Huan Sun


2019

pdf bib
Leveraging 2-hop Distant Supervision from Table Entity Pairs for Relation Extraction
xiang deng | Huan Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Distant supervision (DS) has been widely used to automatically construct (noisy) labeled data for relation extraction (RE). Given two entities, distant supervision exploits sentences that directly mention them for predicting their semantic relation. We refer to this strategy as 1-hop DS, which unfortunately may not work well for long-tail entities with few supporting sentences. In this paper, we introduce a new strategy named 2-hop DS to enhance distantly supervised RE, based on the observation that there exist a large number of relational tables on the Web which contain entity pairs that share common relations. We refer to such entity pairs as anchors for each other, and collect all sentences that mention the anchor entity pairs of a given target entity pair to help relation prediction. We develop a new neural RE method REDS2 in the multi-instance learning paradigm, which adopts a hierarchical model structure to fuse information respectively from 1-hop DS and 2-hop DS. Extensive experimental results on a benchmark dataset show that REDS2 can consistently outperform various baselines across different settings by a substantial margin.

pdf bib
Model-based Interactive Semantic Parsing: A Unified Framework and A Text-to-SQL Case Study
Ziyu Yao | Yu Su | Huan Sun | Wen-tau Yih
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

As a promising paradigm, interactive semantic parsing has shown to improve both semantic parsing accuracy and user confidence in the results. In this paper, we propose a new, unified formulation of the interactive semantic parsing problem, where the goal is to design a model-based intelligent agent. The agent maintains its own state as the current predicted semantic parse, decides whether and where human intervention is needed, and generates a clarification question in natural language. A key part of the agent is a world model: it takes a percept (either an initial question or subsequent feedback from the user) and transitions to a new state. We then propose a simple yet remarkably effective instantiation of our framework, demonstrated on two text-to-SQL datasets (WikiSQL and Spider) with different state-of-the-art base semantic parsers. Compared to an existing interactive semantic parsing approach that treats the base parser as a black box, our approach solicits less user feedback but yields higher run-time accuracy.

pdf bib
Reinforced Dynamic Reasoning for Conversational Question Generation
Boyuan Pan | Hao Li | Ziyu Yao | Deng Cai | Huan Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper investigates a new task named Conversational Question Generation (CQG) which is to generate a question based on a passage and a conversation history (i.e., previous turns of question-answer pairs). CQG is a crucial task for developing intelligent agents that can drive question-answering style conversations or test user understanding of a given passage. Towards that end, we propose a new approach named Reinforced Dynamic Reasoning network, which is based on the general encoder-decoder framework but incorporates a reasoning procedure in a dynamic manner to better understand what has been asked and what to ask next about the passage into the general encoder-decoder framework. To encourage producing meaningful questions, we leverage a popular question answering (QA) model to provide feedback and fine-tune the question generator using a reinforcement learning mechanism. Empirical results on the recently released CoQA dataset demonstrate the effectiveness of our method in comparison with various baselines and model variants. Moreover, to show the applicability of our method, we also apply it to create multi-turn question-answering conversations for passages in SQuAD.

2018

pdf bib
Global Relation Embedding for Relation Extraction
Yu Su | Honglei Liu | Semih Yavuz | Izzeddin Gür | Huan Sun | Xifeng Yan
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

2017

pdf bib
An End-to-End Deep Framework for Answer Triggering with a Novel Group-Level Objective
Jie Zhao | Yu Su | Ziyu Guan | Huan Sun
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Given a question and a set of answer candidates, answer triggering determines whether the candidate set contains any correct answers. If yes, it then outputs a correct one. In contrast to existing pipeline methods which first consider individual candidate answers separately and then make a prediction based on a threshold, we propose an end-to-end deep neural network framework, which is trained by a novel group-level objective function that directly optimizes the answer triggering performance. Our objective function penalizes three potential types of error and allows training the framework in an end-to-end manner. Experimental results on the WikiQA benchmark show that our framework outperforms the state of the arts by a 6.6% absolute gain under F1 measure.

2016

pdf bib
On Generating Characteristic-rich Question Sets for QA Evaluation
Yu Su | Huan Sun | Brian Sadler | Mudhakar Srivatsa | Izzeddin Gür | Zenghui Yan | Xifeng Yan
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing