Fan Bai


2023

pdf bib
Entity Tracking via Effective Use of Multi-Task Learning Model and Mention-guided Decoding
Janvijay Singh | Fan Bai | Zhen Wang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Cross-task knowledge transfer via multi-task learning has recently made remarkable progress in general NLP tasks. However, entity tracking on the procedural text has not benefited from such knowledge transfer because of its distinct formulation, i.e., tracking the event flow while following structural constraints. State-of-the-art entity tracking approaches either design complicated model architectures or rely on task-specific pre-training to achieve good results. To this end, we propose MeeT, a Multi-task learning-enabled entity Tracking approach, which utilizes knowledge gained from general domain tasks to improve entity tracking. Specifically, MeeT first fine-tunes T5, a pre-trained multi-task learning model, with entity tracking-specialized QA formats, and then employs our customized decoding strategy to satisfy the structural constraints. MeeT achieves state-of-the-art performances on two popular entity tracking datasets, even though it does not require any task-specific architecture design or pre-training.

2022

pdf bib
SynKB: Semantic Search for Synthetic Procedures
Fan Bai | Alan Ritter | Peter Madrid | Dayne Freitag | John Niekrasz
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

In this paper we present SynKB, an open-source, automatically extracted knowledge base of chemical synthesis protocols. Similar to proprietary chemistry databases such as Reaxsys, SynKB allows chemists to retrieve structured knowledge about synthetic procedures. By taking advantage of recent advances in natural language processing for procedural texts, SynKB supports more flexible queries about reaction conditions, and thus has the potential to help chemists search the literature for conditions used in relevant reactions as they design new synthetic routes. Using customized Transformer models to automatically extract information from 6 million synthesis procedures described in U.S. and EU patents, we show that for many queries, SynKB has higher recall than Reaxsys, while maintaining high precision. We plan to make SynKB available as an open-source tool; in contrast, proprietary chemistry databases require costly subscriptions.

pdf bib
Few-Shot Anaphora Resolution in Scientific Protocols via Mixtures of In-Context Experts
Nghia T. Le | Fan Bai | Alan Ritter
Findings of the Association for Computational Linguistics: EMNLP 2022

Anaphora resolution is an important task for information extraction across a range of languages, text genres, and domains, motivating the need for methods that do not require large annotated datasets. In-context learning has emerged as a promising approach, yet there are a number of challenges in applying in-context learning to resolve anaphora. For example, encoding a single in-context demonstration that consists of: an anaphor, a paragraph-length context, and a list of corresponding antecedents, requires conditioning a language model on a long sequence of tokens, limiting the number of demonstrations per prompt. In this paper, we present Mice (Mixtures of In-Context Experts), which we demonstrate is effective for few-shot anaphora resolution in scientific protocols. Given only a handful of training examples, Mice combines the predictions of hundreds of in-context experts, yielding a 30% increase in F1 score over a competitive prompt retrieval baseline. Furthermore, we show Mice can be used to train compact student models without sacrificing performance. As far as we are aware, this is the first work to present experimental results demonstrating the effectiveness of in-context learning on the task of few-shot anaphora resolution in scientific protocols.

2021

pdf bib
Process-Level Representation of Scientific Protocols with Interactive Annotation
Ronen Tamari | Fan Bai | Alan Ritter | Gabriel Stanovsky
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We develop Process Execution Graphs (PEG), a document-level representation of real-world wet lab biochemistry protocols, addressing challenges such as cross-sentence relations, long-range coreference, grounding, and implicit arguments. We manually annotate PEGs in a corpus of complex lab protocols with a novel interactive textual simulator that keeps track of entity traits and semantic constraints during annotation. We use this data to develop graph-prediction models, finding them to be good at entity identification and local relation extraction, while our corpus facilitates further exploration of challenging long-range relations.

pdf bib
Pre-train or Annotate? Domain Adaptation with a Constrained Budget
Fan Bai | Alan Ritter | Wei Xu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent work has demonstrated that pre-training in-domain language models can boost performance when adapting to a new domain. However, the costs associated with pre-training raise an important question: given a fixed budget, what steps should an NLP practitioner take to maximize performance? In this paper, we study domain adaptation under budget constraints, and approach it as a customer choice problem between data annotation and pre-training. Specifically, we measure the annotation cost of three procedural text datasets and the pre-training cost of three in-domain language models. Then we evaluate the utility of different combinations of pre-training and data annotation under varying budget constraints to assess which combination strategy works best. We find that, for small budgets, spending all funds on annotation leads to the best performance; once the budget becomes large enough, a combination of data annotation and in-domain pre-training works more optimally. We therefore suggest that task-specific data annotation should be part of an economical strategy when adapting an NLP model to a new domain.

2019

pdf bib
Structured Minimally Supervised Learning for Neural Relation Extraction
Fan Bai | Alan Ritter
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We present an approach to minimally supervised relation extraction that combines the benefits of learned representations and structured learning, and accurately predicts sentence-level relation mentions given only proposition-level supervision from a KB. By explicitly reasoning about missing data during learning, our approach enables large-scale training of 1D convolutional neural networks while mitigating the issue of label noise inherent in distant supervision. Our approach achieves state-of-the-art results on minimally supervised sentential relation extraction, outperforming a number of baselines, including a competitive approach that uses the attention layer of a purely neural model.