proceedings of the Fourth Workshop on Neural Generation and Translation

This paper describes the submissions of the NiuTrans Team to the WNGT 2020 Efficiency Shared Task. We focus on the efficient implementation of deep Transformer models (Wang et al., 2019; Li et al., 2019) using NiuTensor, a flexible toolkit for NLP tasks. We explored the combination of deep encoder and shallow decoder in Transformer models via model compression and knowledge distillation. The neural machine translation decoding also benefits from FP16 inference, attention caching, dynamic batching, and batch pruning. Our systems achieve promising results in both translation quality and efficiency, e.g., our fastest system can translate more than 40,000 tokens per second with an RTX 2080 Ti while maintaining 42.9 BLEU on newstest2018.

pdf bib
A Simple and Effective Approach to Robust Unsupervised Bilingual Dictionary Induction
Yanyang Li | Yingfeng Luo | Ye Lin | Quan Du | Huizhen Wang | Shujian Huang | Tong Xiao | Jingbo Zhu
Proceedings of the 28th International Conference on Computational Linguistics

Unsupervised Bilingual Dictionary Induction methods based on the initialization and the self-learning have achieved great success in similar language pairs, e.g., English-Spanish. But they still fail and have an accuracy of 0% in many distant language pairs, e.g., English-Japanese. In this work, we show that this failure results from the gap between the actual initialization performance and the minimum initialization performance for the self-learning to succeed. We propose Iterative Dimension Reduction to bridge this gap. Our experiments show that this simple method does not hamper the performance of similar language pairs and achieves an accuracy of 13.64 55.53% between English and four distant languages, i.e., Chinese, Japanese, Vietnamese and Thai.

2019

pdf bib
The NiuTrans Machine Translation Systems for WMT19
Bei Li | Yinqiao Li | Chen Xu | Ye Lin | Jiqiang Liu | Hui Liu | Ziyang Wang | Yuhao Zhang | Nuo Xu | Zeyang Wang | Kai Feng | Hexuan Chen | Tengbo Liu | Yanyang Li | Qiang Wang | Tong Xiao | Jingbo Zhu
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper described NiuTrans neural machine translation systems for the WMT 2019 news translation tasks. We participated in 13 translation directions, including 11 supervised tasks, namely EN↔{ZH, DE, RU, KK, LT}, GU→EN and the unsupervised DE↔CS sub-track. Our systems were built on Deep Transformer and several back-translation methods. Iterative knowledge distillation and ensemble+reranking were also employed to obtain stronger models. Our unsupervised submissions were based on NMT enhanced by SMT. As a result, we achieved the highest BLEU scores in {KK↔EN, GU→EN} directions, ranking 2nd in {RU→EN, DE↔CS} and 3rd in {ZH→EN, LT→EN, EN→RU, EN↔DE} among all constrained submissions.

2018

pdf bib
Multi-layer Representation Fusion for Neural Machine Translation
Qiang Wang | Fuxue Li | Tong Xiao | Yanyang Li | Yinqiao Li | Jingbo Zhu
Proceedings of the 27th International Conference on Computational Linguistics

Neural machine translation systems require a number of stacked layers for deep models. But the prediction depends on the sentence representation of the top-most layer with no access to low-level representations. This makes it more difficult to train the model and poses a risk of information loss to prediction. In this paper, we propose a multi-layer representation fusion (MLRF) approach to fusing stacked layers. In particular, we design three fusion functions to learn a better representation from the stack. Experimental results show that our approach yields improvements of 0.92 and 0.56 BLEU points over the strong Transformer baseline on IWSLT German-English and NIST Chinese-English MT tasks respectively. The result is new state-of-the-art in German-English translation.

pdf bib
A Simple and Effective Approach to Coverage-Aware Neural Machine Translation
Yanyang Li | Tong Xiao | Yinqiao Li | Qiang Wang | Changming Xu | Jingbo Zhu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We offer a simple and effective method to seek a better balance between model confidence and length preference for Neural Machine Translation (NMT). Unlike the popular length normalization and coverage models, our model does not require training nor reranking the limited n-best outputs. Moreover, it is robust to large beam sizes, which is not well studied in previous work. On the Chinese-English and English-German translation tasks, our approach yields +0.4 1.5 BLEU improvements over the state-of-the-art baselines.