Bowen Wu


2019

pdf bib
Improving the Robustness of Deep Reading Comprehension Models by Leveraging Syntax Prior
Bowen Wu | Haoyang Huang | Zongsheng Wang | Qihang Feng | Jingsong Yu | Baoxun Wang
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

Despite the remarkable progress on Machine Reading Comprehension (MRC) with the help of open-source datasets, recent studies indicate that most of the current MRC systems unfortunately suffer from weak robustness against adversarial samples. To address this issue, we attempt to take sentence syntax as the leverage in the answer predicting process which previously only takes account of phrase-level semantics. Furthermore, to better utilize the sentence syntax and improve the robustness, we propose a Syntactic Leveraging Network, which is designed to deal with adversarial samples by exploiting the syntactic elements of a question. The experiment results indicate that our method is promising for improving the generalization and robustness of MRC models against the influence of adversarial samples, with performance well-maintained.

2018

pdf bib
LSDSCC: a Large Scale Domain-Specific Conversational Corpus for Response Generation with Diversity Oriented Evaluation Metrics
Zhen Xu | Nan Jiang | Bingquan Liu | Wenge Rong | Bowen Wu | Baoxun Wang | Zhuoran Wang | Xiaolong Wang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

It has been proven that automatic conversational agents can be built up using the Endto-End Neural Response Generation (NRG) framework, and such a data-driven methodology requires a large number of dialog pairs for model training and reasonable evaluation metrics for testing. This paper proposes a Large Scale Domain-Specific Conversational Corpus (LSDSCC) composed of high-quality queryresponse pairs extracted from the domainspecific online forum, with thorough preprocessing and cleansing procedures. Also, a testing set, including multiple diverse responses annotated for each query, is constructed, and on this basis, the metrics for measuring the diversity of generated results are further presented. We evaluate the performances of neural dialog models with the widely applied diversity boosting strategies on the proposed dataset. The experimental results have shown that our proposed corpus can be taken as a new benchmark dataset for the NRG task, and the presented metrics are promising to guide the optimization of NRG models by quantifying the diversity of the generated responses reasonably.

pdf bib
A Prospective-Performance Network to Alleviate Myopia in Beam Search for Response Generation
Zongsheng Wang | Yunzhi Bai | Bowen Wu | Zhen Xu | Zhuoran Wang | Baoxun Wang
Proceedings of the 27th International Conference on Computational Linguistics

Generative dialog models usually adopt beam search as the inference method to generate responses. However, small-width beam search only focuses on the limited current optima. This deficiency named as myopic bias ultimately suppresses the diversity and probability of generated responses. Although increasing the beam width mitigates the myopic bias, it also proportionally slows down the inference efficiency. To alleviate the myopic bias in small-width beam search, this paper proposes a Prospective-Performance Network (PPN) to predict the future reward of the given partially-generated response, and the future reward is defined by the expectation of the partial response appearing in the top-ranked responses given by a larger-width beam search. Enhanced by PPN, the decoder can promote the results with great potential during the beam search phase. The experimental results on both Chinese and English corpora show that our method is promising to increase the quality and diversity of generated responses, with inference efficiency well maintained.

2016

pdf bib
Ranking Responses Oriented to Conversational Relevance in Chat-bots
Bowen Wu | Baoxun Wang | Hui Xue
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

For automatic chatting systems, it is indeed a great challenge to reply the given query considering the conversation history, rather than based on the query only. This paper proposes a deep neural network to address the context-aware response ranking problem by end-to-end learning, so as to help to select conversationally relevant candidate. By combining the multi-column convolutional layer and the recurrent layer, our model is able to model the semantics of the utterance sequence by grasping the semantic clue within the conversation, on the basis of the effective representation for each sentence. Especially, the network utilizes attention pooling to further emphasis the importance of essential words in conversations, thus the representations of contexts tend to be more meaningful and the performance of candidate ranking is notably improved. Meanwhile, due to the adoption of attention pooling, it is possible to visualize the semantic clues. The experimental results on the large amount of conversation data from social media have shown that our approach is promising for quantifying the conversational relevance of responses, and indicated its good potential for building practical IR based chat-bots.