Robin Jia


2023

pdf bib
Benchmarking Long-tail Generalization with Likelihood Splits
Ameya Godbole | Robin Jia
Findings of the Association for Computational Linguistics: EACL 2023

In order to reliably process natural language, NLP systems must generalize to the long tail of rare utterances. We propose a method to create challenging benchmarks that require generalizing to the tail of the distribution by re-splitting existing datasets. We create ‘Likelihood Splits’ where examples that are assigned lower likelihood by a pre-trained language model (LM) are placed in the test set, and more likely examples are in the training set. This simple approach can be customized to construct meaningful train-test splits for a wide range of tasks. Likelihood Splits surface more challenges than random splits: relative error rates of state-of-the-art models increase by 59% for semantic parsing on Spider, 93% for natural language inference on SNLI, and 33% for yes/no question answering on BoolQ, on our splits compared with the corresponding random splits. Moreover, Likelihood Splits create fairer benchmarks than adversarial filtering; when the LM used to create the splits is also employed as the task model, our splits do not unfairly penalize the LM.

pdf bib
How Predictable Are Large Language Model Capabilities? A Case Study on BIG-bench
Qinyuan Ye | Harvey Fu | Xiang Ren | Robin Jia
Findings of the Association for Computational Linguistics: EMNLP 2023

We investigate the predictability of large language model (LLM) capabilities: given records of past experiments using different model families, numbers of parameters, tasks, and numbers of in-context examples, can we accurately predict LLM performance on new experiment configurations? Answering this question has practical implications for LLM users (e.g., deciding which models to try), developers (e.g., prioritizing evaluation on representative tasks), and the research community (e.g., identifying hard-to-predict capabilities that warrant further investigation). We study the performance prediction problem on experiment records from BIG-bench. On a random train-test split, an MLP-based predictor achieves an R2 score greater than 95%, indicating the presence of learnable patterns within the experiment records. We then formulate the problem of searching for “small-bench,” an informative subset of BIG-bench tasks from which the performance on the full set can be maximally recovered. We find a subset as informative as BIG-bench Hard for evaluating new model families, while being smaller. Additionally, we find competitive subsets by clustering task representations learned by our MLP-based predictor and selecting tasks close to cluster centroids, highlighting the importance of task diversity in constructing “small-bench.”

pdf bib
Estimating Large Language Model Capabilities without Labeled Test Data
Harvey Fu | Qinyuan Ye | Albert Xu | Xiang Ren | Robin Jia
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) have exhibited an impressive ability to perform in-context learning (ICL) from only a few examples, but the success of ICL varies widely from task to task. Thus, it is important to quickly determine whether ICL is applicable to a new task, but directly evaluating ICL accuracy can be expensive in situations where test data is expensive to annotate—the exact situations where ICL is most appealing. In this paper, we propose the task of ICL accuracy estimation, in which we predict the accuracy of an LLM when doing in-context learning on a new task given only unlabeled test data for that task. To perform ICL accuracy estimation, we propose a method that trains a meta-model using LLM confidence scores as features. We compare our method to several strong accuracy estimation baselines on a new benchmark that covers 4 LLMs and 3 task collections. The meta-model improves over all baselines across 7 out of 12 settings and achieves the same estimation performance as directly evaluating on 40 collected labeled test examples per task. At the same time, no existing approach provides an accurate and reliable ICL accuracy estimation in every setting, highlighting the need for better ways to measure the uncertainty of LLM predictions.

pdf bib
SCENE: Self-Labeled Counterfactuals for Extrapolating to Negative Examples
Deqing Fu | Ameya Godbole | Robin Jia
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Detecting negatives (such as non-entailment relationships, unanswerable questions, and false claims) is an important and challenging aspect of many natural language understanding tasks. Though manually collecting challenging negative examples can help models detect them, it is both costly and domain-specific. In this work, we propose Self-labeled Counterfactuals for Extrapolating to Negative Examples (SCENE), an automatic method for synthesizing training data that greatly improves models’ ability to detect challenging negative examples. In contrast with standard data augmentation, which synthesizes new examples for existing labels, SCENE can synthesize negative examples zero-shot from only positive ones. Given a positive example, SCENE perturbs it with a mask infilling model, then determines whether the resulting example is negative based on a self-training heuristic. With access to only answerable training examples, SCENE can close 69.6% of the performance gap on SQuAD 2.0, a dataset where half of the evaluation examples are unanswerable, compared to a model trained on SQuAD 2.0. Our method also extends to boolean question answering and recognizing textual entailment, and improves generalization from SQuAD to ACE-whQA, an out-of-domain extractive QA benchmark.

pdf bib
Chain-of-Questions Training with Latent Answers for Robust Multistep Question Answering
Wang Zhu | Jesse Thomason | Robin Jia
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We propose Chain-of-Questions, a framework that trains a model to robustly answer multistep questions by generating and answering sub-questions. We obtain supervision for sub-questions from human-annotated question decomposition meaning representation (QDMR), but QDMR does not include annotated answers to sub-questions. To overcome this technical challenge, we treat sub-answers as latent variables and infer them with a novel dynamic mixture of Hard-EM and MAPO. Chain-of-Questions is effective and robust, greatly outperforming strong neuro-symbolic methods by 9.0 F1 on a DROP contrast set and GPT-3.5 by 24.3 F1 on a HotpotQA adversarial set.

pdf bib
Data Curation Alone Can Stabilize In-context Learning
Ting-Yun Chang | Robin Jia
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In-context learning (ICL) enables large language models (LLMs) to perform new tasks by prompting them with a sequence of training examples. However, it is known that ICL is very sensitive to the choice of training examples: randomly sampling examples from a training set leads to high variance in performance. In this paper, we show that carefully curating a subset of training data greatly stabilizes ICL performance without any other changes to the ICL algorithm (e.g., prompt retrieval or calibration). We introduce two methods to choose training subsets—both score training examples individually, then select the highest-scoring ones. CondAcc scores a training example by its average dev-set ICL accuracy when combined with random training examples, while Datamodels learns linear regressors that estimate how the presence of each training example influences LLM outputs. Across five tasks and two LLMs, sampling from stable subsets selected by CondAcc and Datamodels improves average accuracy over sampling from the entire training set by 7.7% and 6.3%, respectively. Surprisingly, the stable subset examples are not especially diverse in content or low in perplexity, in contrast with other work suggesting that diversity and perplexity are important when prompting LLMs.

pdf bib
Contrastive Novelty-Augmented Learning: Anticipating Outliers with Large Language Models
Albert Xu | Xiang Ren | Robin Jia
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In many task settings, text classification models are likely to encounter examples from novel classes on which they cannot predict correctly. Selective prediction, in which models abstain on low-confidence examples, provides a possible solution, but existing models are often overly confident on unseen classes. To remedy this overconfidence, we introduce Contrastive Novelty-Augmented Learning (CoNAL), a two-step method that generates OOD examples representative of novel classes, then trains to decrease confidence on them. First, we generate OOD examples by prompting a large language model twice: we prompt it to enumerate relevant novel classes, then generate examples from each novel class matching the task format. Second, we train a classifier with a novel contrastive objective that encourages lower confidence on generated OOD examples than training examples. When trained with CoNAL, classifiers improve in their ability to detect and abstain on novel class examples over prior methods by an average of 2.3% in terms of accuracy under the accuracy-coverage curve (AUAC) and 5.5% AUROC across 4 NLP datasets, with no cost to in-distribution accuracy.

pdf bib
Do Question Answering Modeling Improvements Hold Across Benchmarks?
Nelson F. Liu | Tony Lee | Robin Jia | Percy Liang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Do question answering (QA) modeling improvements (e.g., choice of architecture and training procedure) hold consistently across the diverse landscape of QA benchmarks? To study this question, we introduce the notion of concurrence—two benchmarks have high concurrence on a set of modeling approaches if they rank the modeling approaches similarly. We measure the concurrence between 32 QA benchmarks on a set of 20 diverse modeling approaches and find that human-constructed benchmarks have high concurrence amongst themselves, even if their passage and question distributions are very different. Surprisingly, even downsampled human-constructed benchmarks (i.e., collecting less data) and programmatically-generated benchmarks (e.g., cloze-formatted examples) have high concurrence with human-constructed benchmarks. These results indicate that, despite years of intense community focus on a small number of benchmarks, the modeling improvements studied hold broadly.

pdf bib
Are Sample-Efficient NLP Models More Robust?
Nelson F. Liu | Ananya Kumar | Percy Liang | Robin Jia
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Recent results in image classification and extractive question answering have observed that pre-trained models trained on less in-distribution data have better out-ofdistribution performance. However, it is unclear how broadly these trends hold. We conduct a large empirical study across three tasks, three broadly-applicable modeling interventions (increasing model size, using a different adaptation method, and pre-training on more data), and 14 diverse datasets to investigate the relationship between sample efficiency (amount of data needed to reach a given ID accuracy) and robustness (how models fare on OOD evaluation). We find that higher sample efficiency is only correlated with better average OOD robustness on some modeling interventions and tasks, but not others. On individual datasets, models with lower sample efficiency can even be more robust. These results suggest that general-purpose methods for improving sample efficiency are unlikely to yield universal OOD robustness improvements, since such improvements are highly dataset- and task-dependent. Even in an era of large, multi-purpose pre-trained models, task-specific decisions may often be necessary for OOD generalization.

2022

pdf bib
Analyzing Dynamic Adversarial Training Data in the Limit
Eric Wallace | Adina Williams | Robin Jia | Douwe Kiela
Findings of the Association for Computational Linguistics: ACL 2022

To create models that are robust across a wide range of test inputs, training datasets should include diverse examples that span numerous phenomena. Dynamic adversarial data collection (DADC), where annotators craft examples that challenge continually improving models, holds promise as an approach for generating such diverse training sets. Prior work has shown that running DADC over 1-3 rounds can help models fix some error types, but it does not necessarily lead to better generalization beyond adversarial test data. We argue that running DADC over many rounds maximizes its training-time benefits, as the different rounds can together cover many of the task-relevant phenomena. We present the first study of longer-term DADC, where we collect 20 rounds of NLI examples for a small set of premise paragraphs, with both adversarial and non-adversarial approaches. Models trained on DADC examples make 26% fewer errors on our expert-curated test set compared to models trained on non-adversarial data. Our analysis shows that DADC yields examples that are more difficult, more lexically and syntactically diverse, and contain fewer annotation artifacts compared to non-adversarial examples.

pdf bib
Question Answering Infused Pre-training of General-Purpose Contextualized Representations
Robin Jia | Mike Lewis | Luke Zettlemoyer
Findings of the Association for Computational Linguistics: ACL 2022

We propose a pre-training objective based on question answering (QA) for learning general-purpose contextual representations, motivated by the intuition that the representation of a phrase in a passage should encode all questions that the phrase can answer in context. To this end, we train a bi-encoder QA model, which independently encodes passages and questions, to match the predictions of a more accurate cross-encoder model on 80 million synthesized QA pairs. By encoding QA-relevant information, the bi-encoder’s token-level representations are useful for non-QA downstream tasks without extensive (or in some cases, any) fine-tuning. We show large improvements over both RoBERTa-large and previous state-of-the-art results on zero-shot and few-shot paraphrase detection on four datasets, few-shot named entity recognition on two datasets, and zero-shot sentiment analysis on three datasets.

pdf bib
Generalization Differences between End-to-End and Neuro-Symbolic Vision-Language Reasoning Systems
Wang Zhu | Jesse Thomason | Robin Jia
Findings of the Association for Computational Linguistics: EMNLP 2022

For vision-and-language reasoning tasks, both fully connectionist, end-to-end methods and hybrid, neuro-symbolic methods have achieved high in-distribution performance. In which out-of-distribution settings does each paradigm excel? We investigate this question on both single-image and multi-image visual question-answering through four types of generalization tests: a novel segment-combine test for multi-image queries, contrast set, compositional generalization, and cross-benchmark transfer. Vision-and-language end-to-end trained systems exhibit sizeable performance drops across all these tests. Neuro-symbolic methods suffer even more on cross-benchmark transfer from GQA to VQA, but they show smaller accuracy drops on the other generalization tests and their performance quickly improves by few-shot training. Overall, our results demonstrate the complementary benefits of these two paradigms, and emphasize the importance of using a diverse suite of generalization tests to fully characterize model robustness to distribution shift.

pdf bib
Proceedings of the First Workshop on Dynamic Adversarial Data Collection
Max Bartolo | Hannah Kirk | Pedro Rodriguez | Katerina Margatina | Tristan Thrush | Robin Jia | Pontus Stenetorp | Adina Williams | Douwe Kiela
Proceedings of the First Workshop on Dynamic Adversarial Data Collection

pdf bib
On Continual Model Refinement in Out-of-Distribution Data Streams
Bill Yuchen Lin | Sida Wang | Xi Lin | Robin Jia | Lin Xiao | Xiang Ren | Scott Yih
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Real-world natural language processing (NLP) models need to be continually updated to fix the prediction errors in out-of-distribution (OOD) data streams while overcoming catastrophic forgetting. However, existing continual learning (CL) problem setups cannot cover such a realistic and complex scenario. In response to this, we propose a new CL problem formulation dubbed continual model refinement (CMR). Compared to prior CL settings, CMR is more practical and introduces unique challenges (boundary-agnostic and non-stationary distribution shift, diverse mixtures of multiple OOD data clusters, error-centric streams, etc.). We extend several existing CL approaches to the CMR setting and evaluate them extensively. For benchmarking and analysis, we propose a general sampling algorithm to obtain dynamic OOD data streams with controllable non-stationarity, as well as a suite of metrics measuring various aspects of online performance. Our experiments and detailed analysis reveal the promise and challenges of the CMR problem, supporting that studying CMR in dynamic OOD streams can benefit the longevity of deployed NLP models in production.

pdf bib
On the Robustness of Reading Comprehension Models to Entity Renaming
Jun Yan | Yang Xiao | Sagnik Mukherjee | Bill Yuchen Lin | Robin Jia | Xiang Ren
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We study the robustness of machine reading comprehension (MRC) models to entity renaming—do models make more wrong predictions when the same questions are asked about an entity whose name has been changed? Such failures imply that models overly rely on entity information to answer questions, and thus may generalize poorly when facts about the world change or questions are asked about novel entities. To systematically audit this issue, we present a pipeline to automatically generate test examples at scale, by replacing entity names in the original test sample with names from a variety of sources, ranging from names in the same test set, to common names in life, to arbitrary strings. Across five datasets and three pretrained model architectures, MRC models consistently perform worse when entities are renamed, with particularly large accuracy drops on datasets constructed via distant supervision. We also find large differences between models: SpanBERT, which is pretrained with span-level masking, is more robust than RoBERTa, despite having similar accuracy on unperturbed test data. We further experiment with different masking strategies as the continual pretraining objective and find that entity-based masking can improve the robustness of MRC models.

pdf bib
Models in the Loop: Aiding Crowdworkers with Generative Annotation Assistants
Max Bartolo | Tristan Thrush | Sebastian Riedel | Pontus Stenetorp | Robin Jia | Douwe Kiela
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In Dynamic Adversarial Data Collection (DADC), human annotators are tasked with finding examples that models struggle to predict correctly. Models trained on DADC-collected training data have been shown to be more robust in adversarial and out-of-domain settings, and are considerably harder for humans to fool. However, DADC is more time-consuming than traditional data collection and thus more costly per annotated example. In this work, we examine whether we can maintain the advantages of DADC, without incurring the additional cost. To that end, we introduce Generative Annotation Assistants (GAAs), generator-in-the-loop models that provide real-time suggestions that annotators can either approve, modify, or reject entirely. We collect training datasets in twenty experimental settings and perform a detailed analysis of this approach for the task of extractive question answering (QA) for both standard and adversarial data collection. We demonstrate that GAAs provide significant efficiency benefits with over a 30% annotation speed-up, while leading to over a 5x improvement in model fooling rates. In addition, we find that using GAA-assisted training data leads to higher downstream model performance on a variety of question answering tasks over adversarial data collection.

2021

pdf bib
Do Explanations Help Users Detect Errors in Open-Domain QA? An Evaluation of Spoken vs. Visual Explanations
Ana Valeria González | Gagan Bansal | Angela Fan | Yashar Mehdad | Robin Jia | Srinivasan Iyer
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little
Koustuv Sinha | Robin Jia | Dieuwke Hupkes | Joelle Pineau | Adina Williams | Douwe Kiela
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

A possible explanation for the impressive performance of masked language model (MLM) pre-training is that such models have learned to represent the syntactic structures prevalent in classical NLP pipelines. In this paper, we propose a different explanation: MLMs succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics. To demonstrate this, we pre-train MLMs on sentences with randomly shuffled word order, and show that these models still achieve high accuracy after fine-tuning on many downstream tasks—including tasks specifically designed to be challenging for models that ignore word order. Our models perform surprisingly well according to some parametric syntactic probes, indicating possible deficiencies in how we test representations for syntactic information. Overall, our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.

pdf bib
Improving Question Answering Model Robustness with Synthetic Adversarial Data Generation
Max Bartolo | Tristan Thrush | Robin Jia | Sebastian Riedel | Pontus Stenetorp | Douwe Kiela
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Despite recent progress, state-of-the-art question answering models remain vulnerable to a variety of adversarial attacks. While dynamic adversarial data collection, in which a human annotator tries to write examples that fool a model-in-the-loop, can improve model robustness, this process is expensive which limits the scale of the collected data. In this work, we are the first to use synthetic adversarial data generation to make question answering models more robust to human adversaries. We develop a data generation pipeline that selects source passages, identifies candidate answers, generates questions, then finally filters or re-labels them to improve quality. Using this approach, we amplify a smaller human-written adversarial dataset to a much larger set of synthetic question-answer pairs. By incorporating our synthetic data, we improve the state-of-the-art on the AdversarialQA dataset by 3.7F1 and improve model generalisation on nine of the twelve MRQA datasets. We further conduct a novel human-in-the-loop evaluation and show that our models are considerably more robust to new human-written adversarial examples: crowdworkers can fool our model only 8.8% of the time on average, compared to 17.6% for a model trained without synthetic data.

pdf bib
Robustness and Adversarial Examples in Natural Language Processing
Kai-Wei Chang | He He | Robin Jia | Sameer Singh
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Recent studies show that many NLP systems are sensitive and vulnerable to a small perturbation of inputs and do not generalize well across different datasets. This lack of robustness derails the use of NLP systems in real-world applications. This tutorial aims at bringing awareness of practical concerns about NLP robustness. It targets NLP researchers and practitioners who are interested in building reliable NLP systems. In particular, we will review recent studies on analyzing the weakness of NLP systems when facing adversarial inputs and data with a distribution shift. We will provide the audience with a holistic view of 1) how to use adversarial examples to examine the weakness of NLP models and facilitate debugging; 2) how to enhance the robustness of existing NLP models and defense against adversarial inputs; and 3) how the consideration of robustness affects the real-world NLP applications used in our daily lives. We will conclude the tutorial by outlining future research directions in this area.

pdf bib
Dynabench: Rethinking Benchmarking in NLP
Douwe Kiela | Max Bartolo | Yixin Nie | Divyansh Kaushik | Atticus Geiger | Zhengxuan Wu | Bertie Vidgen | Grusha Prasad | Amanpreet Singh | Pratik Ringshia | Zhiyi Ma | Tristan Thrush | Sebastian Riedel | Zeerak Waseem | Pontus Stenetorp | Robin Jia | Mohit Bansal | Christopher Potts | Adina Williams
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model will misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field.

pdf bib
Swords: A Benchmark for Lexical Substitution with Improved Data Coverage and Quality
Mina Lee | Chris Donahue | Robin Jia | Alexander Iyabor | Percy Liang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We release a new benchmark for lexical substitution, the task of finding appropriate substitutes for a target word in a context. For writing, lexical substitution systems can assist humans by suggesting words that humans cannot easily think of. However, existing benchmarks depend on human recall as the only source of data, and therefore lack coverage of the substitutes that would be most helpful to humans. Furthermore, annotators often provide substitutes of low quality, which are not actually appropriate in the given context. We collect higher-coverage and higher-quality data by framing lexical substitution as a classification problem, guided by the intuition that it is easier for humans to judge the appropriateness of candidate substitutes than conjure them from memory. To this end, we use a context-free thesaurus to produce candidates and rely on human judgement to determine contextual appropriateness. Compared to the previous largest benchmark, our Swords benchmark has 3x as many substitutes per target word for the same level of quality, and its substitutes are 1.4x more appropriate (based on human judgement) for the same number of substitutes.

pdf bib
To what extent do human explanations of model behavior align with actual model behavior?
Grusha Prasad | Yixin Nie | Mohit Bansal | Robin Jia | Douwe Kiela | Adina Williams
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Given the increasingly prominent role NLP models (will) play in our lives, it is important for human expectations of model behavior to align with actual model behavior. Using Natural Language Inference (NLI) as a case study, we investigate the extent to which human-generated explanations of models’ inference decisions align with how models actually make these decisions. More specifically, we define three alignment metrics that quantify how well natural language explanations align with model sensitivity to input words, as measured by integrated gradients. Then, we evaluate eight different models (the base and large versions of BERT,RoBERTa and ELECTRA, as well as anRNN and bag-of-words model), and find that the BERT-base model has the highest alignment with human-generated explanations, for all alignment metrics. Focusing in on transformers, we find that the base versions tend to have higher alignment with human-generated explanations than their larger counterparts, suggesting that increasing the number of model parameters leads, in some cases, to worse alignment with human explanations. Finally, we find that a model’s alignment with human explanations is not predicted by the model’s accuracy, suggesting that accuracy and alignment are complementary ways to evaluate models.

pdf bib
Evaluation Examples are not Equally Informative: How should that change NLP Leaderboards?
Pedro Rodriguez | Joe Barrow | Alexander Miserlis Hoyle | John P. Lalor | Robin Jia | Jordan Boyd-Graber
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Leaderboards are widely used in NLP and push the field forward. While leaderboards are a straightforward ranking of NLP models, this simplicity can mask nuances in evaluation items (examples) and subjects (NLP models). Rather than replace leaderboards, we advocate a re-imagining so that they better highlight if and where progress is made. Building on educational testing, we create a Bayesian leaderboard model where latent subject skill and latent item difficulty predict correct responses. Using this model, we analyze the ranking reliability of leaderboards. Afterwards, we show the model can guide what to annotate, identify annotation errors, detect overfitting, and identify informative examples. We conclude with recommendations for future benchmark tasks.

pdf bib
The statistical advantage of automatic NLG metrics at the system level
Johnny Wei | Robin Jia
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Estimating the expected output quality of generation systems is central to NLG. This paper qualifies the notion that automatic metrics are not as good as humans in estimating system-level quality. Statistically, humans are unbiased, high variance estimators, while metrics are biased, low variance estimators. We compare these estimators by their error in pairwise prediction (which generation system is better?) using the bootstrap. Measuring this error is complicated: predictions are evaluated against noisy, human predicted labels instead of the ground truth, and metric predictions fluctuate based on the test sets they were calculated on. By applying a bias-variance-noise decomposition, we adjust this error to a noise-free, infinite test set setting. Our analysis compares the adjusted error of metrics to humans and a derived, perfect segment-level annotator, both of which are unbiased estimators dependent on the number of judgments collected. In MT, we identify two settings where metrics outperform humans due to a statistical advantage in variance: when the number of human judgments used is small, and when the quality difference between compared systems is small.

pdf bib
Proceedings of the 3rd Workshop on Machine Reading for Question Answering
Adam Fisch | Alon Talmor | Danqi Chen | Eunsol Choi | Minjoon Seo | Patrick Lewis | Robin Jia | Sewon Min
Proceedings of the 3rd Workshop on Machine Reading for Question Answering

2020

pdf bib
With Little Power Comes Great Responsibility
Dallas Card | Peter Henderson | Urvashi Khandelwal | Robin Jia | Kyle Mahowald | Dan Jurafsky
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Despite its importance to experimental design, statistical power (the probability that, given a real effect, an experiment will reject the null hypothesis) has largely been ignored by the NLP community. Underpowered experiments make it more difficult to discern the difference between statistical noise and meaningful model improvements, and increase the chances of exaggerated findings. By meta-analyzing a set of existing NLP papers and datasets, we characterize typical power for a variety of settings and conclude that underpowered experiments are common in the NLP literature. In particular, for several tasks in the popular GLUE benchmark, small test sets mean that most attempted comparisons to state of the art models will not be adequately powered. Similarly, based on reasonable assumptions, we find that the most typical experimental design for human rating studies will be underpowered to detect small model differences, of the sort that are frequently studied. For machine translation, we find that typical test sets of 2000 sentences have approximately 75% power to detect differences of 1 BLEU point. To improve the situation going forward, we give an overview of best practices for power analysis in NLP and release a series of notebooks to assist with future power analyses.

pdf bib
On the Importance of Adaptive Data Collection for Extremely Imbalanced Pairwise Tasks
Stephen Mussmann | Robin Jia | Percy Liang
Findings of the Association for Computational Linguistics: EMNLP 2020

Many pairwise classification tasks, such as paraphrase detection and open-domain question answering, naturally have extreme label imbalance (e.g., 99.99% of examples are negatives). In contrast, many recent datasets heuristically choose examples to ensure label balance. We show that these heuristics lead to trained models that generalize poorly: State-of-the art models trained on QQP and WikiQA each have only 2.4% average precision when evaluated on realistically imbalanced test data. We instead collect training data with active learning, using a BERT-based embedding model to efficiently retrieve uncertain points from a very large pool of unlabeled utterance pairs. By creating balanced training data with more informative negative examples, active learning greatly improves average precision to 32.5% on QQP and 20.1% on WikiQA.

pdf bib
Robust Encodings: A Framework for Combating Adversarial Typos
Erik Jones | Robin Jia | Aditi Raghunathan | Percy Liang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Despite excellent performance on many tasks, NLP systems are easily fooled by small adversarial perturbations of inputs. Existing procedures to defend against such perturbations are either (i) heuristic in nature and susceptible to stronger attacks or (ii) provide guaranteed robustness to worst-case attacks, but are incompatible with state-of-the-art models like BERT. In this work, we introduce robust encodings (RobEn): a simple framework that confers guaranteed robustness, without making compromises on model architecture. The core component of RobEn is an encoding function, which maps sentences to a smaller, discrete space of encodings. Systems using these encodings as a bottleneck confer guaranteed robustness with standard training, and the same encodings can be used across multiple tasks. We identify two desiderata to construct robust encoding functions: perturbations of a sentence should map to a small set of encodings (stability), and models using encodings should still perform well (fidelity). We instantiate RobEn to defend against a large family of adversarial typos. Across six tasks from GLUE, our instantiation of RobEn paired with BERT achieves an average robust accuracy of 71.3% against all adversarial typos in the family considered, while previous work using a typo-corrector achieves only 35.3% accuracy against a simple greedy attack.

pdf bib
Selective Question Answering under Domain Shift
Amita Kamath | Robin Jia | Percy Liang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

To avoid giving wrong answers, question answering (QA) models need to know when to abstain from answering. Moreover, users often ask questions that diverge from the model’s training data, making errors more likely and thus abstention more critical. In this work, we propose the setting of selective question answering under domain shift, in which a QA model is tested on a mixture of in-domain and out-of-domain data, and must answer (i.e., not abstain on) as many questions as possible while maintaining high accuracy. Abstention policies based solely on the model’s softmax probabilities fare poorly, since models are overconfident on out-of-domain inputs. Instead, we train a calibrator to identify inputs on which the QA model errs, and abstain when it predicts an error is likely. Crucially, the calibrator benefits from observing the model’s behavior on out-of-domain data, even if from a different domain than the test data. We combine this method with a SQuAD-trained QA model and evaluate on mixtures of SQuAD and five other QA datasets. Our method answers 56% of questions while maintaining 80% accuracy; in contrast, directly using the model’s probabilities only answers 48% at 80% accuracy.

2019

pdf bib
Document-Level N-ary Relation Extraction with Multiscale Representation Learning
Robin Jia | Cliff Wong | Hoifung Poon
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Most information extraction methods focus on binary relations expressed within single sentences. In high-value domains, however, n-ary relations are of great demand (e.g., drug-gene-mutation interactions in precision oncology). Such relations often involve entity mentions that are far apart in the document, yet existing work on cross-sentence relation extraction is generally confined to small text spans (e.g., three consecutive sentences), which severely limits recall. In this paper, we propose a novel multiscale neural architecture for document-level n-ary relation extraction. Our system combines representations learned over various text spans throughout the document and across the subrelation hierarchy. Widening the system’s purview to the entire document maximizes potential recall. Moreover, by integrating weak signals across the document, multiscale modeling increases precision, even in the presence of noisy labels from distant supervision. Experiments on biomedical machine reading show that our approach substantially outperforms previous n-ary relation extraction methods.

pdf bib
Certified Robustness to Adversarial Word Substitutions
Robin Jia | Aditi Raghunathan | Kerem Göksel | Percy Liang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

State-of-the-art NLP models can often be fooled by adversaries that apply seemingly innocuous label-preserving transformations (e.g., paraphrasing) to input text. The number of possible transformations scales exponentially with text length, so data augmentation cannot cover all transformations of an input. This paper considers one exponentially large family of label-preserving transformations, in which every word in the input can be replaced with a similar word. We train the first models that are provably robust to all word substitutions in this family. Our training procedure uses Interval Bound Propagation (IBP) to minimize an upper bound on the worst-case loss that any combination of word substitutions can induce. To evaluate models’ robustness to these transformations, we measure accuracy on adversarially chosen word substitutions applied to test examples. Our IBP-trained models attain 75% adversarial accuracy on both sentiment analysis on IMDB and natural language inference on SNLI; in comparison, on IMDB, models trained normally and ones trained with data augmentation achieve adversarial accuracy of only 12% and 41%, respectively.

pdf bib
Proceedings of the 2nd Workshop on Machine Reading for Question Answering
Adam Fisch | Alon Talmor | Robin Jia | Minjoon Seo | Eunsol Choi | Danqi Chen
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

pdf bib
MRQA 2019 Shared Task: Evaluating Generalization in Reading Comprehension
Adam Fisch | Alon Talmor | Robin Jia | Minjoon Seo | Eunsol Choi | Danqi Chen
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

We present the results of the Machine Reading for Question Answering (MRQA) 2019 shared task on evaluating the generalization capabilities of reading comprehension systems. In this task, we adapted and unified 18 distinct question answering datasets into the same format. Among them, six datasets were made available for training, six datasets were made available for development, and the rest were hidden for final evaluation. Ten teams submitted systems, which explored various ideas including data sampling, multi-task learning, adversarial training and ensembling. The best system achieved an average F1 score of 72.5 on the 12 held-out datasets, 10.7 absolute points higher than our initial baseline based on BERT.

2018

pdf bib
Proceedings of the Workshop on Machine Reading for Question Answering
Eunsol Choi | Minjoon Seo | Danqi Chen | Robin Jia | Jonathan Berant
Proceedings of the Workshop on Machine Reading for Question Answering

pdf bib
Delete, Retrieve, Generate: a Simple Approach to Sentiment and Style Transfer
Juncen Li | Robin Jia | He He | Percy Liang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We consider the task of text attribute transfer: transforming a sentence to alter a specific attribute (e.g., sentiment) while preserving its attribute-independent content (e.g., “screen is just the right size” to “screen is too small”). Our training data includes only sentences labeled with their attribute (e.g., positive and negative), but not pairs of sentences that only differ in the attributes, so we must learn to disentangle attributes from attribute-independent content in an unsupervised way. Previous work using adversarial methods has struggled to produce high-quality outputs. In this paper, we propose simpler methods motivated by the observation that text attributes are often marked by distinctive phrases (e.g., “too small”). Our strongest method extracts content words by deleting phrases associated with the sentence’s original attribute value, retrieves new phrases associated with the target attribute, and uses a neural model to fluently combine these into a final output. Based on human evaluation, our best method generates grammatical and appropriate responses on 22% more inputs than the best previous system, averaged over three attribute transfer datasets: altering sentiment of reviews on Yelp, altering sentiment of reviews on Amazon, and altering image captions to be more romantic or humorous.

pdf bib
Know What You Don’t Know: Unanswerable Questions for SQuAD
Pranav Rajpurkar | Robin Jia | Percy Liang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Extractive reading comprehension systems can often locate the correct answer to a question in a context document, but they also tend to make unreliable guesses on questions for which the correct answer is not stated in the context. Existing datasets either focus exclusively on answerable questions, or use automatically generated unanswerable questions that are easy to identify. To address these weaknesses, we present SQuADRUn, a new dataset that combines the existing Stanford Question Answering Dataset (SQuAD) with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuADRUn, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. SQuADRUn is a challenging natural language understanding task for existing models: a strong neural system that gets 86% F1 on SQuAD achieves only 66% F1 on SQuADRUn. We release SQuADRUn to the community as the successor to SQuAD.

2017

pdf bib
Adversarial Examples for Evaluating Reading Comprehension Systems
Robin Jia | Percy Liang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Standard accuracy metrics indicate that reading comprehension systems are making rapid progress, but the extent to which these systems truly understand language remains unclear. To reward systems with real language understanding abilities, we propose an adversarial evaluation scheme for the Stanford Question Answering Dataset (SQuAD). Our method tests whether systems can answer questions about paragraphs that contain adversarially inserted sentences, which are automatically generated to distract computer systems without changing the correct answer or misleading humans. In this adversarial setting, the accuracy of sixteen published models drops from an average of 75% F1 score to 36%; when the adversary is allowed to add ungrammatical sequences of words, average accuracy on four models decreases further to 7%. We hope our insights will motivate the development of new models that understand language more precisely.

2016

pdf bib
Data Recombination for Neural Semantic Parsing
Robin Jia | Percy Liang
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)