Haiyue Song


2023

pdf bib
Relation Extraction with Weighted Contrastive Pre-training on Distant Supervision
Zhen Wan | Fei Cheng | Qianying Liu | Zhuoyuan Mao | Haiyue Song | Sadao Kurohashi
Findings of the Association for Computational Linguistics: EACL 2023

Contrastive pre-training on distant supervision has shown remarkable effectiveness in improving supervised relation extraction tasks. However, the existing methods ignore the intrinsic noise of distant supervision during the pre-training stage. In this paper, we propose a weighted contrastive learning method by leveraging the supervised data to estimate the reliability of pre-training instances and explicitly reduce the effect of noise. Experimental results on three supervised datasets demonstrate the advantages of our proposed weighted contrastive learning approach compared to two state-of-the-art non-weighted baselines. Our code and models are available at: https://github.com/YukinoWan/WCL.

pdf bib
GPT-RE: In-context Learning for Relation Extraction using Large Language Models
Zhen Wan | Fei Cheng | Zhuoyuan Mao | Qianying Liu | Haiyue Song | Jiwei Li | Sadao Kurohashi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In spite of the potential for ground-breaking achievements offered by large language models (LLMs) (e.g., GPT-3) via in-context learning (ICL), they still lag significantly behind fully-supervised baselines (e.g., fine-tuned BERT) in relation extraction (RE). This is due to the two major shortcomings of ICL for RE: (1) low relevance regarding entity and relation in existing sentence-level demonstration retrieval approaches for ICL; and (2) the lack of explaining input-label mappings of demonstrations leading to poor ICL effectiveness. In this paper, we propose GPT-RE to successfully address the aforementioned issues by (1) incorporating task-aware representations in demonstration retrieval; and (2) enriching the demonstrations with gold label-induced reasoning logic. We evaluate GPT-RE on four widely-used RE datasets, and observe that GPT-RE achieves improvements over not only existing GPT-3 baselines, but also fully-supervised baselines as in Figure 1. Specifically, GPT-RE achieves SOTA performances on the Semeval and SciERC datasets, and competitive performances on the TACRED and ACE05 datasets. Additionally, a critical issue of LLMs revealed by previous work, the strong inclination to wrongly classify NULL examples into other pre-defined labels, is substantially alleviated by our method. We show an empirical analysis.

pdf bib
Variable-length Neural Interlingua Representations for Zero-shot Neural Machine Translation
Zhuoyuan Mao | Haiyue Song | Raj Dabre | Chenhui Chu | Sadao Kurohashi
Proceedings of the 1st International Workshop on Multilingual, Multimodal and Multitask Language Generation

pdf bib
Exploring the Impact of Layer Normalization for Zero-shot Neural Machine Translation
Zhuoyuan Mao | Raj Dabre | Qianying Liu | Haiyue Song | Chenhui Chu | Sadao Kurohashi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

This paper studies the impact of layer normalization (LayerNorm) on zero-shot translation (ZST). Recent efforts for ZST often utilize the Transformer architecture as the backbone, with LayerNorm at the input of layers (PreNorm) set as the default. However, Xu et al. (2019) has revealed that PreNorm carries the risk of overfitting the training data. Based on this, we hypothesize that PreNorm may overfit supervised directions and thus have low generalizability for ZST. Through experiments on OPUS, IWSLT, and Europarl datasets for 54 ZST directions, we demonstrate that the original Transformer setting of LayerNorm after residual connections (PostNorm) consistently outperforms PreNorm by up to 12.3 BLEU points. We then study the performance disparities by analyzing the differences in off-target rates and structural variations between PreNorm and PostNorm. This study highlights the need for careful consideration of the LayerNorm setting for ZST.

2022

pdf bib
When do Contrastive Word Alignments Improve Many-to-many Neural Machine Translation?
Zhuoyuan Mao | Chenhui Chu | Raj Dabre | Haiyue Song | Zhen Wan | Sadao Kurohashi
Findings of the Association for Computational Linguistics: NAACL 2022

Word alignment has proven to benefit many-to-many neural machine translation (NMT). However, high-quality ground-truth bilingual dictionaries were used for pre-editing in previous methods, which are unavailable for most language pairs. Meanwhile, the contrastive objective can implicitly utilize automatically learned word alignment, which has not been explored in many-to-many NMT. This work proposes a word-level contrastive objective to leverage word alignments for many-to-many NMT. Empirical results show that this leads to 0.8 BLEU gains for several language pairs. Analyses reveal that in many-to-many NMT, the encoder’s sentence retrieval performance highly correlates with the translation quality, which explains when the proposed method impacts translation. This motivates future exploration for many-to-many NMT to improve the encoder’s sentence retrieval performance.

pdf bib
BERTSeg: BERT Based Unsupervised Subword Segmentation for Neural Machine Translation
Haiyue Song | Raj Dabre | Zhuoyuan Mao | Chenhui Chu | Sadao Kurohashi
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Existing subword segmenters are either 1) frequency-based without semantics information or 2) neural-based but trained on parallel corpora. To address this, we present BERTSeg, an unsupervised neural subword segmenter for neural machine translation, which utilizes the contextualized semantic embeddings of words from characterBERT and maximizes the generation probability of subword segmentations. Furthermore, we propose a generation probability-based regularization method that enables BERTSeg to produce multiple segmentations for one word to improve the robustness of neural machine translation. Experimental results show that BERTSeg with regularization achieves up to 8 BLEU points improvement in 9 translation directions on ALT, IWSLT15 Vi->En, WMT16 Ro->En, and WMT15 Fi->En datasets compared with BPE. In addition, BERTSeg is efficient, needing up to 5 minutes for training.

2021

pdf bib
Video-guided Machine Translation with Spatial Hierarchical Attention Network
Weiqi Gu | Haiyue Song | Chenhui Chu | Sadao Kurohashi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

Video-guided machine translation, as one type of multimodal machine translations, aims to engage video contents as auxiliary information to address the word sense ambiguity problem in machine translation. Previous studies only use features from pretrained action detection models as motion representations of the video to solve the verb sense ambiguity, leaving the noun sense ambiguity a problem. To address this problem, we propose a video-guided machine translation system by using both spatial and motion representations in videos. For spatial features, we propose a hierarchical attention network to model the spatial information from object-level to video-level. Experiments on the VATEX dataset show that our system achieves 35.86 BLEU-4 score, which is 0.51 score higher than the single model of the SOTA method.

2020

pdf bib
A System for Worldwide COVID-19 Information Aggregation
Akiko Aizawa | Frederic Bergeron | Junjie Chen | Fei Cheng | Katsuhiko Hayashi | Kentaro Inui | Hiroyoshi Ito | Daisuke Kawahara | Masaru Kitsuregawa | Hirokazu Kiyomaru | Masaki Kobayashi | Takashi Kodama | Sadao Kurohashi | Qianying Liu | Masaki Matsubara | Yusuke Miyao | Atsuyuki Morishima | Yugo Murawaki | Kazumasa Omura | Haiyue Song | Eiichiro Sumita | Shinji Suzuki | Ribeka Tanaka | Yu Tanaka | Masashi Toyoda | Nobuhiro Ueda | Honai Ueoka | Masao Utiyama | Ying Zhong
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

The global pandemic of COVID-19 has made the public pay close attention to related news, covering various domains, such as sanitation, treatment, and effects on education. Meanwhile, the COVID-19 condition is very different among the countries (e.g., policies and development of the epidemic), and thus citizens would be interested in news in foreign countries. We build a system for worldwide COVID-19 information aggregation containing reliable articles from 10 regions in 7 languages sorted by topics. Our reliable COVID-19 related website dataset collected through crowdsourcing ensures the quality of the articles. A neural machine translation module translates articles in other languages into Japanese and English. A BERT-based topic-classifier trained on our article-topic pair dataset helps users find their interested information efficiently by putting articles into different categories.

pdf bib
Coursera Corpus Mining and Multistage Fine-Tuning for Improving Lectures Translation
Haiyue Song | Raj Dabre | Atsushi Fujita | Sadao Kurohashi
Proceedings of the Twelfth Language Resources and Evaluation Conference

Lectures translation is a case of spoken language translation and there is a lack of publicly available parallel corpora for this purpose. To address this, we examine a framework for parallel corpus mining which is a quick and effective way to mine a parallel corpus from publicly available lectures at Coursera. Our approach determines sentence alignments, relying on machine translation and cosine similarity over continuous-space sentence representations. We also show how to use the resulting corpora in a multistage fine-tuning based domain adaptation for high-quality lectures translation. For Japanese–English lectures translation, we extracted parallel data of approximately 40,000 lines and created development and test sets through manual filtering for benchmarking translation performance. We demonstrate that the mined corpus greatly enhances the quality of translation when used in conjunction with out-of-domain parallel corpora via multistage training. This paper also suggests some guidelines to gather and clean corpora, mine parallel sentences, address noise in the mined data, and create high-quality evaluation splits. For the sake of reproducibility, we have released our code for parallel data creation.

pdf bib
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation
Zhuoyuan Mao | Fabien Cromieres | Raj Dabre | Haiyue Song | Sadao Kurohashi
Proceedings of the Twelfth Language Resources and Evaluation Conference

Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual pre-training approaches such as MASS (MAsked Sequence to Sequence) are extremely effective in boosting NMT quality for languages with small parallel corpora. However, they do not account for linguistic information obtained using syntactic analyzers which is known to be invaluable for several Natural Language Processing (NLP) tasks. To this end, we propose JASS, Japanese-specific Sequence to Sequence, as a novel pre-training alternative to MASS for NMT involving Japanese as the source or target language. JASS is joint BMASS (Bunsetsu MASS) and BRSS (Bunsetsu Reordering Sequence to Sequence) pre-training which focuses on Japanese linguistic units called bunsetsus. In our experiments on ASPEC Japanese–English and News Commentary Japanese–Russian translation we show that JASS can give results that are competitive with if not better than those given by MASS. Furthermore, we show for the first time that joint MASS and JASS pre-training gives results that significantly surpass the individual methods indicating their complementary nature. We will release our code, pre-trained models and bunsetsu annotated data as resources for researchers to use in their own NLP tasks.

pdf bib
Pre-training via Leveraging Assisting Languages for Neural Machine Translation
Haiyue Song | Raj Dabre | Zhuoyuan Mao | Fei Cheng | Sadao Kurohashi | Eiichiro Sumita
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

Sequence-to-sequence (S2S) pre-training using large monolingual data is known to improve performance for various S2S NLP tasks. However, large monolingual corpora might not always be available for the languages of interest (LOI). Thus, we propose to exploit monolingual corpora of other languages to complement the scarcity of monolingual corpora for the LOI. We utilize script mapping (Chinese to Japanese) to increase the similarity (number of cognates) between the monolingual corpora of helping languages and LOI. An empirical case study of low-resource Japanese-English neural machine translation (NMT) reveals that leveraging large Chinese and French monolingual corpora can help overcome the shortage of Japanese and English monolingual corpora, respectively, for S2S pre-training. Using only Chinese and French monolingual corpora, we were able to improve Japanese-English translation quality by up to 8.5 BLEU in low-resource scenarios.