Ivan Vulić


2019

pdf bib
Investigating Cross-Lingual Alignment Methods for Contextualized Embeddings with Token-Level Evaluation
Qianchu Liu | Diana McCarthy | Ivan Vulić | Anna Korhonen
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

In this paper, we present a thorough investigation on methods that align pre-trained contextualized embeddings into shared cross-lingual context-aware embedding space, providing strong reference benchmarks for future context-aware crosslingual models. We propose a novel and challenging task, Bilingual Token-level Sense Retrieval (BTSR). It specifically evaluates the accurate alignment of words with the same meaning in cross-lingual non-parallel contexts, currently not evaluated by existing tasks such as Bilingual Contextual Word Similarity and Sentence Retrieval. We show how the proposed BTSR task highlights the merits of different alignment methods. In particular, we find that using context average type-level alignment is effective in transferring monolingual contextualized embeddings cross-lingually especially in non-parallel contexts, and at the same time improves the monolingual space. Furthermore, aligning independently trained models yields better performance than aligning multilingual embeddings with shared vocabulary.

pdf bib
On the Importance of Subword Information for Morphological Tasks in Truly Low-Resource Languages
Yi Zhu | Benjamin Heinzerling | Ivan Vulić | Michael Strube | Roi Reichart | Anna Korhonen
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Recent work has validated the importance of subword information for word representation learning. Since subwords increase parameter sharing ability in neural models, their value should be even more pronounced in low-data regimes. In this work, we therefore provide a comprehensive analysis focused on the usefulness of subwords for word representation learning in truly low-resource scenarios and for three representative morphological tasks: fine-grained entity typing, morphological tagging, and named entity recognition. We conduct a systematic study that spans several dimensions of comparison: 1) type of data scarcity which can stem from the lack of task-specific training data, or even from the lack of unannotated data required to train word embeddings, or both; 2) language type by working with a sample of 16 typologically diverse languages including some truly low-resource ones (e.g. Rusyn, Buryat, and Zulu); 3) the choice of the subword-informed word representation method. Our main results show that subword-informed models are universally useful across all language types, with large gains over subword-agnostic embeddings. They also suggest that the effective use of subwords largely depends on the language (type) and the task at hand, as well as on the amount of available data for training the embeddings and task-based models, where having sufficient in-task data is a more critical requirement.

pdf bib
How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions
Goran Glavaš | Robert Litschko | Sebastian Ruder | Ivan Vulić
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Cross-lingual word embeddings (CLEs) facilitate cross-lingual transfer of NLP models. Despite their ubiquitous downstream usage, increasingly popular projection-based CLE models are almost exclusively evaluated on bilingual lexicon induction (BLI). Even the BLI evaluations vary greatly, hindering our ability to correctly interpret performance and properties of different CLE models. In this work, we take the first step towards a comprehensive evaluation of CLE models: we thoroughly evaluate both supervised and unsupervised CLE models, for a large number of language pairs, on BLI and three downstream tasks, providing new insights concerning the ability of cutting-edge CLE models to support cross-lingual NLP. We empirically demonstrate that the performance of CLE models largely depends on the task at hand and that optimizing CLE models for BLI may hurt downstream performance. We indicate the most robust supervised and unsupervised CLE models and emphasize the need to reassess simple baselines, which still display competitive performance across the board. We hope our work catalyzes further research on CLE evaluation and model analysis.

pdf bib
JW300: A Wide-Coverage Parallel Corpus for Low-Resource Languages
Željko Agić | Ivan Vulić
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Viable cross-lingual transfer critically depends on the availability of parallel texts. Shortage of such resources imposes a development and evaluation bottleneck in multilingual processing. We introduce JW300, a parallel corpus of over 300 languages with around 100 thousand parallel sentences per language pair on average. In this paper, we present the resource and showcase its utility in experiments with cross-lingual word embedding induction and multi-source part-of-speech projection.

pdf bib
Generalized Tuning of Distributional Word Vectors for Monolingual and Cross-Lingual Lexical Entailment
Goran Glavaš | Ivan Vulić
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Lexical entailment (LE; also known as hyponymy-hypernymy or is-a relation) is a core asymmetric lexical relation that supports tasks like taxonomy induction and text generation. In this work, we propose a simple and effective method for fine-tuning distributional word vectors for LE. Our Generalized Lexical ENtailment model (GLEN) is decoupled from the word embedding model and applicable to any distributional vector space. Yet – unlike existing retrofitting models – it captures a general specialization function allowing for LE-tuning of the entire distributional space and not only the vectors of words seen in lexical constraints. Coupled with a multilingual embedding space, GLEN seamlessly enables cross-lingual LE detection. We demonstrate the effectiveness of GLEN in graded LE and report large improvements (over 20% in accuracy) over state-of-the-art in cross-lingual LE detection.

pdf bib
Multilingual and Cross-Lingual Graded Lexical Entailment
Ivan Vulić | Simone Paolo Ponzetto | Goran Glavaš
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Grounded in cognitive linguistics, graded lexical entailment (GR-LE) is concerned with fine-grained assertions regarding the directional hierarchical relationships between concepts on a continuous scale. In this paper, we present the first work on cross-lingual generalisation of GR-LE relation. Starting from HyperLex, the only available GR-LE dataset in English, we construct new monolingual GR-LE datasets for three other languages, and combine those to create a set of six cross-lingual GR-LE datasets termed CL-HYPERLEX. We next present a novel method dubbed CLEAR (Cross-Lingual Lexical Entailment Attract-Repel) for effectively capturing graded (and binary) LE, both monolingually in different languages as well as across languages (i.e., on CL-HYPERLEX). Coupled with a bilingual dictionary, CLEAR leverages taxonomic LE knowledge in a resource-rich language (e.g., English) and propagates it to other languages. Supported by cross-lingual LE transfer, CLEAR sets competitive baseline performance on three new monolingual GR-LE datasets and six cross-lingual GR-LE datasets. In addition, we show that CLEAR outperforms current state-of-the-art on binary cross-lingual LE detection by a wide margin for diverse language pairs.

pdf bib
Training Neural Response Selection for Task-Oriented Dialogue Systems
Matthew Henderson | Ivan Vulić | Daniela Gerz | Iñigo Casanueva | Paweł Budzianowski | Sam Coope | Georgios Spithourakis | Tsung-Hsien Wen | Nikola Mrkšić | Pei-Hao Su
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Despite their popularity in the chatbot literature, retrieval-based models have had modest impact on task-oriented dialogue systems, with the main obstacle to their application being the low-data regime of most task-oriented dialogue tasks. Inspired by the recent success of pretraining in language modelling, we propose an effective method for deploying response selection in task-oriented dialogue. To train response selection models for task-oriented dialogue tasks, we propose a novel method which: 1) pretrains the response selection model on large general-domain conversational corpora; and then 2) fine-tunes the pretrained model for the target dialogue domain, relying only on the small in-domain dataset to capture the nuances of the given dialogue domain. Our evaluation on five diverse application domains, ranging from e-commerce to banking, demonstrates the effectiveness of the proposed training method.

pdf bib
Unsupervised Cross-Lingual Representation Learning
Sebastian Ruder | Anders Søgaard | Ivan Vulić
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

In this tutorial, we provide a comprehensive survey of the exciting recent work on cutting-edge weakly-supervised and unsupervised cross-lingual word representations. After providing a brief history of supervised cross-lingual word representations, we focus on: 1) how to induce weakly-supervised and unsupervised cross-lingual word representations in truly resource-poor settings where bilingual supervision cannot be guaranteed; 2) critical examinations of different training conditions and requirements under which unsupervised algorithms can and cannot work effectively; 3) more robust methods for distant language pairs that can mitigate instability issues and low performance for distant language pairs; 4) how to comprehensively evaluate such representations; and 5) diverse applications that benefit from cross-lingual word representations (e.g., MT, dialogue, cross-lingual sequence labeling and structured prediction applications, cross-lingual IR).

pdf bib
Cross-lingual Semantic Specialization via Lexical Relation Induction
Edoardo Maria Ponti | Ivan Vulić | Goran Glavaš | Roi Reichart | Anna Korhonen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Semantic specialization integrates structured linguistic knowledge from external resources (such as lexical relations in WordNet) into pretrained distributional vectors in the form of constraints. However, this technique cannot be leveraged in many languages, because their structured external resources are typically incomplete or non-existent. To bridge this gap, we propose a novel method that transfers specialization from a resource-rich source language (English) to virtually any target language. Our specialization transfer comprises two crucial steps: 1) Inducing noisy constraints in the target language through automatic word translation; and 2) Filtering the noisy constraints via a state-of-the-art relation prediction model trained on the source language constraints. This allows us to specialize any set of distributional vectors in the target language with the refined constraints. We prove the effectiveness of our method through intrinsic word similarity evaluation in 8 languages, and with 3 downstream tasks in 5 languages: lexical simplification, dialog state tracking, and semantic textual similarity. The gains over the previous state-of-art specialization methods are substantial and consistent across languages. Our results also suggest that the transfer method is effective even for lexically distant source-target language pairs. Finally, as a by-product, our method produces lists of WordNet-style lexical relations in resource-poor languages.

pdf bib
Towards Zero-shot Language Modeling
Edoardo Maria Ponti | Ivan Vulić | Ryan Cotterell | Roi Reichart | Anna Korhonen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Can we construct a neural language model which is inductively biased towards learning human language? Motivated by this question, we aim at constructing an informative prior for held-out languages on the task of character-level, open-vocabulary language modelling. We obtain this prior as the posterior over network weights conditioned on the data from a sample of training languages, which is approximated through Laplace’s method. Based on a large and diverse sample of languages, the use of our prior outperforms baseline models with an uninformative prior in both zero-shot and few-shot settings, showing that the prior is imbued with universal linguistic knowledge. Moreover, we harness broad language-specific information available for most languages of the world, i.e., features from typological databases, as distant supervision for held-out languages. We explore several language modelling conditioning techniques, including concatenation and meta-networks for parameter generation. They appear beneficial in the few-shot setting, but ineffective in the zero-shot setting. Since the paucity of even plain digital text affects the majority of the world’s languages, we hope that these insights will broaden the scope of applications for language technology.

pdf bib
Do We Really Need Fully Unsupervised Cross-Lingual Embeddings?
Ivan Vulić | Goran Glavaš | Roi Reichart | Anna Korhonen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent efforts in cross-lingual word embedding (CLWE) learning have predominantly focused on fully unsupervised approaches that project monolingual embeddings into a shared cross-lingual space without any cross-lingual signal. The lack of any supervision makes such approaches conceptually attractive. Yet, their only core difference from (weakly) supervised projection-based CLWE methods is in the way they obtain a seed dictionary used to initialize an iterative self-learning procedure. The fully unsupervised methods have arguably become more robust, and their primary use case is CLWE induction for pairs of resource-poor and distant languages. In this paper, we question the ability of even the most robust unsupervised CLWE approaches to induce meaningful CLWEs in these more challenging settings. A series of bilingual lexicon induction (BLI) experiments with 15 diverse languages (210 language pairs) show that fully unsupervised CLWE methods still fail for a large number of language pairs (e.g., they yield zero BLI performance for 87/210 pairs). Even when they succeed, they never surpass the performance of weakly supervised methods (seeded with 500-1,000 translation pairs) using the same self-learning procedure in any BLI setup, and the gaps are often substantial. These findings call for revisiting the main motivations behind fully unsupervised CLWE methods.

bib
Data Collection and End-to-End Learning for Conversational AI
Tsung-Hsien Wen | Pei-Hao Su | Paweł Budzianowski | Iñigo Casanueva | Ivan Vulić
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts

A fundamental long-term goal of conversational AI is to merge two main dialogue system paradigms into a standalone multi-purpose system. Such a system should be capable of conversing about arbitrary topics (Paradigm 1: open-domain dialogue systems), and simultaneously assist humans with completing a wide range of tasks with well-defined semantics such as restaurant search and booking, customer service applications, or ticket bookings (Paradigm 2: task-based dialogue systems).The recent developmental leaps in conversational AI technology are undoubtedly linked to more and more sophisticated deep learning algorithms that capture patterns in increasing amounts of data generated by various data collection mechanisms. The goal of this tutorial is therefore twofold. First, it aims at familiarising the research community with the recent advances in algorithmic design of statistical dialogue systems for both open-domain and task-based dialogue paradigms. The focus of the tutorial is on recently introduced end-to-end learning for dialogue systems and their relation to more common modular systems. In theory, learning end-to-end from data offers seamless and unprecedented portability of dialogue systems to a wide spectrum of tasks and languages. From a practical point of view, there are still plenty of research challenges and opportunities remaining: in this tutorial we analyse this gap between theory and practice, and introduce the research community with the main advantages as well as with key practical limitations of current end-to-end dialogue learning.The critical requirement of each statistical dialogue system is the data at hand. The system cannot provide assistance for the task without having appropriate task-related data to learn from. Therefore, the second major goal of this tutorial is to provide a comprehensive overview of the current approaches to data collection for dialogue, and analyse the current gaps and challenges with diverse data collection protocols, as well as their relation to and current limitations of data-driven end-to-end dialogue modeling. We will again analyse this relation and limitations both from research and industry perspective, and provide key insights on the application of state-of-the-art methodology into industry-scale conversational AI systems.

bib
Semantic Specialization of Distributional Word Vectors
Goran Glavaś | Edoardo Maria Ponti | Ivan Vulić
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts

Distributional word vectors have become an indispensable component of most state-of-art NLP models. As a major artefact of the underlying distributional hypothesis, distributional word vector spaces conflate various paradigmatic and syntagmatic lexico-semantic relations. For example, relations such as synonymy/similarity (e.g., car-automobile) or lexical entailment (e.g., car-vehicle) often cannot be distinguished from antonymy (e.g., black-white), meronymy (e.g., car-wheel) or broader thematic relatedness (e.g., car-driver) based on the distances in the distributional vector space. This inherent property of distributional spaces often harms performance in downstream applications, since different lexico-semantic relations support different classes of NLP applications. For instance, Semantic Similarity provides guidance for Paraphrasing, Dialogue State Tracking, and Text Simplification, Lexical Entailment supports Natural Language Inference and Taxonomy Induction, whereas broader thematic relatedness yields gains for Named Entity Recognition, Parsing, and Text Classification and Retrieval.A plethora of methods have been proposed to emphasize specific lexico-semantic relations in a reshaped (i.e., specialized) vector space. A common solution is to move beyond purely unsupervised word representation learning and include external lexico-semantic knowledge, in a process commonly referred to as semantic specialization. In this tutorial, we provide a thorough overview of specialization methods, covering: 1) joint specialization methods, which augment distributional learning objectives with external linguistic constraints, 2) post-processing retrofitting models, which fine-tune pre-trained distributional vectors to better reflect external linguistic constraints, and 3) the most recently proposed post-specialization methods that generalize the perturbations of the post-processing methods to the whole distributional space. In addition to providing a comprehensive overview of specialization methods, we will introduce the most recent developments, such as (among others): handling asymmetric relations (e.g., hypernymy-hyponymy) in Euclidean and hyperbolic spaces by accounting for vector magnitude as well as for vector distance; cross-lingual transfer of semantic specialization for languages without external lexico-semantic resources; downstream effects of specializing distributional vector spaces; injecting external knowledge into unsupervised pretraining architectures such as ELMo or BERT.

pdf bib
PolyResponse: A Rank-based Approach to Task-Oriented Dialogue with Application in Restaurant Search and Booking
Matthew Henderson | Ivan Vulić | Iñigo Casanueva | Paweł Budzianowski | Daniela Gerz | Sam Coope | Georgios Spithourakis | Tsung-Hsien Wen | Nikola Mrkšić | Pei-Hao Su
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

We present PolyResponse, a conversational search engine that supports task-oriented dialogue. It is a retrieval-based approach that bypasses the complex multi-component design of traditional task-oriented dialogue systems and the use of explicit semantics in the form of task-specific ontologies. The PolyResponse engine is trained on hundreds of millions of examples extracted from real conversations: it learns what responses are appropriate in different conversational contexts. It then ranks a large index of text and visual responses according to their similarity to the given context, and narrows down the list of relevant entities during the multi-turn conversation. We introduce a restaurant search and booking system powered by the PolyResponse engine, currently available in 8 different languages.

pdf bib
Hello, It’s GPT-2 - How Can I Help You? Towards the Use of Pretrained Language Models for Task-Oriented Dialogue Systems
Paweł Budzianowski | Ivan Vulić
Proceedings of the 3rd Workshop on Neural Generation and Translation

Data scarcity is a long-standing and crucial challenge that hinders quick development of task-oriented dialogue systems across multiple domains: task-oriented dialogue models are expected to learn grammar, syntax, dialogue reasoning, decision making, and language generation from absurdly small amounts of task-specific data. In this paper, we demonstrate that recent progress in language modeling pre-training and transfer learning shows promise to overcome this problem. We propose a task-oriented dialogue model that operates solely on text input: it effectively bypasses explicit policy and language generation modules. Building on top of the TransferTransfo framework (Wolf et al., 2019) and generative model pre-training (Radford et al., 2019), we validate the approach on complex multi-domain task-oriented dialogues from the MultiWOZ dataset. Our automatic and human evaluations show that the proposed model is on par with a strong task-specific neural baseline. In the long run, our approach holds promise to mitigate the data scarcity problem, and to support the construction of more engaging and more eloquent task-oriented conversational agents.

pdf bib
A Repository of Conversational Datasets
Matthew Henderson | Paweł Budzianowski | Iñigo Casanueva | Sam Coope | Daniela Gerz | Girish Kumar | Nikola Mrkšić | Georgios Spithourakis | Pei-Hao Su | Ivan Vulić | Tsung-Hsien Wen
Proceedings of the First Workshop on NLP for Conversational AI

Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using 1-of-100 accuracy. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set.

pdf bib
Specializing Distributional Vectors of All Words for Lexical Entailment
Aishwarya Kamath | Jonas Pfeiffer | Edoardo Maria Ponti | Goran Glavaš | Ivan Vulić
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

Semantic specialization methods fine-tune distributional word vectors using lexical knowledge from external resources (e.g. WordNet) to accentuate a particular relation between words. However, such post-processing methods suffer from limited coverage as they affect only vectors of words seen in the external resources. We present the first post-processing method that specializes vectors of all vocabulary words – including those unseen in the resources – for the asymmetric relation of lexical entailment (LE) (i.e., hyponymy-hypernymy relation). Leveraging a partially LE-specialized distributional space, our POSTLE (i.e., post-specialization for LE) model learns an explicit global specialization function, allowing for specialization of vectors of unseen words, as well as word vectors from other languages via cross-lingual transfer. We capture the function as a deep feed-forward neural network: its objective re-scales vector norms to reflect the concept hierarchy while simultaneously attracting hyponymy-hypernymy pairs to better reflect semantic similarity. An extended model variant augments the basic architecture with an adversarial discriminator. We demonstrate the usefulness and versatility of POSTLE models with different input distributional spaces in different scenarios (monolingual LE and zero-shot cross-lingual LE transfer) and tasks (binary and graded LE). We report consistent gains over state-of-the-art LE-specialization methods, and successfully LE-specialize word vectors for languages without any external lexical knowledge.

pdf bib
Proceedings of TyP-NLP: The First Workshop on Typology for Polyglot NLP
Haim Dubossarsky | Arya D. McCarthy | Edoardo Maria Ponti | Ivan Vulić | Ekaterina Vylomova | Yevgeni Berzak | Ryan Cotterell | Manaal Faruqui | Anna Korhonen | Roi Reichart
Proceedings of TyP-NLP: The First Workshop on Typology for Polyglot NLP

pdf bib
A Systematic Study of Leveraging Subword Information for Learning Word Representations
Yi Zhu | Ivan Vulić | Anna Korhonen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

The use of subword-level information (e.g., characters, character n-grams, morphemes) has become ubiquitous in modern word representation learning. Its importance is attested especially for morphologically rich languages which generate a large number of rare words. Despite a steadily increasing interest in such subword-informed word representations, their systematic comparative analysis across typologically diverse languages and different tasks is still missing. In this work, we deliver such a study focusing on the variation of two crucial components required for subword-level integration into word representation models: 1) segmentation of words into subword units, and 2) subword composition functions to obtain final word representations. We propose a general framework for learning subword-informed word representations that allows for easy experimentation with different segmentation and composition components, also including more advanced techniques based on position embeddings and self-attention. Using the unified framework, we run experiments over a large number of subword-informed word representation configurations (60 in total) on 3 tasks (general and rare word similarity, dependency parsing, fine-grained entity typing) for 5 languages representing 3 language types. Our main results clearly indicate that there is no “one-size-fits-all” configuration, as performance is both language- and task-dependent. We also show that configurations based on unsupervised segmentation (e.g., BPE, Morfessor) are sometimes comparable to or even outperform the ones based on supervised word segmentation.

pdf bib
Learning Unsupervised Multilingual Word Embeddings with Incremental Multilingual Hubs
Geert Heyman | Bregt Verreet | Ivan Vulić | Marie-Francine Moens
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recent research has discovered that a shared bilingual word embedding space can be induced by projecting monolingual word embedding spaces from two languages using a self-learning paradigm without any bilingual supervision. However, it has also been shown that for distant language pairs such fully unsupervised self-learning methods are unstable and often get stuck in poor local optima due to reduced isomorphism between starting monolingual spaces. In this work, we propose a new robust framework for learning unsupervised multilingual word embeddings that mitigates the instability issues. We learn a shared multilingual embedding space for a variable number of languages by incrementally adding new languages one by one to the current multilingual space. Through the gradual language addition the method can leverage the interdependencies between the new language and all other languages in the current multilingual space. We find that it is beneficial to project more distant languages later in the iterative process. Our fully unsupervised multilingual embedding spaces yield results that are on par with the state-of-the-art methods in the bilingual lexicon induction (BLI) task, and simultaneously obtain state-of-the-art scores on two downstream tasks: multilingual document classification and multilingual dependency parsing, outperforming even supervised baselines. This finding also accentuates the need to establish evaluation protocols for cross-lingual word embeddings beyond the omnipresent intrinsic BLI task in future work.

pdf bib
Show Some Love to Your n-grams: A Bit of Progress and Stronger n-gram Language Modeling Baselines
Ehsan Shareghi | Daniela Gerz | Ivan Vulić | Anna Korhonen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In recent years neural language models (LMs) have set the state-of-the-art performance for several benchmarking datasets. While the reasons for their success and their computational demand are well-documented, a comparison between neural models and more recent developments in n-gram models is neglected. In this paper, we examine the recent progress in n-gram literature, running experiments on 50 languages covering all morphological language families. Experimental results illustrate that a simple extension of Modified Kneser-Ney outperforms an lstm language model on 42 languages while a word-level Bayesian n-gram LM (Shareghi et al., 2017) outperforms the character-aware neural model (Kim et al., 2016) on average across all languages, and its extension which explicitly injects linguistic knowledge (Gerz et al., 2018) on 8 languages. Further experiments on larger Europarl datasets for 3 languages indicate that neural architectures are able to outperform computationally much cheaper n-gram models: n-gram training is up to 15,000x quicker. Our experiments illustrate that standalone n-gram models lend themselves as natural choices for resource-lean or morphologically rich languages, while the recent progress has significantly improved their accuracy.

2018

pdf bib
Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization
Edoardo Maria Ponti | Ivan Vulić | Goran Glavaš | Nikola Mrkšić | Anna Korhonen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Semantic specialization is a process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with a adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.

pdf bib
On the Relation between Linguistic Typology and (Limitations of) Multilingual Language Modeling
Daniela Gerz | Ivan Vulić | Edoardo Maria Ponti | Roi Reichart | Anna Korhonen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

A key challenge in cross-lingual NLP is developing general language-independent architectures that are equally applicable to any language. However, this ambition is largely hampered by the variation in structural and semantic properties, i.e. the typological profiles of the world’s languages. In this work, we analyse the implications of this variation on the language modeling (LM) task. We present a large-scale study of state-of-the art n-gram based and neural language models on 50 typologically diverse languages covering a wide variety of morphological systems. Operating in the full vocabulary LM setup focused on word-level prediction, we demonstrate that a coarse typology of morphological systems is predictive of absolute LM performance. Moreover, fine-grained typological features such as exponence, flexivity, fusion, and inflectional synthesis are borne out to be responsible for the proliferation of low-frequency phenomena which are organically difficult to model by statistical architectures, or for the meaning ambiguity of character n-grams. Our study strongly suggests that these features have to be taken into consideration during the construction of next-level language-agnostic LM architectures, capable of handling morphologically complex languages such as Tamil or Korean.

pdf bib
Language Modeling for Morphologically Rich Languages: Character-Aware Modeling for Word-Level Prediction
Daniela Gerz | Ivan Vulić | Edoardo Ponti | Jason Naradowsky | Roi Reichart | Anna Korhonen
Transactions of the Association for Computational Linguistics, Volume 6

Neural architectures are prominent in the construction of language models (LMs). However, word-level prediction is typically agnostic of subword-level information (characters and character sequences) and operates over a closed vocabulary, consisting of a limited word set. Indeed, while subword-aware models boost performance across a variety of NLP tasks, previous work did not evaluate the ability of these models to assist next-word prediction in language modeling tasks. Such subword-level informed models should be particularly effective for morphologically-rich languages (MRLs) that exhibit high type-to-token ratios. In this work, we present a large-scale LM study on 50 typologically diverse languages covering a wide variety of morphological systems, and offer new LM benchmarks to the community, while considering subword-level information. The main technical contribution of our work is a novel method for injecting subword-level information into semantic word vectors, integrated into the neural language modeling training, to facilitate word-level prediction. We conduct experiments in the LM setting where the number of infrequent words is large, and demonstrate strong perplexity gains across our 50 languages, especially for morphologically-rich languages. Our code and data sets are publicly available.

pdf bib
Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisation
Ivan Vulić
Proceedings of The Third Workshop on Representation Learning for NLP

Word vector space specialisation models offer a portable, light-weight approach to fine-tuning arbitrary distributional vector spaces to discern between synonymy and antonymy. Their effectiveness is drawn from external linguistic constraints that specify the exact lexical relation between words. In this work, we show that a careful selection of the external constraints can steer and improve the specialisation. By simply selecting appropriate constraints, we report state-of-the-art results on a suite of tasks with well-defined benchmarks where modeling lexical contrast is crucial: 1) true semantic similarity, with highest reported scores on SimLex-999 and SimVerb-3500 to date; 2) detecting antonyms; and 3) distinguishing antonyms from synonyms.

pdf bib
Acquiring Verb Classes Through Bottom-Up Semantic Verb Clustering
Olga Majewska | Diana McCarthy | Ivan Vulić | Anna Korhonen
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Explicit Retrofitting of Distributional Word Vectors
Goran Glavaš | Ivan Vulić
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Semantic specialization of distributional word vectors, referred to as retrofitting, is a process of fine-tuning word vectors using external lexical knowledge in order to better embed some semantic relation. Existing retrofitting models integrate linguistic constraints directly into learning objectives and, consequently, specialize only the vectors of words from the constraints. In this work, in contrast, we transform external lexico-semantic relations into training examples which we use to learn an explicit retrofitting model (ER). The ER model allows us to learn a global specialization function and specialize the vectors of words unobserved in the training data as well. We report large gains over original distributional vector spaces in (1) intrinsic word similarity evaluation and on (2) two downstream tasks − lexical simplification and dialog state tracking. Finally, we also successfully specialize vector spaces of new languages (i.e., unseen in the training data) by coupling ER with shared multilingual distributional vector spaces.

pdf bib
On the Limitations of Unsupervised Bilingual Dictionary Induction
Anders Søgaard | Sebastian Ruder | Ivan Vulić
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Unsupervised machine translation - i.e., not assuming any cross-lingual supervision signal, whether a dictionary, translations, or comparable corpora - seems impossible, but nevertheless, Lample et al. (2017) recently proposed a fully unsupervised machine translation (MT) model. The model relies heavily on an adversarial, unsupervised cross-lingual word embedding technique for bilingual dictionary induction (Conneau et al., 2017), which we examine here. Our results identify the limitations of current unsupervised MT: unsupervised bilingual dictionary induction performs much worse on morphologically rich languages that are not dependent marking, when monolingual corpora from different domains or different embedding algorithms are used. We show that a simple trick, exploiting a weak supervision signal from identical words, enables more robust induction and establish a near-perfect correlation between unsupervised bilingual dictionary induction performance and a previously unexplored graph similarity metric.

pdf bib
Bridging Languages through Images with Deep Partial Canonical Correlation Analysis
Guy Rotman | Ivan Vulić | Roi Reichart
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a deep neural network that leverages images to improve bilingual text embeddings. Relying on bilingual image tags and descriptions, our approach conditions text embedding induction on the shared visual information for both languages, producing highly correlated bilingual embeddings. In particular, we propose a novel model based on Partial Canonical Correlation Analysis (PCCA). While the original PCCA finds linear projections of two views in order to maximize their canonical correlation conditioned on a shared third variable, we introduce a non-linear Deep PCCA (DPCCA) model, and develop a new stochastic iterative algorithm for its optimization. We evaluate PCCA and DPCCA on multilingual word similarity and cross-lingual image description retrieval. Our models outperform a large variety of previous methods, despite not having access to any visual signal during test time inference.

pdf bib
Isomorphic Transfer of Syntactic Structures in Cross-Lingual NLP
Edoardo Maria Ponti | Roi Reichart | Anna Korhonen | Ivan Vulić
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The transfer or share of knowledge between languages is a potential solution to resource scarcity in NLP. However, the effectiveness of cross-lingual transfer can be challenged by variation in syntactic structures. Frameworks such as Universal Dependencies (UD) are designed to be cross-lingually consistent, but even in carefully designed resources trees representing equivalent sentences may not always overlap. In this paper, we measure cross-lingual syntactic variation, or anisomorphism, in the UD treebank collection, considering both morphological and structural properties. We show that reducing the level of anisomorphism yields consistent gains in cross-lingual transfer tasks. We introduce a source language selection procedure that facilitates effective cross-lingual parser transfer, and propose a typologically driven method for syntactic tree processing which reduces anisomorphism. Our results show the effectiveness of this method for both machine translation and cross-lingual sentence similarity, demonstrating the importance of syntactic structure compatibility for boosting cross-lingual transfer in NLP.

pdf bib
Fully Statistical Neural Belief Tracking
Nikola Mrkšić | Ivan Vulić
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

This paper proposes an improvement to the existing data-driven Neural Belief Tracking (NBT) framework for Dialogue State Tracking (DST). The existing NBT model uses a hand-crafted belief state update mechanism which involves an expensive manual retuning step whenever the model is deployed to a new dialogue domain. We show that this update mechanism can be learned jointly with the semantic decoding and context modelling parts of the NBT model, eliminating the last rule-based module from this DST framework. We propose two different statistical update mechanisms and show that dialogue dynamics can be modelled with a very small number of additional model parameters. In our DST evaluation over three languages, we show that this model achieves competitive performance and provides a robust framework for building resource-light DST models.

pdf bib
Scoring Lexical Entailment with a Supervised Directional Similarity Network
Marek Rei | Daniela Gerz | Ivan Vulić
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We present the Supervised Directional Similarity Network, a novel neural architecture for learning task-specific transformation functions on top of general-purpose word embeddings. Relying on only a limited amount of supervision from task-specific scores on a subset of the vocabulary, our architecture is able to generalise and transform a general-purpose distributional vector space to model the relation of lexical entailment. Experiments show excellent performance on scoring graded lexical entailment, raising the state-of-the-art on the HyperLex dataset by approximately 25%.

pdf bib
Post-Specialisation: Retrofitting Vectors of Words Unseen in Lexical Resources
Ivan Vulić | Goran Glavaš | Nikola Mrkšić | Anna Korhonen
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Word vector specialisation (also known as retrofitting) is a portable, light-weight approach to fine-tuning arbitrary distributional word vector spaces by injecting external knowledge from rich lexical resources such as WordNet. By design, these post-processing methods only update the vectors of words occurring in external lexicons, leaving the representations of all unseen words intact. In this paper, we show that constraint-driven vector space specialisation can be extended to unseen words. We propose a novel post-specialisation method that: a) preserves the useful linguistic knowledge for seen words; while b) propagating this external signal to unseen words in order to improve their vector representations as well. Our post-specialisation approach explicits a non-linear specialisation function in the form of a deep neural network by learning to predict specialised vectors from their original distributional counterparts. The learned function is then used to specialise vectors of unseen words. This approach, applicable to any post-processing model, yields considerable gains over the initial specialisation models both in intrinsic word similarity tasks, and in two downstream tasks: dialogue state tracking and lexical text simplification. The positive effects persist across three languages, demonstrating the importance of specialising the full vocabulary of distributional word vector spaces.

pdf bib
Specialising Word Vectors for Lexical Entailment
Ivan Vulić | Nikola Mrkšić
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present LEAR (Lexical Entailment Attract-Repel), a novel post-processing method that transforms any input word vector space to emphasise the asymmetric relation of lexical entailment (LE), also known as the IS-A or hyponymy-hypernymy relation. By injecting external linguistic constraints (e.g., WordNet links) into the initial vector space, the LE specialisation procedure brings true hyponymy-hypernymy pairs closer together in the transformed Euclidean space. The proposed asymmetric distance measure adjusts the norms of word vectors to reflect the actual WordNet-style hierarchy of concepts. Simultaneously, a joint objective enforces semantic similarity using the symmetric cosine distance, yielding a vector space specialised for both lexical relations at once. LEAR specialisation achieves state-of-the-art performance in the tasks of hypernymy directionality, hypernymy detection, and graded lexical entailment, demonstrating the effectiveness and robustness of the proposed asymmetric specialisation model.

pdf bib
Discriminating between Lexico-Semantic Relations with the Specialization Tensor Model
Goran Glavaš | Ivan Vulić
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

We present a simple and effective feed-forward neural architecture for discriminating between lexico-semantic relations (synonymy, antonymy, hypernymy, and meronymy). Our Specialization Tensor Model (STM) simultaneously produces multiple different specializations of input distributional word vectors, tailored for predicting lexico-semantic relations for word pairs. STM outperforms more complex state-of-the-art architectures on two benchmark datasets and exhibits stable performance across languages. We also show that, if coupled with a bilingual distributional space, the proposed model can transfer the prediction of lexico-semantic relations to a resource-lean target language without any training data.

pdf bib
Deep Learning for Conversational AI
Pei-Hao Su | Nikola Mrkšić | Iñigo Casanueva | Ivan Vulić
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorial Abstracts

Spoken Dialogue Systems (SDS) have great commercial potential as they promise to revolutionise the way in which humans interact with machines. The advent of deep learning led to substantial developments in this area of NLP research, and the goal of this tutorial is to familiarise the research community with the recent advances in what some call the most difficult problem in NLP. From a research perspective, the design of spoken dialogue systems provides a number of significant challenges, as these systems depend on: a) solving several difficult NLP and decision-making tasks; and b) combining these into a functional dialogue system pipeline. A key long-term goal of dialogue system research is to enable open-domain systems that can converse about arbitrary topics and assist humans with completing a wide range of tasks. Furthermore, such systems need to autonomously learn on-line to improve their performance and recover from errors using both signals from their environment and from implicit and explicit user feedback. While the design of such systems has traditionally been modular, domain and language-specific, advances in deep learning have alleviated many of the design problems. The main purpose of this tutorial is to encourage dialogue research in the NLP community by providing the research background, a survey of available resources, and giving key insights to application of state-of-the-art SDS methodology into industry-scale conversational AI systems. We plan to introduce researchers to the pipeline framework for modelling goal-oriented dialogue systems, which includes three key components: 1) Language Understanding; 2) Dialogue Management; and 3) Language Generation. The differences between goal-oriented dialogue systems and chat-bot style conversational agents will be explained in order to show the motivation behind the design of both, with the main focus on the pipeline SDS framework. For each key component, we will define the research problem, provide a brief literature review and introduce the current state-of-the-art approaches. Complementary resources (e.g. available datasets and toolkits) will also be discussed. Finally, future work, outstanding challenges, and current industry practices will be presented. All of the presented material will be made available online for future reference.

2017

pdf bib
If Sentences Could See: Investigating Visual Information for Semantic Textual Similarity
Goran Glavaš | Ivan Vulić | Simone Paolo Ponzetto
IWCS 2017 - 12th International Conference on Computational Semantics - Long papers

pdf bib
HyperLex: A Large-Scale Evaluation of Graded Lexical Entailment
Ivan Vulić | Daniela Gerz | Douwe Kiela | Felix Hill | Anna Korhonen
Computational Linguistics, Volume 43, Issue 4 - December 2017

We introduce HyperLex—a data set and evaluation resource that quantifies the extent of the semantic category membership, that is, type-of relation, also known as hyponymy–hypernymy or lexical entailment (LE) relation between 2,616 concept pairs. Cognitive psychology research has established that typicality and category/class membership are computed in human semantic memory as a gradual rather than binary relation. Nevertheless, most NLP research and existing large-scale inventories of concept category membership (WordNet, DBPedia, etc.) treat category membership and LE as binary. To address this, we asked hundreds of native English speakers to indicate typicality and strength of category membership between a diverse range of concept pairs on a crowdsourcing platform. Our results confirm that category membership and LE are indeed more gradual than binary. We then compare these human judgments with the predictions of automatic systems, which reveals a huge gap between human performance and state-of-the-art LE, distributional and representation learning models, and substantial differences between the models themselves. We discuss a pathway for improving semantic models to overcome this discrepancy, and indicate future application areas for improved graded LE systems.

pdf bib
Cross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space Specialisation
Ivan Vulić | Nikola Mrkšić | Anna Korhonen
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Existing approaches to automatic VerbNet-style verb classification are heavily dependent on feature engineering and therefore limited to languages with mature NLP pipelines. In this work, we propose a novel cross-lingual transfer method for inducing VerbNets for multiple languages. To the best of our knowledge, this is the first study which demonstrates how the architectures for learning word embeddings can be applied to this challenging syntactic-semantic task. Our method uses cross-lingual translation pairs to tie each of the six target languages into a bilingual vector space with English, jointly specialising the representations to encode the relational information from English VerbNet. A standard clustering algorithm is then run on top of the VerbNet-specialised representations, using vector dimensions as features for learning verb classes. Our results show that the proposed cross-lingual transfer approach sets new state-of-the-art verb classification performance across all six target languages explored in this work.

pdf bib
Cross-Lingual Word Representations: Induction and Evaluation
Manaal Faruqui | Anders Søgaard | Ivan Vulić
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

In recent past, NLP as a field has seen tremendous utility of distributional word vector representations as features in downstream tasks. The fact that these word vectors can be trained on unlabeled monolingual corpora of a language makes them an inexpensive resource in NLP. With the increasing use of monolingual word vectors, there is a need for word vectors that can be used as efficiently across multiple languages as monolingually. Therefore, learning bilingual and multilingual word embeddings/vectors is currently an important research topic. These vectors offer an elegant and language-pair independent way to represent content across different languages.This tutorial aims to bring NLP researchers up to speed with the current techniques in cross-lingual word representation learning. We will first discuss how to induce cross-lingual word representations (covering both bilingual and multilingual ones) from various data types and resources (e.g., parallel data, comparable data, non-aligned monolingual data in different languages, dictionaries and theasuri, or, even, images, eye-tracking data). We will then discuss how to evaluate such representations, intrinsically and extrinsically. We will introduce researchers to state-of-the-art methods for constructing cross-lingual word representations and discuss their applicability in a broad range of downstream NLP applications.We will deliver a detailed survey of the current methods, discuss best training and evaluation practices and use-cases, and provide links to publicly available implementations, datasets, and pre-trained models.

pdf bib
Semantic Specialization of Distributional Word Vector Spaces using Monolingual and Cross-Lingual Constraints
Nikola Mrkšić | Ivan Vulić | Diarmuid Ó Séaghdha | Ira Leviant | Roi Reichart | Milica Gašić | Anna Korhonen | Steve Young
Transactions of the Association for Computational Linguistics, Volume 5

We present Attract-Repel, an algorithm for improving the semantic quality of word vectors by injecting constraints extracted from lexical resources. Attract-Repel facilitates the use of constraints from mono- and cross-lingual resources, yielding semantically specialized cross-lingual vector spaces. Our evaluation shows that the method can make use of existing cross-lingual lexicons to construct high-quality vector spaces for a plethora of different languages, facilitating semantic transfer from high- to lower-resource ones. The effectiveness of our approach is demonstrated with state-of-the-art results on semantic similarity datasets in six languages. We next show that Attract-Repel-specialized vectors boost performance in the downstream task of dialogue state tracking (DST) across multiple languages. Finally, we show that cross-lingual vector spaces produced by our algorithm facilitate the training of multilingual DST models, which brings further performance improvements.

pdf bib
Evaluation by Association: A Systematic Study of Quantitative Word Association Evaluation
Ivan Vulić | Douwe Kiela | Anna Korhonen
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Recent work on evaluating representation learning architectures in NLP has established a need for evaluation protocols based on subconscious cognitive measures rather than manually tailored intrinsic similarity and relatedness tasks. In this work, we propose a novel evaluation framework that enables large-scale evaluation of such architectures in the free word association (WA) task, which is firmly grounded in cognitive theories of human semantic representation. This evaluation is facilitated by the existence of large manually constructed repositories of word association data. In this paper, we (1) present a detailed analysis of the new quantitative WA evaluation protocol, (2) suggest new evaluation metrics for the WA task inspired by its direct analogy with information retrieval problems, (3) evaluate various state-of-the-art representation models on this task, and (4) discuss the relationship between WA and prior evaluations of semantic representation with well-known similarity and relatedness evaluation sets. We have made the WA evaluation toolkit publicly available.

pdf bib
Bilingual Lexicon Induction by Learning to Combine Word-Level and Character-Level Representations
Geert Heyman | Ivan Vulić | Marie-Francine Moens
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

We study the problem of bilingual lexicon induction (BLI) in a setting where some translation resources are available, but unknown translations are sought for certain, possibly domain-specific terminology. We frame BLI as a classification problem for which we design a neural network based classification architecture composed of recurrent long short-term memory and deep feed forward networks. The results show that word- and character-level representations each improve state-of-the-art results for BLI, and the best results are obtained by exploiting the synergy between these word- and character-level representations in the classification model.

pdf bib
Cross-Lingual Syntactically Informed Distributed Word Representations
Ivan Vulić
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

We develop a novel cross-lingual word representation model which injects syntactic information through dependency-based contexts into a shared cross-lingual word vector space. The model, termed CL-DepEmb, is based on the following assumptions: (1) dependency relations are largely language-independent, at least for related languages and prominent dependency links such as direct objects, as evidenced by the Universal Dependencies project; (2) word translation equivalents take similar grammatical roles in a sentence and are therefore substitutable within their syntactic contexts. Experiments with several language pairs on word similarity and bilingual lexicon induction, two fundamental semantic tasks emphasising semantic similarity, suggest the usefulness of the proposed syntactically informed cross-lingual word vector spaces. Improvements are observed in both tasks over standard cross-lingual “offline mapping” baselines trained using the same setup and an equal level of bilingual supervision.

pdf bib
Word Vector Space Specialisation
Ivan Vulić | Nikola Mrkšić | Mohammad Taher Pilehvar
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts

Specialising vector spaces to maximise their content with respect to one key property of vector space models (e.g. semantic similarity vs. relatedness or lexical entailment) while mitigating others has become an active and attractive research topic in representation learning. Such specialised vector spaces support different classes of NLP problems. Proposed approaches fall into two broad categories: a) Unsupervised methods which learn from raw textual corpora in more sophisticated ways (e.g. using context selection, extracting co-occurrence information from word patterns, attending over contexts); and b) Knowledge-base driven approaches which exploit available resources to encode external information into distributional vector spaces, injecting knowledge from semantic lexicons (e.g., WordNet, FrameNet, PPDB). In this tutorial, we will introduce researchers to state-of-the-art methods for constructing vector spaces specialised for a broad range of downstream NLP applications. We will deliver a detailed survey of the proposed methods and discuss best practices for intrinsic and application-oriented evaluation of such vector spaces.Throughout the tutorial, we will provide running examples reaching beyond English as the only (and probably the easiest) use-case language, in order to demonstrate the applicability and modelling challenges of current representation learning architectures in other languages.

pdf bib
Automatic Selection of Context Configurations for Improved Class-Specific Word Representations
Ivan Vulić | Roy Schwartz | Ari Rappoport | Roi Reichart | Anna Korhonen
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)

This paper is concerned with identifying contexts useful for training word representation models for different word classes such as adjectives (A), verbs (V), and nouns (N). We introduce a simple yet effective framework for an automatic selection of class-specific context configurations. We construct a context configuration space based on universal dependency relations between words, and efficiently search this space with an adapted beam search algorithm. In word similarity tasks for each word class, we show that our framework is both effective and efficient. Particularly, it improves the Spearman’s rho correlation with human scores on SimLex-999 over the best previously proposed class-specific contexts by 6 (A), 6 (V) and 5 (N) rho points. With our selected context configurations, we train on only 14% (A), 26.2% (V), and 33.6% (N) of all dependency-based contexts, resulting in a reduced training time. Our results generalise: we show that the configurations our algorithm learns for one English training setup outperform previously proposed context types in another training setup for English. Moreover, basing the configuration space on universal dependencies, it is possible to transfer the learned configurations to German and Italian. We also demonstrate improved per-class results over other context types in these two languages..

pdf bib
Morph-fitting: Fine-Tuning Word Vector Spaces with Simple Language-Specific Rules
Ivan Vulić | Nikola Mrkšić | Roi Reichart | Diarmuid Ó Séaghdha | Steve Young | Anna Korhonen
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Morphologically rich languages accentuate two properties of distributional vector space models: 1) the difficulty of inducing accurate representations for low-frequency word forms; and 2) insensitivity to distinct lexical relations that have similar distributional signatures. These effects are detrimental for language understanding systems, which may infer that ‘inexpensive’ is a rephrasing for ‘expensive’ or may not associate ‘acquire’ with ‘acquires’. In this work, we propose a novel morph-fitting procedure which moves past the use of curated semantic lexicons for improving distributional vector spaces. Instead, our method injects morphological constraints generated using simple language-specific rules, pulling inflectional forms of the same word close together and pushing derivational antonyms far apart. In intrinsic evaluation over four languages, we show that our approach: 1) improves low-frequency word estimates; and 2) boosts the semantic quality of the entire word vector collection. Finally, we show that morph-fitted vectors yield large gains in the downstream task of dialogue state tracking, highlighting the importance of morphology for tackling long-tail phenomena in language understanding tasks.

pdf bib
Decoding Sentiment from Distributed Representations of Sentences
Edoardo Maria Ponti | Ivan Vulić | Anna Korhonen
Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)

Distributed representations of sentences have been developed recently to represent their meaning as real-valued vectors. However, it is not clear how much information such representations retain about the polarity of sentences. To study this question, we decode sentiment from unsupervised sentence representations learned with different architectures (sensitive to the order of words, the order of sentences, or none) in 9 typologically diverse languages. Sentiment results from the (recursive) composition of lexical items and grammatical strategies such as negation and concession. The results are manifold: we show that there is no ‘one-size-fits-all’ representation architecture outperforming the others across the board. Rather, the top-ranking architectures depend on the language at hand. Moreover, we find that in several cases the additive composition model based on skip-gram word vectors may surpass supervised state-of-art architectures such as bi-directional LSTMs. Finally, we provide a possible explanation of the observed variation based on the type of negative constructions in each language.

2016

pdf bib
On the Role of Seed Lexicons in Learning Bilingual Word Embeddings
Ivan Vulić | Anna Korhonen
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Multi-Modal Representations for Improved Bilingual Lexicon Learning
Ivan Vulić | Douwe Kiela | Stephen Clark | Marie-Francine Moens
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
Is “Universal Syntax” Universally Useful for Learning Distributed Word Representations?
Ivan Vulić | Anna Korhonen
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity
Daniela Gerz | Ivan Vulić | Felix Hill | Roi Reichart | Anna Korhonen
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Survey on the Use of Typological Information in Natural Language Processing
Helen O’Horan | Yevgeni Berzak | Ivan Vulić | Roi Reichart | Anna Korhonen
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

In recent years linguistic typologies, which classify the world’s languages according to their functional and structural properties, have been widely used to support multilingual NLP. While the growing importance of typologies in supporting multilingual tasks has been recognised, no systematic survey of existing typological resources and their use in NLP has been published. This paper provides such a survey as well as discussion which we hope will both inform and inspire future work in the area.

2015

pdf bib
TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay
Mladen Karan | Goran Glavaš | Jan Šnajder | Bojana Dalbelo Bašić | Ivan Vulić | Marie-Francine Moens
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)

pdf bib
Visual Bilingual Lexicon Induction with Transferred ConvNet Features
Douwe Kiela | Ivan Vulić | Stephen Clark
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Exploiting Image Generality for Lexical Entailment Detection
Douwe Kiela | Laura Rimell | Ivan Vulić | Stephen Clark
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

pdf bib
Bilingual Word Embeddings from Non-Parallel Document-Aligned Data Applied to Bilingual Lexicon Induction
Ivan Vulić | Marie-Francine Moens
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

pdf bib
Proceedings of the Fourth Workshop on Vision and Language
Anja Belz | Luisa Coheur | Vittorio Ferrari | Marie-Francine Moens | Katerina Pastra | Ivan Vulić
Proceedings of the Fourth Workshop on Vision and Language

2014

pdf bib
Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter of the Association for Computational Linguistics
Shuly Wintner | Desmond Elliott | Konstantina Garoufi | Douwe Kiela | Ivan Vulić
Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter of the Association for Computational Linguistics

pdf bib
TermWise: A CAT-tool with Context-Sensitive Terminological Support.
Kris Heylen | Stephen Bond | Dirk De Hertog | Ivan Vulić | Hendrik Kockaert
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

pdf bib
Probabilistic Models of Cross-Lingual Semantic Similarity in Context Based on Latent Cross-Lingual Concepts Induced from Comparable Data
Ivan Vulić | Marie-Francine Moens
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2013

pdf bib
A Study on Bootstrapping Bilingual Vector Spaces from Non-Parallel Data (and Nothing Else)
Ivan Vulić | Marie-Francine Moens
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Cross-Lingual Semantic Similarity of Words as the Similarity of Their Semantic Word Responses
Ivan Vulić | Marie-Francine Moens
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Named Entity Recognition in Broadcast News Using Similar Written Texts
Niraj Shrestha | Ivan Vulić
Proceedings of the Student Research Workshop associated with RANLP 2013

2012

pdf bib
Sub-corpora Sampling with an Application to Bilingual Lexicon Extraction
Ivan Vulić | Marie-Francine Moens
Proceedings of COLING 2012

pdf bib
Skip N-grams and Ranking Functions for Predicting Script Events
Bram Jans | Steven Bethard | Ivan Vulić | Marie Francine Moens
Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics

pdf bib
Detecting Highly Confident Word Translations from Comparable Corpora without Any Prior Knowledge
Ivan Vulić | Marie-Francine Moens
Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics

2011

pdf bib
Identifying Word Translations from Comparable Corpora Using Latent Topic Models
Ivan Vulić | Wim De Smet | Marie-Francine Moens
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies