Charu Sharma


2023

pdf bib
JobXMLC: EXtreme Multi-Label Classification of Job Skills with Graph Neural Networks
Nidhi Goyal | Jushaan Kalra | Charu Sharma | Raghava Mutharaju | Niharika Sachdeva | Ponnurangam Kumaraguru
Findings of the Association for Computational Linguistics: EACL 2023

Writing a good job description is an important step in the online recruitment process to hire the best candidates. Most recruiters forget to include some relevant skills in the job description. These missing skills affect the performance of recruitment tasks such as job suggestions, job search, candidate recommendations, etc. Existing approaches are limited to contextual modelling, do not exploit inter-relational structures like job-job and job-skill relationships, and are not scalable. In this paper, we exploit these structural relationships using a graph-based approach. We propose a novel skill prediction framework called JobXMLC, which uses graph neural networks with skill attention to predict missing skills using job descriptions. JobXMLC enables joint learning over a job-skill graph consisting of 22.8K entities (jobs and skills) and 650K relationships. We experiment with real-world recruitment datasets to evaluate our proposed approach. We train JobXMLC on 20,298 job descriptions and 2,548 skills within 30 minutes on a single GPU machine. JobXMLC outperforms the state-of-the-art approaches by 6% in precision and 3% in recall. JobXMLC is 18X faster for training task and up to 634X faster in skill prediction on benchmark datasets enabling JobXMLC to scale up on larger datasets.

2022

pdf bib
An Unsupervised, Geometric and Syntax-aware Quantification of Polysemy
Anmol Goel | Charu Sharma | Ponnurangam Kumaraguru
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Polysemy is the phenomenon where a single word form possesses two or more related senses. It is an extremely ubiquitous part of natural language and analyzing it has sparked rich discussions in the linguistics, psychology and philosophy communities alike. With scarce attention paid to polysemy in computational linguistics, and even scarcer attention toward quantifying polysemy, in this paper, we propose a novel, unsupervised framework to compute and estimate polysemy scores for words in multiple languages. We infuse our proposed quantification with syntactic knowledge in the form of dependency structures. This informs the final polysemy scores of the lexicon motivated by recent linguistic findings that suggest there is an implicit relation between syntax and ambiguity/polysemy. We adopt a graph based approach by computing the discrete Ollivier Ricci curvature on a graph of the contextual nearest neighbors. We test our framework on curated datasets controlling for different sense distributions of words in 3 typologically diverse languages - English, French and Spanish. The effectiveness of our framework is demonstrated by significant correlations of our quantification with expert human annotated language resources like WordNet. We observe a 0.3 point increase in the correlation coefficient as compared to previous quantification studies in English. Our research leverages contextual language models and syntactic structures to empirically support the widely held theoretical linguistic notion that syntax is intricately linked to ambiguity/polysemy.

2019

pdf bib
Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
Deepak Nathani | Jatin Chauhan | Charu Sharma | Manohar Kaul
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention-based feature embedding that captures both entity and relation features in any given entity’s neighborhood. Additionally, we also encapsulate relation clusters and multi-hop relations in our model. Our empirical study offers insights into the efficacy of our attention-based model and we show marked performance gains in comparison to state-of-the-art methods on all datasets.