Other Workshops and Events (2018)


Contents


up

pdf (full)
bib (full)
Proceedings of the Fourth International Workshop on Computational Linguistics of Uralic Languages

pdf bib
Proceedings of the Fourth International Workshop on Computational Linguistics of Uralic Languages
Tommi A. Pirinen | Michael Rießler | Jack Rueter | Trond Trosterud | Francis M. Tyers

pdf bib
Dependency Parsing of Code-Switching Data with Cross-Lingual Feature Representations
Niko Partanen | Kyungtae Lim | Michael Rießler | Thierry Poibeau

pdf bib
Building a Finnish SOM-based ontology concept tagger and harvester
Seppo Nyrkkö

pdf bib
Sound-aligned corpus of Udmurt dialectal texts
Timofey Arkhangelskiy | Ekaterina Georgieva

pdf bib
Automatic Generation of Wiktionary Entries for Finno-Ugric Minority Languages
Zsanett Ferenczi | Iván Mittelholcz | Eszter Simon

pdf bib
Development of an Open Source Natural Language Generation Tool for Finnish
Mika Hämäläinen | Jack Rueter

pdf bib
Guessing lexicon entries using finite-state methods
Kimmo Koskenniemi

pdf bib
Tracking Typological Traits of Uralic Languages in Distributed Language Representations
Johannes Bjerva | Isabelle Augenstein

pdf bib
New Baseline in Automatic Speech Recognition for Northern Sámi
Juho Leinonen | Peter Smit | Sámi Virpioja | Mikko Kurimo

pdf bib
Initial Experiments in Data-Driven Morphological Analysis for Finnish
Miikka Silfverberg | Mans Hulden

pdf bib
Towards an open-source universal-dependency treebank for Erzya
Jack Rueter | Francis Tyers

pdf bib
Utilization of Nganasan digital resources: a statistical approach to vowel harmony
László Fejes

pdf bib
Parallel Forms in Estonian Finite State Morphology
Heiki-Jaan Kaalep

pdf bib
Extracting inflectional class assignment in Pite Saami: Nouns, verbs and those pesky adjectives
Joshua Wilbur

pdf bib
Analysing Finnish with word lists: the DDI approach to morphology revisited
Atro Voutilainen | Maria Palolahti


up

bib (full) Proceedings of the Society for Computation in Linguistics (SCiL) 2018

pdf bib
Proceedings of the Society for Computation in Linguistics (SCiL) 2018
Gaja Jarosz | Brendan O’Connor | Joe Pater

pdf bib
Statistical Learning Theory and Linguistic Typology: a Learnability Perspective on OT’s Strict Domination
Émile Enguehard | Edward Flemming | Giorgio Magri

pdf bib
Detecting Language Impairments in Autism: A Computational Analysis of Semi-structured Conversations with Vector Semantics
Adam Goodkind | Michelle Lee | Gary E. Martin | Molly Losh | Klinton Bicknell

pdf bib
Grammar Size and Quantitative Restrictions on Movement
Thomas Graf

pdf bib
Modeling the Decline in English Passivization
Liwen Hou | David Smith

pdf bib
Syntactic Category Learning as Iterative Prototype-Driven Clustering
Jordan Kodner

pdf bib
A bidirectional mapping between English and CNF-based reasoners
Steven Abney

pdf bib
Formal Restrictions On Multiple Tiers
Alëna Aksënova | Sanket Deshmukh

pdf bib
Differentiating Phrase Structure Parsing and Memory Retrieval in the Brain
Shohini Bhattasali | John Hale | Christophe Pallier | Jonathan Brennan | Wen-Ming Luh | R. Nathan Spreng

pdf bib
Modeling the Complexity and Descriptive Adequacy of Construction Grammars
Jonathan Dunn

pdf bib
Decomposing phonological transformations in serial derivations
Andrew Lamont

pdf bib
Phonologically Informed Edit Distance Algorithms for Word Alignment with Low-Resource Languages
Richard T. McCoy | Robert Frank

pdf bib
Conditions on abruptness in a gradient-ascent Maximum Entropy learner
Elliott Moreton

pdf bib
Using Rhetorical Topics for Automatic Summarization
Natalie M. Schrimpf

pdf bib
Sound Analogies with Phoneme Embeddings
Miikka P. Silfverberg | Lingshuang Mao | Mans Hulden

pdf bib
Imdlawn Tashlhiyt Berber Syllabification is Quantifier-Free
Kristina Strother-Garcia

pdf bib
Towards a Formal Description of NPI-licensing Patterns
Mai Ha Vu

pdf bib
The Organization of Lexicons: a Cross-Linguistic Analysis of Monosyllabic Words
Shiying Yang | Chelsea Sanker | Uriel Cohen Priva


up

pdf (full)
bib (full)
Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications

pdf bib
Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications
Joel Tetreault | Jill Burstein | Ekaterina Kochmar | Claudia Leacock | Helen Yannakoudakis

pdf bib
Using exemplar responses for training and evaluating automated speech scoring systems
Anastassia Loukina | Klaus Zechner | James Bruno | Beata Beigman Klebanov

Automated scoring engines are usually trained and evaluated against human scores and compared to the benchmark of human-human agreement. In this paper we compare the performance of an automated speech scoring engine using two corpora: a corpus of almost 700,000 randomly sampled spoken responses with scores assigned by one or two raters during operational scoring, and a corpus of 16,500 exemplar responses with scores reviewed by multiple expert raters. We show that the choice of corpus used for model evaluation has a major effect on estimates of system performance with r varying between 0.64 and 0.80. Surprisingly, this is not the case for the choice of corpus for model training: when the training corpus is sufficiently large, the systems trained on different corpora showed almost identical performance when evaluated on the same corpus. We show that this effect is consistent across several learning algorithms. We conclude that evaluating the model on a corpus of exemplar responses if one is available provides additional evidence about system validity; at the same time, investing effort into creating a corpus of exemplar responses for model training is unlikely to lead to a substantial gain in model performance.

pdf bib
Using Paraphrasing and Memory-Augmented Models to Combat Data Sparsity in Question Interpretation with a Virtual Patient Dialogue System
Lifeng Jin | David King | Amad Hussein | Michael White | Douglas Danforth

When interpreting questions in a virtual patient dialogue system one must inevitably tackle the challenge of a long tail of relatively infrequently asked questions. To make progress on this challenge, we investigate the use of paraphrasing for data augmentation and neural memory-based classification, finding that the two methods work best in combination. In particular, we find that the neural memory-based approach not only outperforms a straight CNN classifier on low frequency questions, but also takes better advantage of the augmented data created by paraphrasing, together yielding a nearly 10% absolute improvement in accuracy on the least frequently asked questions.

pdf bib
Predicting misreadings from gaze in children with reading difficulties
Joachim Bingel | Maria Barrett | Sigrid Klerke

We present the first work on predicting reading mistakes in children with reading difficulties based on eye-tracking data from real-world reading teaching. Our approach employs several linguistic and gaze-based features to inform an ensemble of different classifiers, including multi-task learning models that let us transfer knowledge about individual readers to attain better predictions. Notably, the data we use in this work stems from noisy readings in the wild, outside of controlled lab conditions. Our experiments show that despite the noise and despite the small fraction of misreadings, gaze data improves the performance more than any other feature group and our models achieve good performance. We further show that gaze patterns for misread words do not fully generalize across readers, but that we can transfer some knowledge between readers using multitask learning at least in some cases. Applications of our models include partial automation of reading assessment as well as personalized text simplification.

pdf bib
Automatic Input Enrichment for Selecting Reading Material: An Online Study with English Teachers
Maria Chinkina | Ankita Oswal | Detmar Meurers

Input material at the appropriate level is crucial for language acquisition. Automating the search for such material can systematically and efficiently support teachers in their pedagogical practice. This is the goal of the computational linguistic task of automatic input enrichment (Chinkina & Meurers, 2016): It analyzes and re-ranks a collection of texts in order to prioritize those containing target linguistic forms. In the online study described in the paper, we collected 240 responses from English teachers in order to investigate whether they preferred automatic input enrichment over web search when selecting reading material for class. Participants demonstrated a general preference for the material provided by an automatic input enrichment system. It was also rated significantly higher than the texts retrieved by a standard web search engine with regard to the representation of linguistic forms and equivalent with regard to the relevance of the content to the topic. We discuss the implications of the results for language teaching and consider the potential strands of future research.

pdf bib
Estimating Linguistic Complexity for Science Texts
Farah Nadeem | Mari Ostendorf

Evaluation of text difficulty is important both for downstream tasks like text simplification, and for supporting educators in classrooms. Existing work on automated text complexity analysis uses linear models with engineered knowledge-driven features as inputs. While this offers interpretability, these models have lower accuracy for shorter texts. Traditional readability metrics have the additional drawback of not generalizing to informational texts such as science. We propose a neural approach, training on science and other informational texts, to mitigate both problems. Our results show that neural methods outperform knowledge-based linear models for short texts, and have the capacity to generalize to genres not present in the training data.

pdf bib
Second Language Acquisition Modeling
Burr Settles | Chris Brust | Erin Gustafson | Masato Hagiwara | Nitin Madnani

We present the task of second language acquisition (SLA) modeling. Given a history of errors made by learners of a second language, the task is to predict errors that they are likely to make at arbitrary points in the future. We describe a large corpus of more than 7M words produced by more than 6k learners of English, Spanish, and French using Duolingo, a popular online language-learning app. Then we report on the results of a shared task challenge aimed studying the SLA task via this corpus, which attracted 15 teams and synthesized work from various fields including cognitive science, linguistics, and machine learning.

pdf bib
A Report on the Complex Word Identification Shared Task 2018
Seid Muhie Yimam | Chris Biemann | Shervin Malmasi | Gustavo Paetzold | Lucia Specia | Sanja Štajner | Anaïs Tack | Marcos Zampieri

We report the findings of the second Complex Word Identification (CWI) shared task organized as part of the BEA workshop co-located with NAACL-HLT’2018. The second CWI shared task featured multilingual and multi-genre datasets divided into four tracks: English monolingual, German monolingual, Spanish monolingual, and a multilingual track with a French test set, and two tasks: binary classification and probabilistic classification. A total of 12 teams submitted their results in different task/track combinations and 11 of them wrote system description papers that are referred to in this report and appear in the BEA workshop proceedings.

pdf bib
Towards Single Word Lexical Complexity Prediction
David Alfter | Elena Volodina

In this paper we present work-in-progress where we investigate the usefulness of previously created word lists to the task of single-word lexical complexity analysis and prediction of the complexity level for learners of Swedish as a second language. The word lists used map each word to a single CEFR level, and the task consists of predicting CEFR levels for unseen words. In contrast to previous work on word-level lexical complexity, we experiment with topics as additional features and show that linking words to topics significantly increases accuracy of classification.

pdf bib
COAST - Customizable Online Syllable Enhancement in Texts. A flexible framework for automatically enhancing reading materials
Heiko Holz | Zarah Weiss | Oliver Brehm | Detmar Meurers

This paper presents COAST, a web-based application to easily and automatically enhance syllable structure, word stress, and spacing in texts, that was designed in close collaboration with learning therapists to ensure its practical relevance. Such syllable-enhanced texts are commonly used in learning therapy or private tuition to promote the recognition of syllables in order to improve reading and writing skills. In a state of the art solutions for automatic syllable enhancement, we put special emphasis on syllable stress and support specific marking of the primary syllable stress in words. Core features of our tool are i) a highly customizable text enhancement and template functionality, and ii) a novel crowd-sourcing mechanism that we employ to address the issue of data sparsity in language resources. We successfully tested COAST with real-life practitioners in a series of user tests validating the concept of our framework.

pdf bib
Annotating picture description task responses for content analysis
Levi King | Markus Dickinson

Given that all users of a language can be creative in their language usage, the overarching goal of this work is to investigate issues of variability and acceptability in written text, for both non-native speakers (NNSs) and native speakers (NSs). We control for meaning by collecting a dataset of picture description task (PDT) responses from a number of NSs and NNSs, and we define and annotate a handful of features pertaining to form and meaning, to capture the multi-dimensional ways in which responses can vary and can be acceptable. By examining the decisions made in this corpus development, we highlight the questions facing anyone working with learner language properties like variability, acceptability and native-likeness. We find reliable inter-annotator agreement, though disagreements point to difficult areas for establishing a link between form and meaning.

pdf bib
Annotating Student Talk in Text-based Classroom Discussions
Luca Lugini | Diane Litman | Amanda Godley | Christopher Olshefski

Classroom discussions in English Language Arts have a positive effect on students’ reading, writing and reasoning skills. Although prior work has largely focused on teacher talk and student-teacher interactions, we focus on three theoretically-motivated aspects of high-quality student talk: argumentation, specificity, and knowledge domain. We introduce an annotation scheme, then show that the scheme can be used to produce reliable annotations and that the annotations are predictive of discussion quality. We also highlight opportunities provided by our scheme for education and natural language processing research.

pdf bib
Toward Automatically Measuring Learner Ability from Human-Machine Dialog Interactions using Novel Psychometric Models
Vikram Ramanarayanan | Michelle LaMar

While dialog systems have been widely deployed for computer-assisted language learning (CALL) and formative assessment systems in recent years, relatively limited work has been done with respect to the psychometrics and validity of these technologies in evaluating and providing feedback regarding student learning and conversational ability. This paper formulates a Markov decision process based measurement model, and applies it to text chat data collected from crowdsourced native and non-native English language speakers interacting with an automated dialog agent. We investigate how well the model measures speaker conversational ability, and find that it effectively captures the differences in how native and non-native speakers of English accomplish the dialog task. Such models could have important implications for CALL systems of the future that effectively combine dialog management with measurement of learner conversational ability in real-time.

pdf bib
Generating Feedback for English Foreign Language Exercises
Björn Rudzewitz | Ramon Ziai | Kordula De Kuthy | Verena Möller | Florian Nuxoll | Detmar Meurers

While immediate feedback on learner language is often discussed in the Second Language Acquisition literature (e.g., Mackey 2006), few systems used in real-life educational settings provide helpful, metalinguistic feedback to learners. In this paper, we present a novel approach leveraging task information to generate the expected range of well-formed and ill-formed variability in learner answers along with the required diagnosis and feedback. We combine this offline generation approach with an online component that matches the actual student answers against the pre-computed hypotheses. The results obtained for a set of 33 thousand answers of 7th grade German high school students learning English show that the approach successfully covers frequent answer patterns. At the same time, paraphrases and content errors require a more flexible alignment approach, for which we are planning to complement the method with the CoMiC approach successfully used for the analysis of reading comprehension answers (Meurers et al., 2011).

pdf bib
NT2Lex: A CEFR-Graded Lexical Resource for Dutch as a Foreign Language Linked to Open Dutch WordNet
Anaïs Tack | Thomas François | Piet Desmet | Cédrick Fairon

In this paper, we introduce NT2Lex, a novel lexical resource for Dutch as a foreign language (NT2) which includes frequency distributions of 17,743 words and expressions attested in expert-written textbook texts and readers graded along the scale of the Common European Framework of Reference (CEFR). In essence, the lexicon informs us about what kind of vocabulary should be understood when reading Dutch as a non-native reader at a particular proficiency level. The main novelty of the resource with respect to the previously developed CEFR-graded lexicons concerns the introduction of corpus-based evidence for L2 word sense complexity through the linkage to Open Dutch WordNet (Postma et al., 2016). The resource thus contains, on top of the lemmatised and part-of-speech tagged lexical entries, a total of 11,999 unique word senses and 8,934 distinct synsets.

pdf bib
Experiments with Universal CEFR Classification
Sowmya Vajjala | Taraka Rama

The Common European Framework of Reference (CEFR) guidelines describe language proficiency of learners on a scale of 6 levels. While the description of CEFR guidelines is generic across languages, the development of automated proficiency classification systems for different languages follow different approaches. In this paper, we explore universal CEFR classification using domain-specific and domain-agnostic, theory-guided as well as data-driven features. We report the results of our preliminary experiments in monolingual, cross-lingual, and multilingual classification with three languages: German, Czech, and Italian. Our results show that both monolingual and multilingual models achieve similar performance, and cross-lingual classification yields lower, but comparable results to monolingual classification.

pdf bib
Chengyu Cloze Test
Zhiying Jiang | Boliang Zhang | Lifu Huang | Heng Ji

We present a neural recommendation model for Chengyu, which is a special type of Chinese idiom. Given a query, which is a sentence with an empty slot where the Chengyu is taken out, our model will recommend the best Chengyu candidate that best fits the slot context. The main challenge lies in that the literal meaning of a Chengyu is usually very different from it’s figurative meaning. We propose a new neural approach to leverage the definition of each Chengyu and incorporate it as background knowledge. Experiments on both Chengyu cloze test and coherence checking in college entrance exams show that our system achieves 89.5% accuracy on cloze test and outperforms human subjects who attended competitive universities in China. We will make all of our data sets and resources publicly available as a new benchmark for research purposes.

pdf bib
LaSTUS/TALN at Complex Word Identification (CWI) 2018 Shared Task
Ahmed AbuRa’ed | Horacio Saggion

This paper presents the participation of the LaSTUS/TALN team in the Complex Word Identification (CWI) Shared Task 2018 in the English monolingual track . The purpose of the task was to determine if a word in a given sentence can be judged as complex or not by a certain target audience. For the English track, task organizers provided a training and a development datasets of 27,299 and 3,328 words respectively together with the sentence in which each word occurs. The words were judged as complex or not by 20 human evaluators; ten of whom are natives. We submitted two systems: one system modeled each word to evaluate as a numeric vector populated with a set of lexical, semantic and contextual features while the other system relies on a word embedding representation and a distance metric. We trained two separate classifiers to automatically decide if each word is complex or not. We submitted six runs, two for each of the three subsets of the English monolingual CWI track.

pdf bib
Cross-lingual complex word identification with multitask learning
Joachim Bingel | Johannes Bjerva

We approach the 2018 Shared Task on Complex Word Identification by leveraging a cross-lingual multitask learning approach. Our method is highly language agnostic, as evidenced by the ability of our system to generalize across languages, including languages for which we have no training data. In the shared task, this is the case for French, for which our system achieves the best performance. We further provide a qualitative and quantitative analysis of which words pose problems for our system.

pdf bib
UnibucKernel: A kernel-based learning method for complex word identification
Andrei Butnaru | Radu Tudor Ionescu

In this paper, we present a kernel-based learning approach for the 2018 Complex Word Identification (CWI) Shared Task. Our approach is based on combining multiple low-level features, such as character n-grams, with high-level semantic features that are either automatically learned using word embeddings or extracted from a lexical knowledge base, namely WordNet. After feature extraction, we employ a kernel method for the learning phase. The feature matrix is first transformed into a normalized kernel matrix. For the binary classification task (simple versus complex), we employ Support Vector Machines. For the regression task, in which we have to predict the complexity level of a word (a word is more complex if it is labeled as complex by more annotators), we employ v-Support Vector Regression. We applied our approach only on the three English data sets containing documents from Wikipedia, WikiNews and News domains. Our best result during the competition was the third place on the English Wikipedia data set. However, in this paper, we also report better post-competition results.

pdf bib
CAMB at CWI Shared Task 2018: Complex Word Identification with Ensemble-Based Voting
Sian Gooding | Ekaterina Kochmar

This paper presents the winning systems we submitted to the Complex Word Identification Shared Task 2018. We describe our best performing systems’ implementations and discuss our key findings from this research. Our best-performing systems achieve an F1 score of 0.8792 on the NEWS, 0.8430 on the WIKINEWS and 0.8115 on the WIKIPEDIA test sets in the monolingual English binary classification track, and a mean absolute error of 0.0558 on the NEWS, 0.0674 on the WIKINEWS and 0.0739 on the WIKIPEDIA test sets in the probabilistic track.

pdf bib
Complex Word Identification Based on Frequency in a Learner Corpus
Tomoyuki Kajiwara | Mamoru Komachi

We introduce the TMU systems for the Complex Word Identification (CWI) Shared Task 2018. TMU systems use random forest classifiers and regressors whose features are the number of characters, the number of words, and the frequency of target words in various corpora. Our simple systems performed best on 5 tracks out of 12 tracks. Our ablation analysis revealed the usefulness of a learner corpus for CWI task.

pdf bib
The Whole is Greater than the Sum of its Parts: Towards the Effectiveness of Voting Ensemble Classifiers for Complex Word Identification
Nikhil Wani | Sandeep Mathias | Jayashree Aanand Gajjam | Pushpak Bhattacharyya

In this paper, we present an effective system using voting ensemble classifiers to detect contextually complex words for non-native English speakers. To make the final decision, we channel a set of eight calibrated classifiers based on lexical, size and vocabulary features and train our model with annotated datasets collected from a mixture of native and non-native speakers. Thereafter, we test our system on three datasets namely News, WikiNews, and Wikipedia and report competitive results with an F1-Score ranging between 0.777 to 0.855 for each of the datasets. Our system outperforms multiple other models and falls within 0.042 to 0.026 percent of the best-performing model’s score in the shared task.

pdf bib
Grotoco@SLAM: Second Language Acquisition Modeling with Simple Features, Learners and Task-wise Models
Sigrid Klerke | Héctor Martínez Alonso | Barbara Plank

We present our submission to the 2018 Duolingo Shared Task on Second Language Acquisition Modeling (SLAM). We focus on evaluating a range of features for the task, including user-derived measures, while examining how far we can get with a simple linear classifier. Our analysis reveals that errors differ per exercise format, which motivates our final and best-performing system: a task-wise (per exercise-format) model.

pdf bib
Context Based Approach for Second Language Acquisition
Nihal V. Nayak | Arjun R. Rao

SLAM 2018 focuses on predicting a student’s mistake while using the Duolingo application. In this paper, we describe the system we developed for this shared task. Our system uses a logistic regression model to predict the likelihood of a student making a mistake while answering an exercise on Duolingo in all three language tracks - English/Spanish (en/es), Spanish/English (es/en) and French/English (fr/en). We conduct an ablation study with several features during the development of this system and discover that context based features plays a major role in language acquisition modeling. Our model beats Duolingo’s baseline scores in all three language tracks (AUROC scores for en/es = 0.821, es/en = 0.790 and fr/en = 0.812). Our work makes a case for providing favourable textual context for students while learning second language.

pdf bib
Second Language Acquisition Modeling: An Ensemble Approach
Anton Osika | Susanna Nilsson | Andrii Sydorchuk | Faruk Sahin | Anders Huss

Accurate prediction of students’ knowledge is a fundamental building block of personalized learning systems. Here, we propose an ensemble model to predict student knowledge gaps. Applying our approach to student trace data from the online educational platform Duolingo we achieved highest score on all three datasets in the 2018 Shared Task on Second Language Acquisition Modeling. We describe our model and discuss relevance of the task compared to how it would be setup in a production environment for personalized education.

pdf bib
Modeling Second-Language Learning from a Psychological Perspective
Alexander Rich | Pamela Osborn Popp | David Halpern | Anselm Rothe | Todd Gureckis

Psychological research on learning and memory has tended to emphasize small-scale laboratory studies. However, large datasets of people using educational software provide opportunities to explore these issues from a new perspective. In this paper we describe our approach to the Duolingo Second Language Acquisition Modeling (SLAM) competition which was run in early 2018. We used a well-known class of algorithms (gradient boosted decision trees), with features partially informed by theories from the psychological literature. After detailing our modeling approach and a number of supplementary simulations, we reflect on the degree to which psychological theory aided the model, and the potential for cognitive science and predictive modeling competitions to gain from each other.

pdf bib
A Memory-Sensitive Classification Model of Errors in Early Second Language Learning
Brendan Tomoschuk | Jarrett Lovelett

In this paper, we explore a variety of linguistic and cognitive features to better understand second language acquisition in early users of the language learning app Duolingo. With these features, we trained a random forest classifier to predict errors in early learners of French, Spanish, and English. Of particular note was our finding that mean and variance in error for each user and token can be a memory efficient replacement for their respective dummy-encoded categorical variables. At test, these models improved over the baseline model with AUROC values of 0.803 for English, 0.823 for French, and 0.829 for Spanish.

pdf bib
Annotation and Classification of Sentence-level Revision Improvement
Tazin Afrin | Diane Litman

Studies of writing revisions rarely focus on revision quality. To address this issue, we introduce a corpus of between-draft revisions of student argumentative essays, annotated as to whether each revision improves essay quality. We demonstrate a potential usage of our annotations by developing a machine learning model to predict revision improvement. With the goal of expanding training data, we also extract revisions from a dataset edited by expert proofreaders. Our results indicate that blending expert and non-expert revisions increases model performance, with expert data particularly important for predicting low-quality revisions.

pdf bib
Language Model Based Grammatical Error Correction without Annotated Training Data
Christopher Bryant | Ted Briscoe

Since the end of the CoNLL-2014 shared task on grammatical error correction (GEC), research into language model (LM) based approaches to GEC has largely stagnated. In this paper, we re-examine LMs in GEC and show that it is entirely possible to build a simple system that not only requires minimal annotated data (∼1000 sentences), but is also fairly competitive with several state-of-the-art systems. This approach should be of particular interest for languages where very little annotated training data exists, although we also hope to use it as a baseline to motivate future research.

pdf bib
A Semantic Role-based Approach to Open-Domain Automatic Question Generation
Michael Flor | Brian Riordan

We present a novel rule-based system for automatic generation of factual questions from sentences, using semantic role labeling (SRL) as the main form of text analysis. The system is capable of generating both wh-questions and yes/no questions from the same semantic analysis. We present an extensive evaluation of the system and compare it to a recent neural network architecture for question generation. The SRL-based system outperforms the neural system in both average quality and variety of generated questions.

pdf bib
Automated Content Analysis: A Case Study of Computer Science Student Summaries
Yanjun Gao | Patricia M. Davies | Rebecca J. Passonneau

Technology is transforming Higher Education learning and teaching. This paper reports on a project to examine how and why automated content analysis could be used to assess precis writing by university students. We examine the case of one hundred and twenty-two summaries written by computer science freshmen. The texts, which had been hand scored using a teacher-designed rubric, were autoscored using the Natural Language Processing software, PyrEval. Pearson’s correlation coefficient and Spearman rank correlation were used to analyze the relationship between the teacher score and the PyrEval score for each summary. Three content models automatically constructed by PyrEval from different sets of human reference summaries led to consistent correlations, showing that the approach is reliable. Also observed was that, in cases where the focus of student assessment centers on formative feedback, categorizing the PyrEval scores by examining the average and standard deviations could lead to novel interpretations of their relationships. It is suggested that this project has implications for the ways in which automated content analysis could be used to help university students improve their summarization skills.

pdf bib
Toward Data-Driven Tutorial Question Answering with Deep Learning Conversational Models
Mayank Kulkarni | Kristy Boyer

There has been an increase in popularity of data-driven question answering systems given their recent success. This pa-per explores the possibility of building a tutorial question answering system for Java programming from data sampled from a community-based question answering forum. This paper reports on the creation of a dataset that could support building such a tutorial question answering system and discusses the methodology to create the 106,386 question strong dataset. We investigate how retrieval-based and generative models perform on the given dataset. The work also investigates the usefulness of using hybrid approaches such as combining retrieval-based and generative models. The results indicate that building data-driven tutorial systems using community-based question answering forums holds significant promise.

pdf bib
Distractor Generation for Multiple Choice Questions Using Learning to Rank
Chen Liang | Xiao Yang | Neisarg Dave | Drew Wham | Bart Pursel | C. Lee Giles

We investigate how machine learning models, specifically ranking models, can be used to select useful distractors for multiple choice questions. Our proposed models can learn to select distractors that resemble those in actual exam questions, which is different from most existing unsupervised ontology-based and similarity-based methods. We empirically study feature-based and neural net (NN) based ranking models with experiments on the recently released SciQ dataset and our MCQL dataset. Experimental results show that feature-based ensemble learning methods (random forest and LambdaMART) outperform both the NN-based method and unsupervised baselines. These two datasets can also be used as benchmarks for distractor generation.

pdf bib
A Portuguese Native Language Identification Dataset
Iria del Río Gayo | Marcos Zampieri | Shervin Malmasi

In this paper we present NLI-PT, the first Portuguese dataset compiled for Native Language Identification (NLI), the task of identifying an author’s first language based on their second language writing. The dataset includes 1,868 student essays written by learners of European Portuguese, native speakers of the following L1s: Chinese, English, Spanish, German, Russian, French, Japanese, Italian, Dutch, Tetum, Arabic, Polish, Korean, Romanian, and Swedish. NLI-PT includes the original student text and four different types of annotation: POS, fine-grained POS, constituency parses, and dependency parses. NLI-PT can be used not only in NLI but also in research on several topics in the field of Second Language Acquisition and educational NLP. We discuss possible applications of this dataset and present the results obtained for the first lexical baseline system for Portuguese NLI.

pdf bib
OneStopEnglish corpus: A new corpus for automatic readability assessment and text simplification
Sowmya Vajjala | Ivana Lučić

This paper describes the collection and compilation of the OneStopEnglish corpus of texts written at three reading levels, and demonstrates its usefulness for through two applications - automatic readability assessment and automatic text simplification. The corpus consists of 189 texts, each in three versions (567 in total). The corpus is now freely available under a CC by-SA 4.0 license and we hope that it would foster further research on the topics of readability assessment and text simplification.

pdf bib
The Effect of Adding Authorship Knowledge in Automated Text Scoring
Meng Zhang | Xie Chen | Ronan Cummins | Øistein E. Andersen | Ted Briscoe

Some language exams have multiple writing tasks. When a learner writes multiple texts in a language exam, it is not surprising that the quality of these texts tends to be similar, and the existing automated text scoring (ATS) systems do not explicitly model this similarity. In this paper, we suggest that it could be useful to include the other texts written by this learner in the same exam as extra references in an ATS system. We propose various approaches of fusing information from multiple tasks and pass this authorship knowledge into our ATS model on six different datasets. We show that this can positively affect the model performance at a global level.

pdf bib
SB@GU at the Complex Word Identification 2018 Shared Task
David Alfter | Ildikó Pilán

In this paper, we describe our experiments for the Shared Task on Complex Word Identification (CWI) 2018 (Yimam et al., 2018), hosted by the 13th Workshop on Innovative Use of NLP for Building Educational Applications (BEA) at NAACL 2018. Our system for English builds on previous work for Swedish concerning the classification of words into proficiency levels. We investigate different features for English and compare their usefulness using feature selection methods. For the German, Spanish and French data we use simple systems based on character n-gram models and show that sometimes simple models achieve comparable results to fully feature-engineered systems.

pdf bib
Complex Word Identification: Convolutional Neural Network vs. Feature Engineering
Segun Taofeek Aroyehun | Jason Angel | Daniel Alejandro Pérez Alvarez | Alexander Gelbukh

We describe the systems of NLP-CIC team that participated in the Complex Word Identification (CWI) 2018 shared task. The shared task aimed to benchmark approaches for identifying complex words in English and other languages from the perspective of non-native speakers. Our goal is to compare two approaches: feature engineering and a deep neural network. Both approaches achieved comparable performance on the English test set. We demonstrated the flexibility of the deep-learning approach by using the same deep neural network setup in the Spanish track. Our systems achieved competitive results: all our systems were within 0.01 of the system with the best macro-F1 score on the test sets except on Wikipedia test set, on which our best system is 0.04 below the best macro-F1 score.

pdf bib
Deep Learning Architecture for Complex Word Identification
Dirk De Hertog | Anaïs Tack

We describe a system for the CWI-task that includes information on 5 aspects of the (complex) lexical item, namely distributional information of the item itself, morphological structure, psychological measures, corpus-counts and topical information. We constructed a deep learning architecture that combines those features and apply it to the probabilistic and binary classification task for all English sets and Spanish. We achieved reasonable performance on all sets with best performances seen on the probabilistic task, particularly on the English news set (MAE 0.054 and F1-score of 0.872). An analysis of the results shows that reasonable performance can be achieved with a single architecture without any domain-specific tweaking of the parameter settings and that distributional features capture almost all of the information also found in hand-crafted features.

pdf bib
NILC at CWI 2018: Exploring Feature Engineering and Feature Learning
Nathan Hartmann | Leandro Borges dos Santos

This paper describes the results of NILC team at CWI 2018. We developed solutions following three approaches: (i) a feature engineering method using lexical, n-gram and psycholinguistic features, (ii) a shallow neural network method using only word embeddings, and (iii) a Long Short-Term Memory (LSTM) language model, which is pre-trained on a large text corpus to produce a contextualized word vector. The feature engineering method obtained our best results for the classification task and the LSTM model achieved the best results for the probabilistic classification task. Our results show that deep neural networks are able to perform as well as traditional machine learning methods using manually engineered features for the task of complex word identification in English.

pdf bib
Complex Word Identification Using Character n-grams
Maja Popović

This paper investigates the use of character n-gram frequencies for identifying complex words in English, German and Spanish texts. The approach is based on the assumption that complex words are likely to contain different character sequences than simple words. The multinomial Naive Bayes classifier was used with n-grams of different lengths as features, and the best results were obtained for the combination of 2-grams and 4-grams. This variant was submitted to the Complex Word Identification Shared Task 2018 for all texts and achieved F-scores between 70% and 83%. The system was ranked in the middle range for all English texts, as third of fourteen submissions for German, and as tenth of seventeen submissions for Spanish. The method is not very convenient for the cross-language task, achieving only 59% on the French text.

pdf bib
Predicting Second Language Learner Successes and Mistakes by Means of Conjunctive Features
Yves Bestgen

This paper describes the system developed by the Centre for English Corpus Linguistics for the 2018 Duolingo SLAM challenge. It aimed at predicting the successes and mistakes of second language learners on each of the words that compose the exercises they answered. Its main characteristic is to include conjunctive features, built by combining word ngrams with metadata about the user and the exercise. It achieved a relatively good performance, ranking fifth out of 15 systems. Complementary analyses carried out to gauge the contribution of the different sets of features to the performance confirmed the usefulness of the conjunctive features for the SLAM task.

pdf bib
Feature Engineering for Second Language Acquisition Modeling
Guanliang Chen | Claudia Hauff | Geert-Jan Houben

Knowledge tracing serves as a keystone in delivering personalized education. However, few works attempted to model students’ knowledge state in the setting of Second Language Acquisition. The Duolingo Shared Task on Second Language Acquisition Modeling provides students’ trace data that we extensively analyze and engineer features from for the task of predicting whether a student will correctly solve a vocabulary exercise. Our analyses of students’ learning traces reveal that factors like exercise format and engagement impact their exercise performance to a large extent. Overall, we extracted 23 different features as input to a Gradient Tree Boosting framework, which resulted in an AUC score of between 0.80 and 0.82 on the official test set.

pdf bib
TMU System for SLAM-2018
Masahiro Kaneko | Tomoyuki Kajiwara | Mamoru Komachi

We introduce the TMU systems for the second language acquisition modeling shared task 2018 (Settles et al., 2018). To model learner error patterns, it is necessary to maintain a considerable amount of information regarding the type of exercises learners have been learning in the past and the manner in which they answered them. Tracking an enormous learner’s learning history and their correct and mistaken answers is essential to predict the learner’s future mistakes. Therefore, we propose a model which tracks the learner’s learning history efficiently. Our systems ranked fourth in the English and Spanish subtasks, and fifth in the French subtask.

pdf bib
Deep Factorization Machines for Knowledge Tracing
Jill-Jênn Vie

This paper introduces our solution to the 2018 Duolingo Shared Task on Second Language Acquisition Modeling (SLAM). We used deep factorization machines, a wide and deep learning model of pairwise relationships between users, items, skills, and other entities considered. Our solution (AUC 0.815) hopefully managed to beat the logistic regression baseline (AUC 0.774) but not the top performing model (AUC 0.861) and reveals interesting strategies to build upon item response theory models.

pdf bib
CLUF: a Neural Model for Second Language Acquisition Modeling
Shuyao Xu | Jin Chen | Long Qin

Second Language Acquisition Modeling is the task to predict whether a second language learner would respond correctly in future exercises based on their learning history. In this paper, we propose a neural network based system to utilize rich contextual, linguistic and user information. Our neural model consists of a Context encoder, a Linguistic feature encoder, a User information encoder and a Format information encoder (CLUF). Furthermore, a decoder is introduced to combine such encoded features and make final predictions. Our system ranked in first place in the English track and second place in the Spanish and French track with an AUROC score of 0.861, 0.835 and 0.854 respectively.

pdf bib
Neural sequence modelling for learner error prediction
Zheng Yuan

This paper describes our use of two recurrent neural network sequence models: sequence labelling and sequence-to-sequence models, for the prediction of future learner errors in our submission to the 2018 Duolingo Shared Task on Second Language Acquisition Modeling (SLAM). We show that these two models capture complementary information as combining them improves performance. Furthermore, the same network architecture and group of features can be used directly to build competitive prediction models in all three language tracks, demonstrating that our approach generalises well across languages.

pdf bib
Automatic Distractor Suggestion for Multiple-Choice Tests Using Concept Embeddings and Information Retrieval
Le An Ha | Victoria Yaneva

Developing plausible distractors (wrong answer options) when writing multiple-choice questions has been described as one of the most challenging and time-consuming parts of the item-writing process. In this paper we propose a fully automatic method for generating distractor suggestions for multiple-choice questions used in high-stakes medical exams. The system uses a question stem and the correct answer as an input and produces a list of suggested distractors ranked based on their similarity to the stem and the correct answer. To do this we use a novel approach of combining concept embeddings with information retrieval methods. We frame the evaluation as a prediction task where we aim to “predict” the human-produced distractors used in large sets of medical questions, i.e. if a distractor generated by our system is good enough it is likely to feature among the list of distractors produced by the human item-writers. The results reveal that combining concept embeddings with information retrieval approaches significantly improves the generation of plausible distractors and enables us to match around 1 in 5 of the human-produced distractors. The approach proposed in this paper is generalisable to all scenarios where the distractors refer to concepts.

pdf bib
Co-Attention Based Neural Network for Source-Dependent Essay Scoring
Haoran Zhang | Diane Litman

This paper presents an investigation of using a co-attention based neural network for source-dependent essay scoring. We use a co-attention mechanism to help the model learn the importance of each part of the essay more accurately. Also, this paper shows that the co-attention based neural network model provides reliable score prediction of source-dependent responses. We evaluate our model on two source-dependent response corpora. Results show that our model outperforms the baseline on both corpora. We also show that the attention of the model is similar to the expert opinions with examples.

pdf bib
Cross-Lingual Content Scoring
Andrea Horbach | Sebastian Stennmanns | Torsten Zesch

We investigate the feasibility of cross-lingual content scoring, a scenario where training and test data in an automatic scoring task are from two different languages. Cross-lingual scoring can contribute to educational equality by allowing answers in multiple languages. Training a model in one language and applying it to another language might also help to overcome data sparsity issues by re-using trained models from other languages. As there is no suitable dataset available for this new task, we create a comparable bi-lingual corpus by extending the English ASAP dataset with German answers. Our experiments with cross-lingual scoring based on machine-translating either training or test data show a considerable drop in scoring quality.

up

pdf (full)
bib (full)
Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic

pdf bib
Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic
Kate Loveys | Kate Niederhoffer | Emily Prud’hommeaux | Rebecca Resnik | Philip Resnik

pdf bib
What type of happiness are you looking for? - A closer look at detecting mental health from language
Alina Arseniev-Koehler | Sharon Mozgai | Stefan Scherer

Computational models to detect mental illnesses from text and speech could enhance our understanding of mental health while offering opportunities for early detection and intervention. However, these models are often disconnected from the lived experience of depression and the larger diagnostic debates in mental health. This article investigates these disconnects, primarily focusing on the labels used to diagnose depression, how these labels are computationally represented, and the performance metrics used to evaluate computational models. We also consider how medical instruments used to measure depression, such as the Patient Health Questionnaire (PHQ), contribute to these disconnects. To illustrate our points, we incorporate mixed-methods analyses of 698 interviews on emotional health, which are coupled with self-report PHQ screens for depression. We propose possible strategies to bridge these gaps between modern psychiatric understandings of depression, lay experience of depression, and computational representation.

pdf bib
A Linguistically-Informed Fusion Approach for Multimodal Depression Detection
Michelle Morales | Stefan Scherer | Rivka Levitan

Automated depression detection is inherently a multimodal problem. Therefore, it is critical that researchers investigate fusion techniques for multimodal design. This paper presents the first-ever comprehensive study of fusion techniques for depression detection. In addition, we present novel linguistically-motivated fusion techniques, which we find outperform existing approaches.

pdf bib
Expert, Crowdsourced, and Machine Assessment of Suicide Risk via Online Postings
Han-Chin Shing | Suraj Nair | Ayah Zirikly | Meir Friedenberg | Hal Daumé III | Philip Resnik

We report on the creation of a dataset for studying assessment of suicide risk via online postings in Reddit. Evaluation of risk-level annotations by experts yields what is, to our knowledge, the first demonstration of reliability in risk assessment by clinicians based on social media postings. We also introduce and demonstrate the value of a new, detailed rubric for assessing suicide risk, compare crowdsourced with expert performance, and present baseline predictive modeling experiments using the new dataset, which will be made available to researchers through the American Association of Suicidology.

pdf bib
CLPsych 2018 Shared Task: Predicting Current and Future Psychological Health from Childhood Essays
Veronica Lynn | Alissa Goodman | Kate Niederhoffer | Kate Loveys | Philip Resnik | H. Andrew Schwartz

We describe the shared task for the CLPsych 2018 workshop, which focused on predicting current and future psychological health from an essay authored in childhood. Language-based predictions of a person’s current health have the potential to supplement traditional psychological assessment such as questionnaires, improving intake risk measurement and monitoring. Predictions of future psychological health can aid with both early detection and the development of preventative care. Research into the mental health trajectory of people, beginning from their childhood, has thus far been an area of little work within the NLP community. This shared task represents one of the first attempts to evaluate the use of early language to predict future health; this has the potential to support a wide variety of clinical health care tasks, from early assessment of lifetime risk for mental health problems, to optimal timing for targeted interventions aimed at both prevention and treatment.

pdf bib
An Approach to the CLPsych 2018 Shared Task Using Top-Down Text Representation and Simple Bottom-Up Model Selection
Micah Iserman | Molly Ireland | Andrew Littlefield | Tyler Davis | Sage Maliepaard

The Computational Linguistics and Clinical Psychology (CLPsych) 2018 Shared Task asked teams to predict cross-sectional indices of anxiety and distress, and longitudinal indices of psychological distress from a subsample of the National Child Development Study, started in the United Kingdom in 1958. Teams aimed to predict mental health outcomes from essays written by 11-year-olds about what they believed their lives would be like at age 25. In the hopes of producing results that could be easily disseminated and applied, we used largely theory-based dictionaries to process the texts, and a simple data-driven approach to model selection. This approach yielded only modest results in terms of out-of-sample accuracy, but most of the category-level findings are interpretable and consistent with existing literature on psychological distress, anxiety, and depression.

pdf bib
Using contextual information for automatic triage of posts in a peer-support forum
Edgar Altszyler | Ariel J. Berenstein | David Milne | Rafael A. Calvo | Diego Fernandez Slezak

Mental health forums are online spaces where people can share their experiences anonymously and get peer support. These forums, require the supervision of moderators to provide support in delicate cases, such as posts expressing suicide ideation. The large increase in the number of forum users makes the task of the moderators unmanageable without the help of automatic triage systems. In the present paper, we present a Machine Learning approach for the triage of posts. Most approaches in the literature focus on the content of the posts, but only a few authors take advantage of features extracted from the context in which they appear. Our approach consists of the development and implementation of a large variety of new features from both, the content and the context of posts, such as previous messages, interaction with other users and author’s history. Our method has competed in the CLPsych 2017 Shared Task, obtaining the first place for several of the subtasks. Moreover, we also found that models that take advantage of post context improve significantly its performance in the detection of flagged posts (posts that require moderators attention), as well as those that focus on post content outperforms in the detection of most urgent events.

pdf bib
Hierarchical neural model with attention mechanisms for the classification of social media text related to mental health
Julia Ive | George Gkotsis | Rina Dutta | Robert Stewart | Sumithra Velupillai

Mental health problems represent a major public health challenge. Automated analysis of text related to mental health is aimed to help medical decision-making, public health policies and to improve health care. Such analysis may involve text classification. Traditionally, automated classification has been performed mainly using machine learning methods involving costly feature engineering. Recently, the performance of those methods has been dramatically improved by neural methods. However, mainly Convolutional neural networks (CNNs) have been explored. In this paper, we apply a hierarchical Recurrent neural network (RNN) architecture with an attention mechanism on social media data related to mental health. We show that this architecture improves overall classification results as compared to previously reported results on the same data. Benefitting from the attention mechanism, it can also efficiently select text elements crucial for classification decisions, which can also be used for in-depth analysis.

pdf bib
Cross-cultural differences in language markers of depression online
Kate Loveys | Jonathan Torrez | Alex Fine | Glen Moriarty | Glen Coppersmith

Depression is a global mental health condition that affects all cultures. Despite this, the way depression is expressed varies by culture. Uptake of machine learning technology for diagnosing mental health conditions means that increasingly more depression classifiers are created from online language data. Yet, culture is rarely considered as a factor affecting online language in this literature. This study explores cultural differences in online language data of users with depression. Written language data from 1,593 users with self-reported depression from the online peer support community 7 Cups of Tea was analyzed using the Linguistic Inquiry and Word Count (LIWC), topic modeling, data visualization, and other techniques. We compared the language of users identifying as White, Black or African American, Hispanic or Latino, and Asian or Pacific Islander. Exploratory analyses revealed cross-cultural differences in depression expression in online language data, particularly in relation to emotion expression, cognition, and functioning. The results have important implications for avoiding depression misclassification from machine-driven assessments when used in a clinical setting, and for avoiding inadvertent cultural biases in this line of research more broadly.

pdf bib
Deep Learning for Depression Detection of Twitter Users
Ahmed Husseini Orabi | Prasadith Buddhitha | Mahmoud Husseini Orabi | Diana Inkpen

Mental illness detection in social media can be considered a complex task, mainly due to the complicated nature of mental disorders. In recent years, this research area has started to evolve with the continuous increase in popularity of social media platforms that became an integral part of people’s life. This close relationship between social media platforms and their users has made these platforms to reflect the users’ personal life with different limitations. In such an environment, researchers are presented with a wealth of information regarding one’s life. In addition to the level of complexity in identifying mental illnesses through social media platforms, adopting supervised machine learning approaches such as deep neural networks have not been widely accepted due to the difficulties in obtaining sufficient amounts of annotated training data. Due to these reasons, we try to identify the most effective deep neural network architecture among a few of selected architectures that were successfully used in natural language processing tasks. The chosen architectures are used to detect users with signs of mental illnesses (depression in our case) given limited unstructured text data extracted from the Twitter social media platform.

pdf bib
Current and Future Psychological Health Prediction using Language and Socio-Demographics of Children for the CLPysch 2018 Shared Task
Sharath Chandra Guntuku | Salvatore Giorgi | Lyle Ungar

This article is a system description and report on the submission of a team from the University of Pennsylvania in the ’CLPsych 2018’ shared task. The goal of the shared task was to use childhood language as a marker for both current and future psychological health over individual lifetimes. Our system employs multiple textual features derived from the essays written and individuals’ socio-demographic variables at the age of 11. We considered several word clustering approaches, and explore the use of linear regression based on different feature sets. Our approach showed best results for predicting distress at the age of 42 and for predicting current anxiety on Disattenuated Pearson Correlation, and ranked fourth in the future health prediction task. In addition to the subtasks presented, we attempted to provide insight into mental health aspects at different ages. Our findings indicate that misspellings, words with illegible letters and increased use of personal pronouns are correlated with poor mental health at age 11, while descriptions about future physical activity, family and friends are correlated with good mental health.

pdf bib
Predicting Psychological Health from Childhood Essays with Convolutional Neural Networks for the CLPsych 2018 Shared Task (Team UKNLP)
Anthony Rios | Tung Tran | Ramakanth Kavuluru

This paper describes the systems we developed for tasks A and B of the 2018 CLPsych shared task. The first task (task A) focuses on predicting behavioral health scores at age 11 using childhood essays. The second task (task B) asks participants to predict future psychological distress at ages 23, 33, 42, and 50 using the age 11 essays. We propose two convolutional neural network based methods that map each task to a regression problem. Among seven teams we ranked third on task A with disattenuated Pearson correlation (DPC) score of 0.5587. Likewise, we ranked third on task B with an average DPC score of 0.3062.

pdf bib
A Psychologically Informed Approach to CLPsych Shared Task 2018
Almog Simchon | Michael Gilead

This paper describes our approach to the CLPsych 2018 Shared Task, in which we attempted to predict cross-sectional psychological health at age 11 and future psychological distress based on childhood essays. We attempted several modeling approaches and observed best cross-validated prediction accuracy with relatively simple models based on psychological theory. The models provided reasonable predictions in most outcomes. Notably, our model was especially successful in predicting out-of-sample psychological distress (across people and across time) at age 50.

pdf bib
Predicting Psychological Health from Childhood Essays. The UGent-IDLab CLPsych 2018 Shared Task System.
Klim Zaporojets | Lucas Sterckx | Johannes Deleu | Thomas Demeester | Chris Develder

This paper describes the IDLab system submitted to Task A of the CLPsych 2018 shared task. The goal of this task is predicting psychological health of children based on language used in hand-written essays and socio-demographic control variables. Our entry uses word- and character-based features as well as lexicon-based features and features derived from the essays such as the quality of the language. We apply linear models, gradient boosting as well as neural-network based regressors (feed-forward, CNNs and RNNs) to predict scores. We then make ensembles of our best performing models using a weighted average.

pdf bib
Can adult mental health be predicted by childhood future-self narratives? Insights from the CLPsych 2018 Shared Task
Kylie Radford | Louise Lavrencic | Ruth Peters | Kim Kiely | Ben Hachey | Scott Nowson | Will Radford

The CLPsych 2018 Shared Task B explores how childhood essays can predict psychological distress throughout the author’s life. Our main aim was to build tools to help our psychologists understand the data, propose features and interpret predictions. We submitted two linear regression models: ModelA uses simple demographic and word-count features, while ModelB uses linguistic, entity, typographic, expert-gazetteer, and readability features. Our models perform best at younger prediction ages, with our best unofficial score at 23 of 0.426 disattenuated Pearson correlation. This task is challenging and although predictive performance is limited, we propose that tight integration of expertise across computational linguistics and clinical psychology is a productive direction.

pdf bib
Automatic Detection of Incoherent Speech for Diagnosing Schizophrenia
Dan Iter | Jong Yoon | Dan Jurafsky

Schizophrenia is a mental disorder which afflicts an estimated 0.7% of adults world wide. It affects many areas of mental function, often evident from incoherent speech. Diagnosing schizophrenia relies on subjective judgments resulting in disagreements even among trained clinicians. Recent studies have proposed the use of natural language processing for diagnosis by drawing on automatically-extracted linguistic features like discourse coherence and lexicon. Here, we present the first benchmark comparison of previously proposed coherence models for detecting symptoms of schizophrenia and evaluate their performance on a new dataset of recorded interviews between subjects and clinicians. We also present two alternative coherence metrics based on modern sentence embedding techniques that outperform the previous methods on our dataset. Lastly, we propose a novel computational model for reference incoherence based on ambiguous pronoun usage and show that it is a highly predictive feature on our data. While the number of subjects is limited in this pilot study, our results suggest new directions for diagnosing common symptoms of schizophrenia.

pdf bib
Oral-Motor and Lexical Diversity During Naturalistic Conversations in Adults with Autism Spectrum Disorder
Julia Parish-Morris | Evangelos Sariyanidi | Casey Zampella | G. Keith Bartley | Emily Ferguson | Ashley A. Pallathra | Leila Bateman | Samantha Plate | Meredith Cola | Juhi Pandey | Edward S. Brodkin | Robert T. Schultz | Birkan Tunç

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by impaired social communication and the presence of restricted, repetitive patterns of behaviors and interests. Prior research suggests that restricted patterns of behavior in ASD may be cross-domain phenomena that are evident in a variety of modalities. Computational studies of language in ASD provide support for the existence of an underlying dimension of restriction that emerges during a conversation. Similar evidence exists for restricted patterns of facial movement. Using tools from computational linguistics, computer vision, and information theory, this study tests whether cognitive-motor restriction can be detected across multiple behavioral domains in adults with ASD during a naturalistic conversation. Our methods identify restricted behavioral patterns, as measured by entropy in word use and mouth movement. Results suggest that adults with ASD produce significantly less diverse mouth movements and words than neurotypical adults, with an increased reliance on repeated patterns in both domains. The diversity values of the two domains are not significantly correlated, suggesting that they provide complementary information.

pdf bib
Dynamics of an idiostyle of a Russian suicidal blogger
Tatiana Litvinova | Olga Litvinova | Pavel Seredin

Over 800000 people die of suicide each year. It is es-timated that by the year 2020, this figure will have in-creased to 1.5 million. It is considered to be one of the major causes of mortality during adolescence. Thus there is a growing need for methods of identifying su-icidal individuals. Language analysis is known to be a valuable psychodiagnostic tool, however the material for such an analysis is not easy to obtain. Currently as the Internet communications are developing, there is an opportunity to study texts of suicidal individuals. Such an analysis can provide a useful insight into the peculiarities of suicidal thinking, which can be used to further develop methods for diagnosing the risk of suicidal behavior. The paper analyzes the dynamics of a number of linguistic parameters of an idiostyle of a Russian-language blogger who died by suicide. For the first time such an analysis has been conducted using the material of Russian online texts. For text processing, the LIWC program is used. A correlation analysis was performed to identify the relationship between LIWC variables and number of days prior to suicide. Data visualization, as well as comparison with the results of related studies was performed.

pdf bib
RSDD-Time: Temporal Annotation of Self-Reported Mental Health Diagnoses
Sean MacAvaney | Bart Desmet | Arman Cohan | Luca Soldaini | Andrew Yates | Ayah Zirikly | Nazli Goharian

Self-reported diagnosis statements have been widely employed in studying language related to mental health in social media. However, existing research has largely ignored the temporality of mental health diagnoses. In this work, we introduce RSDD-Time: a new dataset of 598 manually annotated self-reported depression diagnosis posts from Reddit that include temporal information about the diagnosis. Annotations include whether a mental health condition is present and how recently the diagnosis happened. Furthermore, we include exact temporal spans that relate to the date of diagnosis. This information is valuable for various computational methods to examine mental health through social media because one’s mental health state is not static. We also test several baseline classification and extraction approaches, which suggest that extracting temporal information from self-reported diagnosis statements is challenging.

pdf bib
Predicting Human Trustfulness from Facebook Language
Mohammadzaman Zamani | Anneke Buffone | H. Andrew Schwartz

Trustfulness — one’s general tendency to have confidence in unknown people or situations — predicts many important real-world outcomes such as mental health and likelihood to cooperate with others such as clinicians. While data-driven measures of interpersonal trust have previously been introduced, here, we develop the first language-based assessment of the personality trait of trustfulness by fitting one’s language to an accepted questionnaire-based trust score. Further, using trustfulness as a type of case study, we explore the role of questionnaire size as well as word count in developing language-based predictive models of users’ psychological traits. We find that leveraging a longer questionnaire can yield greater test set accuracy, while, for training, we find it beneficial to include users who took smaller questionnaires which offers more observations for training. Similarly, after noting a decrease in individual prediction error as word count increased, we found a word count-weighted training scheme was helpful when there were very few users in the first place.

pdf bib
Within and Between-Person Differences in Language Used Across Anxiety Support and Neutral Reddit Communities
Molly Ireland | Micah Iserman

Although many studies have distinguished between the social media language use of people who do and do not have a mental health condition, within-person context-sensitive comparisons (for example, analyzing individuals’ language use when seeking support or discussing neutral topics) are less common. Two dictionary-based analyses of Reddit communities compared (1) anxious individuals’ comments in anxiety support communities (e.g., /r/PanicParty) with the same users’ comments in neutral communities (e.g., /r/todayilearned), and, (2) within popular neutral communities, comments by members of anxiety subreddits with comments by other users. Each comparison yielded theory-consistent effects as well as unexpected results that suggest novel hypotheses to be tested in the future. Results have relevance for improving researchers’ and practitioners’ ability to unobtrusively assess anxiety symptoms in conversations that are not explicitly about mental health.

pdf bib
Helping or Hurting? Predicting Changes in Users’ Risk of Self-Harm Through Online Community Interactions
Luca Soldaini | Timothy Walsh | Arman Cohan | Julien Han | Nazli Goharian

In recent years, online communities have formed around suicide and self-harm prevention. While these communities offer support in moment of crisis, they can also normalize harmful behavior, discourage professional treatment, and instigate suicidal ideation. In this work, we focus on how interaction with others in such a community affects the mental state of users who are seeking support. We first build a dataset of conversation threads between users in a distressed state and community members offering support. We then show how to construct a classifier to predict whether distressed users are helped or harmed by the interactions in the thread, and we achieve a macro-F1 score of up to 0.69.

up

pdf (full)
bib (full)
Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference

pdf bib
Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference
Massimo Poesio | Vincent Ng | Maciej Ogrodniczuk

pdf bib
Anaphora Resolution for Twitter Conversations: An Exploratory Study
Berfin Aktaş | Tatjana Scheffler | Manfred Stede

We present a corpus study of pronominal anaphora on Twitter conversations. After outlining the specific features of this genre, with respect to reference resolution, we explain the construction of our corpus and the annotation steps. From this we derive a list of phenomena that need to be considered when performing anaphora resolution on this type of data. Finally, we test the performance of an off-the-shelf resolution system, and provide some qualitative error analysis.

pdf bib
Anaphora Resolution with the ARRAU Corpus
Massimo Poesio | Yulia Grishina | Varada Kolhatkar | Nafise Moosavi | Ina Roesiger | Adam Roussel | Fabian Simonjetz | Alexandra Uma | Olga Uryupina | Juntao Yu | Heike Zinsmeister

The ARRAU corpus is an anaphorically annotated corpus of English providing rich linguistic information about anaphora resolution. The most distinctive feature of the corpus is the annotation of a wide range of anaphoric relations, including bridging references and discourse deixis in addition to identity (coreference). Other distinctive features include treating all NPs as markables, including non-referring NPs; and the annotation of a variety of morphosyntactic and semantic mention and entity attributes, including the genericity status of the entities referred to by markables. The corpus however has not been extensively used for anaphora resolution research so far. In this paper, we discuss three datasets extracted from the ARRAU corpus to support the three subtasks of the CRAC 2018 Shared Task–identity anaphora resolution over ARRAU-style markables, bridging references resolution, and discourse deixis; the evaluation scripts assessing system performance on those datasets; and preliminary results on these three tasks that may serve as baseline for subsequent research in these phenomena.

pdf bib
Rule- and Learning-based Methods for Bridging Resolution in the ARRAU Corpus
Ina Roesiger

We present two systems for bridging resolution, which we submitted to the CRAC shared task on bridging anaphora resolution in the ARRAU corpus (track 2): a rule-based approach following Hou et al. 2014 and a learning-based approach. The re-implementation of Hou et al. 2014 achieves very poor performance when being applied to ARRAU. We found that the reasons for this lie in the different bridging annotations: whereas the rule-based system suggests many referential bridging pairs, ARRAU contains mostly lexical bridging. We describe the differences between these two types of bridging and adapt the rule-based approach to be able to handle lexical bridging. The modified rule-based approach achieves reasonable performance on all (sub)-tasks and outperforms a simple learning-based approach.

pdf bib
A Predictive Model for Notional Anaphora in English
Amir Zeldes

Notional anaphors are pronouns which disagree with their antecedents’ grammatical categories for notional reasons, such as plural to singular agreement in: “the government ... they”. Since such cases are rare and conflict with evidence from strictly agreeing cases (“the government ... it”), they present a substantial challenge to both coreference resolution and referring expression generation. Using the OntoNotes corpus, this paper takes an ensemble approach to predicting English notional anaphora in context on the basis of the largest empirical data to date. In addition to state of the art prediction accuracy, the results suggest that theoretical approaches positing a plural construal at the antecedent’s utterance are insufficient, and that circumstances at the anaphor’s utterance location, as well as global factors such as genre, have a strong effect on the choice of referring expression.

pdf bib
Integrating Predictions from Neural-Network Relation Classifiers into Coreference and Bridging Resolution
Ina Roesiger | Maximilian Köper | Kim Anh Nguyen | Sabine Schulte im Walde

Cases of coreference and bridging resolution often require knowledge about semantic relations between anaphors and antecedents. We suggest state-of-the-art neural-network classifiers trained on relation benchmarks to predict and integrate likelihoods for relations. Two experiments with representations differing in noise and complexity improve our bridging but not our coreference resolver.

pdf bib
Towards Bridging Resolution in German: Data Analysis and Rule-based Experiments
Janis Pagel | Ina Roesiger

Bridging resolution is the task of recognising bridging anaphors and linking them to their antecedents. While there is some work on bridging resolution for English, there is only little work for German. We present two datasets which contain bridging annotations, namely DIRNDL and GRAIN, and compare the performance of a rule-based system with a simple baseline approach on these two corpora. The performance for full bridging resolution ranges between an F1 score of 13.6% for DIRNDL and 11.8% for GRAIN. An analysis using oracle lists suggests that the system could, to a certain extent, benefit from ranking and re-ranking antecedent candidates. Furthermore, we investigate the importance of single features and show that the features used in our work seem promising for future bridging resolution approaches.

pdf bib
Detecting and Resolving Shell Nouns in German
Adam Roussel

This paper describes the design and evaluation of a system for the automatic detection and resolution of shell nouns in German. Shell nouns are general nouns, such as fact, question, or problem, whose full interpretation relies on a content phrase located elsewhere in a text, which these nouns simultaneously serve to characterize and encapsulate. To accomplish this, the system uses a series of lexico-syntactic patterns in order to extract shell noun candidates and their content in parallel. Each pattern has its own classifier, which makes the final decision as to whether or not a link is to be established and the shell noun resolved. Overall, about 26.2% of the annotated shell noun instances were correctly identified by the system, and of these cases, about 72.5% are assigned the correct content phrase. Though it remains difficult to identify shell noun instances reliably (recall is accordingly low in this regard), this system usually assigns the right content to correctly classified cases. cases.

pdf bib
PAWS: A Multi-lingual Parallel Treebank with Anaphoric Relations
Anna Nedoluzhko | Michal Novák | Maciej Ogrodniczuk

We present PAWS, a multi-lingual parallel treebank with coreference annotation. It consists of English texts from the Wall Street Journal translated into Czech, Russian and Polish. In addition, the texts are syntactically parsed and word-aligned. PAWS is based on PCEDT 2.0 and continues the tradition of multilingual treebanks with coreference annotation. The paper focuses on the coreference annotation in PAWS and its language-specific differences. PAWS offers linguistic material that can be further leveraged in cross-lingual studies, especially on coreference.

pdf bib
A Fine-grained Large-scale Analysis of Coreference Projection
Michal Novák

We perform a fine-grained large-scale analysis of coreference projection. By projecting gold coreference from Czech to English and vice versa on Prague Czech-English Dependency Treebank 2.0 Coref, we set an upper bound of a proposed projection approach for these two languages. We undertake a detailed thorough analysis that combines the analysis of projection’s subtasks with analysis of performance on individual mention types. The findings are accompanied with examples from the corpus.

pdf bib
Modeling Brain Activity Associated with Pronoun Resolution in English and Chinese
Jixing Li | Murielle Fabre | Wen-Ming Luh | John Hale

Typological differences between English and Chinese suggest stronger reliance on salience of the antecedent during pronoun resolution in Chinese. We examined this hypothesis by correlating a difficulty measure of pronoun resolution derived by the activation-based ACT-R model with the brain activity of English and Chinese participants listening to a same audiobook during fMRI recording. The ACT-R model predicts higher overall difficulty for English speakers, which is supported at the brain level in left Broca’s area. More generally, it confirms that computational modeling approach is able to dissociate different dimensions that are involved in the complex process of pronoun resolution in the brain.

pdf bib
Event versus entity co-reference: Effects of context and form of referring expression
Sharid Loáiciga | Luca Bevacqua | Hannah Rohde | Christian Hardmeier

Anaphora resolution systems require both an enumeration of possible candidate antecedents and an identification process of the antecedent. This paper focuses on (i) the impact of the form of referring expression on entity-vs-event preferences and (ii) how properties of the passage interact with referential form. Two crowd-sourced story-continuation experiments were conducted, using constructed and naturally-occurring passages, to see how participants interpret It and This pronouns following a context sentence that makes available event and entity referents. Our participants show a strong, but not categorical, bias to use This to refer to events and It to refer to entities. However, these preferences vary with passage characteristics such as verb class (a proxy in our constructed examples for the number of explicit and implicit entities) and more subtle author intentions regarding subsequent re-mention (the original event-vs-entity re-mention of our corpus items).

up

pdf (full)
bib (full)
Proceedings of the Second ACL Workshop on Ethics in Natural Language Processing

pdf bib
Proceedings of the Second ACL Workshop on Ethics in Natural Language Processing
Mark Alfano | Dirk Hovy | Margaret Mitchell | Michael Strube

pdf bib
On the Utility of Lay Summaries and AI Safety Disclosures: Toward Robust, Open Research Oversight
Allen Schmaltz

In this position paper, we propose that the community consider encouraging researchers to include two riders, a “Lay Summary” and an “AI Safety Disclosure”, as part of future NLP papers published in ACL forums that present user-facing systems. The goal is to encourage researchers–via a relatively non-intrusive mechanism–to consider the societal implications of technologies carrying (un)known and/or (un)knowable long-term risks, to highlight failure cases, and to provide a mechanism by which the general public (and scientists in other disciplines) can more readily engage in the discussion in an informed manner. This simple proposal requires minimal additional up-front costs for researchers; the lay summary, at least, has significant precedence in the medical literature and other areas of science; and the proposal is aimed to supplement, rather than replace, existing approaches for encouraging researchers to consider the ethical implications of their work, such as those of the Collaborative Institutional Training Initiative (CITI) Program and institutional review boards (IRBs).

pdf bib
#MeToo Alexa: How Conversational Systems Respond to Sexual Harassment
Amanda Cercas Curry | Verena Rieser

Conversational AI systems, such as Amazon’s Alexa, are rapidly developing from purely transactional systems to social chatbots, which can respond to a wide variety of user requests. In this article, we establish how current state-of-the-art conversational systems react to inappropriate requests, such as bullying and sexual harassment on the part of the user, by collecting and analysing the novel #MeTooAlexa corpus. Our results show that commercial systems mainly avoid answering, while rule-based chatbots show a variety of behaviours and often deflect. Data-driven systems, on the other hand, are often non-coherent, but also run the risk of being interpreted as flirtatious and sometimes react with counter-aggression. This includes our own system, trained on “clean” data, which suggests that inappropriate system behaviour is not caused by data bias.

up

pdf (full)
bib (full)
Proceedings of the Workshop on Figurative Language Processing

pdf bib
Proceedings of the Workshop on Figurative Language Processing
Beata Beigman Klebanov | Ekaterina Shutova | Patricia Lichtenstein | Smaranda Muresan | Chee Wee

pdf bib
Challenges in Finding Metaphorical Connections
Katy Gero | Lydia Chilton

Poetry is known for its novel expression using figurative language. We introduce a writing task that contains the essential challenges of generating meaningful figurative language and can be evaluated. We investigate how to find metaphorical connections between abstract themes and concrete domains by asking people to write four-line poems on a given metaphor, such as “death is a rose” or “anger is wood”. We find that only 21% of poems successfully make a metaphorical connection. We present five alternate ways people respond to the prompt and release our dataset of 100 categorized poems. We suggest opportunities for computational approaches.

pdf bib
Linguistic Features of Sarcasm and Metaphor Production Quality
Stephen Skalicky | Scott Crossley

Using linguistic features to detect figurative language has provided a deeper in-sight into figurative language. The purpose of this study is to assess whether linguistic features can help explain differences in quality of figurative language. In this study a large corpus of metaphors and sarcastic responses are collected from human subjects and rated for figurative language quality based on theoretical components of metaphor, sarcasm, and creativity. Using natural language processing tools, specific linguistic features related to lexical sophistication and semantic cohesion were used to predict the human ratings of figurative language quality. Results demonstrate linguistic features were able to predict small amounts of variance in metaphor and sarcasm production quality.

pdf bib
Leveraging Syntactic Constructions for Metaphor Identification
Kevin Stowe | Martha Palmer

Identification of metaphoric language in text is critical for generating effective semantic representations for natural language understanding. Computational approaches to metaphor identification have largely relied on heuristic based models or feature-based machine learning, using hand-crafted lexical resources coupled with basic syntactic information. However, recent work has shown the predictive power of syntactic constructions in determining metaphoric source and target domains (Sullivan 2013). Our work intends to explore syntactic constructions and their relation to metaphoric language. We undertake a corpus-based analysis of predicate-argument constructions and their metaphoric properties, and attempt to effectively represent syntactic constructions as features for metaphor processing, both in identifying source and target domains and in distinguishing metaphoric words from non-metaphoric.

pdf bib
Literal, Metphorical or Both? Detecting Metaphoricity in Isolated Adjective-Noun Phrases
Agnieszka Mykowiecka | Malgorzata Marciniak | Aleksander Wawer

The paper addresses the classification of isolated Polish adjective-noun phrases according to their metaphoricity. We tested neural networks to predict if a phrase has a literal or metaphorical sense or can have both senses depending on usage. The input to the neural network consists of word embeddings, but we also tested the impact of information about the domain of the adjective and about the abstractness of the noun. We applied our solution to English data available on the Internet and compared it to results published in papers. We found that the solution based on word embeddings only can achieve results comparable with complex solutions requiring additional information.

pdf bib
Catching Idiomatic Expressions in EFL Essays
Michael Flor | Beata Beigman Klebanov

This paper presents an exploratory study on large-scale detection of idiomatic expressions in essays written by non-native speakers of English. We describe a computational search procedure for automatic detection of idiom-candidate phrases in essay texts. The study used a corpus of essays written during a standardized examination of English language proficiency. Automatically-flagged candidate expressions were manually annotated for idiomaticity. The study found that idioms are widely used in EFL essays. The study also showed that a search algorithm that accommodates the syntactic and lexical exibility of idioms can increase the recall of idiom instances by 30%, but it also increases the amount of false positives.

pdf bib
Predicting Human Metaphor Paraphrase Judgments with Deep Neural Networks
Yuri Bizzoni | Shalom Lappin

We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75% accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.

pdf bib
A Report on the 2018 VUA Metaphor Detection Shared Task
Chee Wee (Ben) Leong | Beata Beigman Klebanov | Ekaterina Shutova

As the community working on computational approaches to figurative language is growing and as methods and data become increasingly diverse, it is important to create widely shared empirical knowledge of the level of system performance in a range of contexts, thus facilitating progress in this area. One way of creating such shared knowledge is through benchmarking multiple systems on a common dataset. We report on the shared task on metaphor identification on the VU Amsterdam Metaphor Corpus conducted at the NAACL 2018 Workshop on Figurative Language Processing.

pdf bib
An LSTM-CRF Based Approach to Token-Level Metaphor Detection
Malay Pramanick | Ashim Gupta | Pabitra Mitra

Automatic processing of figurative languages is gaining popularity in NLP community for their ubiquitous nature and increasing volume. In this era of web 2.0, automatic analysis of sarcasm and metaphors is important for their extensive usage. Metaphors are a part of figurative language that compares different concepts, often on a cognitive level. Many approaches have been proposed for automatic detection of metaphors, even using sequential models or neural networks. In this paper, we propose a method for detection of metaphors at the token level using a hybrid model of Bidirectional-LSTM and CRF. We used fewer features, as compared to the previous state-of-the-art sequential model. On experimentation with VUAMC, our method obtained an F-score of 0.674.

pdf bib
Unsupervised Detection of Metaphorical Adjective-Noun Pairs
Malay Pramanick | Pabitra Mitra

Metaphor is a popular figure of speech. Popularity of metaphors calls for their automatic identification and interpretation. Most of the unsupervised methods directed at detection of metaphors use some hand-coded knowledge. We propose an unsupervised framework for metaphor detection that does not require any hand-coded knowledge. We applied clustering on features derived from Adjective-Noun pairs for classifying them into two disjoint classes. We experimented with adjective-noun pairs of a popular dataset annotated for metaphors and obtained an accuracy of 72.87% with k-means clustering algorithm.

pdf bib
Phrase-Level Metaphor Identification Using Distributed Representations of Word Meaning
Omnia Zayed | John Philip McCrae | Paul Buitelaar

Metaphor is an essential element of human cognition which is often used to express ideas and emotions that might be difficult to express using literal language. Processing metaphoric language is a challenging task for a wide range of applications ranging from text simplification to psychotherapy. Despite the variety of approaches that are trying to process metaphor, there is still a need for better models that mimic the human cognition while exploiting fewer resources. In this paper, we present an approach based on distributional semantics to identify metaphors on the phrase-level. We investigated the use of different word embeddings models to identify verb-noun pairs where the verb is used metaphorically. Several experiments are conducted to show the performance of the proposed approach on benchmark datasets.

pdf bib
Bigrams and BiLSTMs Two Neural Networks for Sequential Metaphor Detection
Yuri Bizzoni | Mehdi Ghanimifard

We present and compare two alternative deep neural architectures to perform word-level metaphor detection on text: a bi-LSTM model and a new structure based on recursive feed-forward concatenation of the input. We discuss different versions of such models and the effect that input manipulation - specifically, reducing the length of sentences and introducing concreteness scores for words - have on their performance.

pdf bib
Computationally Constructed Concepts: A Machine Learning Approach to Metaphor Interpretation Using Usage-Based Construction Grammatical Cues
Zachary Rosen

The current study seeks to implement a deep learning classification algorithm using argument-structure level representation of metaphoric constructions, for the identification of source domain mappings in metaphoric utterances. It thus builds on previous work in computational metaphor interpretation (Mohler et al. 2014; Shutova 2010; Bollegala & Shutova 2013; Hong 2016; Su et al. 2017) while implementing a theoretical framework based off of work in the interface of metaphor and construction grammar (Sullivan 2006, 2007, 2013). The results indicate that it is possible to achieve an accuracy of approximately 80.4% using the proposed method, combining construction grammatical features with a simple deep learning NN. I attribute this increase in accuracy to the use of constructional cues, extracted from the raw text of metaphoric instances.

pdf bib
Neural Metaphor Detecting with CNN-LSTM Model
Chuhan Wu | Fangzhao Wu | Yubo Chen | Sixing Wu | Zhigang Yuan | Yongfeng Huang

Metaphors are figurative languages widely used in daily life and literatures. It’s an important task to detect the metaphors evoked by texts. Thus, the metaphor shared task is aimed to extract metaphors from plain texts at word level. We propose to use a CNN-LSTM model for this task. Our model combines CNN and LSTM layers to utilize both local and long-range contextual information for identifying metaphorical information. In addition, we compare the performance of the softmax classifier and conditional random field (CRF) for sequential labeling in this task. We also incorporated some additional features such as part of speech (POS) tags and word cluster to improve the performance of model. Our best model achieved 65.06% F-score in the all POS testing subtask and 67.15% in the verbs testing subtask.

pdf bib
Di-LSTM Contrast : A Deep Neural Network for Metaphor Detection
Krishnkant Swarnkar | Anil Kumar Singh

The contrast between the contextual and general meaning of a word serves as an important clue for detecting its metaphoricity. In this paper, we present a deep neural architecture for metaphor detection which exploits this contrast. Additionally, we also use cost-sensitive learning by re-weighting examples, and baseline features like concreteness ratings, POS and WordNet-based features. The best performing system of ours achieves an overall F1 score of 0.570 on All POS category and 0.605 on the Verbs category at the Metaphor Shared Task 2018.

pdf bib
Conditional Random Fields for Metaphor Detection
Anna Mosolova | Ivan Bondarenko | Vadim Fomin

We present an algorithm for detecting metaphor in sentences which was used in Shared Task on Metaphor Detection by First Workshop on Figurative Language Processing. The algorithm is based on different features and Conditional Random Fields.

pdf bib
Detecting Figurative Word Occurrences Using Recurrent Neural Networks
Agnieszka Mykowiecka | Aleksander Wawer | Malgorzata Marciniak

The paper addresses detection of figurative usage of words in English text. The chosen method was to use neural nets fed by pretrained word embeddings. The obtained results show that simple solutions, based on words embeddings only, are comparable to complex solutions, using many sources of information which are not available for languages less-studied than English.

pdf bib
Multi-Module Recurrent Neural Networks with Transfer Learning
Filip Skurniak | Maria Janicka | Aleksander Wawer

This paper describes multiple solutions designed and tested for the problem of word-level metaphor detection. The proposed systems are all based on variants of recurrent neural network architectures. Specifically, we explore multiple sources of information: pre-trained word embeddings (Glove), a dictionary of language concreteness and a transfer learning scenario based on the states of an encoder network from neural network machine translation system. One of the architectures is based on combining all three systems: (1) Neural CRF (Conditional Random Fields), trained directly on the metaphor data set; (2) Neural Machine Translation encoder of a transfer learning scenario; (3) a neural network used to predict final labels, trained directly on the metaphor data set. Our results vary between test sets: Neural CRF standalone is the best one on submission data, while combined system scores the highest on a test subset randomly selected from training data.

pdf bib
Using Language Learner Data for Metaphor Detection
Egon Stemle | Alexander Onysko

This article describes the system that participated in the shared task on metaphor detection on the Vrije University Amsterdam Metaphor Corpus (VUA). The ST was part of the workshop on processing figurative language at the 16th annual conference of the North American Chapter of the Association for Computational Linguistics (NAACL2018). The system combines a small assertion of trending techniques, which implement matured methods from NLP and ML; in particular, the system uses word embeddings from standard corpora and from corpora representing different proficiency levels of language learners in a LSTM BiRNN architecture. The system is available under the APLv2 open-source license.

up

pdf (full)
bib (full)
Proceedings of the Workshop on Generalization in the Age of Deep Learning

pdf bib
Proceedings of the Workshop on Generalization in the Age of Deep Learning
Yonatan Bisk | Omer Levy | Mark Yatskar

pdf bib
Towards Inference-Oriented Reading Comprehension: ParallelQA
Soumya Wadhwa | Varsha Embar | Matthias Grabmair | Eric Nyberg

In this paper, we investigate the tendency of end-to-end neural Machine Reading Comprehension (MRC) models to match shallow patterns rather than perform inference-oriented reasoning on RC benchmarks. We aim to test the ability of these systems to answer questions which focus on referential inference. We propose ParallelQA, a strategy to formulate such questions using parallel passages. We also demonstrate that existing neural models fail to generalize well to this setting.

pdf bib
Commonsense mining as knowledge base completion? A study on the impact of novelty
Stanislaw Jastrzębski | Dzmitry Bahdanau | Seyedarian Hosseini | Michael Noukhovitch | Yoshua Bengio | Jackie Cheung

Commonsense knowledge bases such as ConceptNet represent knowledge in the form of relational triples. Inspired by recent work by Li et al., we analyse if knowledge base completion models can be used to mine commonsense knowledge from raw text. We propose novelty of predicted triples with respect to the training set as an important factor in interpreting results. We critically analyse the difficulty of mining novel commonsense knowledge, and show that a simple baseline method that outperforms the previous state of the art on predicting more novel triples.

pdf bib
Deep learning evaluation using deep linguistic processing
Alexander Kuhnle | Ann Copestake

We discuss problems with the standard approaches to evaluation for tasks like visual question answering, and argue that artificial data can be used to address these as a complement to current practice. We demonstrate that with the help of existing ‘deep’ linguistic processing technology we are able to create challenging abstract datasets, which enable us to investigate the language understanding abilities of multimodal deep learning models in detail, as compared to a single performance value on a static and monolithic dataset.

pdf bib
The Fine Line between Linguistic Generalization and Failure in Seq2Seq-Attention Models
Noah Weber | Leena Shekhar | Niranjan Balasubramanian

Seq2Seq based neural architectures have become the go-to architecture to apply to sequence to sequence language tasks. Despite their excellent performance on these tasks, recent work has noted that these models typically do not fully capture the linguistic structure required to generalize beyond the dense sections of the data distribution (Ettinger et al., 2017), and as such, are likely to fail on examples from the tail end of the distribution (such as inputs that are noisy (Belinkov and Bisk, 2018), or of different length (Bentivogli et al., 2016)). In this paper we look at a model’s ability to generalize on a simple symbol rewriting task with a clearly defined structure. We find that the model’s ability to generalize this structure beyond the training distribution depends greatly on the chosen random seed, even when performance on the test set remains the same. This finding suggests that model’s ability to capture generalizable structure is highly sensitive, and more so, this sensitivity may not be apparent when evaluating the model on standard test sets.

pdf bib
Extrapolation in NLP
Jeff Mitchell | Pontus Stenetorp | Pasquale Minervini | Sebastian Riedel

We argue that extrapolation to unseen data will often be easier for models that capture global structures, rather than just maximise their local fit to the training data. We show that this is true for two popular models: the Decomposable Attention Model and word2vec.

up

pdf (full)
bib (full)
Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media

pdf bib
Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media
Malvina Nissim | Viviana Patti | Barbara Plank | Claudia Wagner

pdf bib
What makes us laugh? Investigations into Automatic Humor Classification
Vikram Ahuja | Taradheesh Bali | Navjyoti Singh

Most scholarly works in the field of computational detection of humour derive their inspiration from the incongruity theory. Incongruity is an indispensable facet in drawing a line between humorous and non-humorous occurrences but is immensely inadequate in shedding light on what actually made the particular occurrence a funny one. Classical theories like Script-based Semantic Theory of Humour and General Verbal Theory of Humour try and achieve this feat to an adequate extent. In this paper we adhere to a more holistic approach towards classification of humour based on these classical theories with a few improvements and revisions. Through experiments based on our linear approach and performed on large data-sets of jokes, we are able to demonstrate the adaptability and show componentizability of our model, and that a host of classification techniques can be used to overcome the challenging problem of distinguishing between various categories and sub-categories of jokes.

pdf bib
Social and Emotional Correlates of Capitalization on Twitter
Sophia Chan | Alona Fyshe

Social media text is replete with unusual capitalization patterns. We posit that capitalizing a token like THIS performs two expressive functions: it marks a person socially, and marks certain parts of an utterance as more salient than others. Focusing on gender and sentiment, we illustrate using a corpus of tweets that capitalization appears in more negative than positive contexts, and is used more by females compared to males. Yet we find that both genders use capitalization in a similar way when expressing sentiment.

pdf bib
Building an annotated dataset of app store reviews with Appraisal features in English and Spanish
Natalia Mora | Julia Lavid-López

This paper describes the creation and annotation of a dataset consisting of 250 English and Spanish app store reviews from Google’s Play Store with Appraisal features. This is one of the most influential linguistic frameworks for the analysis of evaluation and opinion in discourse due to its insightful descriptive features. However, it has not been extensively applied in NLP in spite of its potential for the classification of the subjective content of these reviews. We describe the dataset, the annotation scheme and guidelines, the agreement studies, the annotation results and their impact on the characterisation of this genre.

pdf bib
Enabling Deep Learning of Emotion With First-Person Seed Expressions
Hassan Alhuzali | Muhammad Abdul-Mageed | Lyle Ungar

The computational treatment of emotion in natural language text remains relatively limited, and Arabic is no exception. This is partly due to lack of labeled data. In this work, we describe and manually validate a method for the automatic acquisition of emotion labeled data and introduce a newly developed data set for Modern Standard and Dialectal Arabic emotion detection focused at Robert Plutchik’s 8 basic emotion types. Using a hybrid supervision method that exploits first person emotion seeds, we show how we can acquire promising results with a deep gated recurrent neural network. Our best model reaches 70% F-score, significantly (i.e., 11%, p < 0.05) outperforming a competitive baseline. Applying our method and data on an external dataset of 4 emotions released around the same time we finalized our work, we acquire 7% absolute gain in F-score over a linear SVM classifier trained on gold data, thus validating our approach.

pdf bib
A Dataset of Hindi-English Code-Mixed Social Media Text for Hate Speech Detection
Aditya Bohra | Deepanshu Vijay | Vinay Singh | Syed Sarfaraz Akhtar | Manish Shrivastava

Hate speech detection in social media texts is an important Natural language Processing task, which has several crucial applications like sentiment analysis, investigating cyberbullying and examining socio-political controversies. While relevant research has been done independently on code-mixed social media texts and hate speech detection, our work is the first attempt in detecting hate speech in Hindi-English code-mixed social media text. In this paper, we analyze the problem of hate speech detection in code-mixed texts and present a Hindi-English code-mixed dataset consisting of tweets posted online on Twitter. The tweets are annotated with the language at word level and the class they belong to (Hate Speech or Normal Speech). We also propose a supervised classification system for detecting hate speech in the text using various character level, word level, and lexicon based features.

pdf bib
The Social and the Neural Network: How to Make Natural Language Processing about People again
Dirk Hovy

Over the years, natural language processing has increasingly focused on tasks that can be solved by statistical models, but ignored the social aspects of language. These limitations are in large part due to historically available data and the limitations of the models, but have narrowed our focus and biased the tools demographically. However, with the increased availability of data sets including socio-demographic information and more expressive (neural) models, we have the opportunity to address both issues. I argue that this combination can broaden the focus of NLP to solve a whole new range of tasks, enable us to generate novel linguistic insights, and provide fairer tools for everyone.

pdf bib
Observational Comparison of Geo-tagged and Randomly-drawn Tweets
Tom Lippincott | Annabelle Carrell

Twitter is a ubiquitous source of micro-blog social media data, providing the academic, industrial, and public sectors real-time access to actionable information. A particularly attractive property of some tweets is *geo-tagging*, where a user account has opted-in to attaching their current location to each message. Unfortunately (from a researcher’s perspective) only a fraction of Twitter accounts agree to this, and these accounts are likely to have systematic diffences with the general population. This work is an exploratory study of these differences across the full range of Twitter content, and complements previous studies that focus on the English-language subset. Additionally, we compare methods for querying users by self-identified properties, finding that the constrained semantics of the “description” field provides cleaner, higher-volume results than more complex regular expressions.

pdf bib
Johns Hopkins or johnny-hopkins: Classifying Individuals versus Organizations on Twitter
Zach Wood-Doughty | Praateek Mahajan | Mark Dredze

Twitter user accounts include a range of different user types. While many individuals use Twitter, organizations also have Twitter accounts. Identifying opinions and trends from Twitter requires the accurate differentiation of these two groups. Previous work (McCorriston et al., 2015) presented a method for determining if an account was an individual or organization based on account profile and a collection of tweets. We present a method that relies solely on the account profile, allowing for the classification of individuals versus organizations based on a single tweet. Our method obtains accuracies comparable to methods that rely on much more information by leveraging two improvements: a character-based Convolutional Neural Network, and an automatically derived labeled corpus an order of magnitude larger than the previously available dataset. We make both the dataset and the resulting tool available.

pdf bib
The Potential of the Computational Linguistic Analysis of Social Media for Population Studies
Letizia Mencarini

The paper provides an outline of the scope for synergy between computational linguistic analysis and population stud-ies. It first reviews where population studies stand in terms of using social media data. Demographers are entering the realm of big data in force. But, this paper argues, population studies have much to gain from computational linguis-tic analysis, especially in terms of ex-plaining the drivers behind population processes. The paper gives two examples of how the method can be applied, and concludes with a fundamental caveat. Yes, computational linguistic analysis provides a possible key for integrating micro theory into any demographic analysis of social media data. But results may be of little value in as much as knowledge about fundamental sample characteristics are unknown.

pdf bib
Understanding the Effect of Gender and Stance in Opinion Expression in Debates on “Abortion”
Esin Durmus | Claire Cardie

In this paper, we focus on understanding linguistic differences across groups with different self-identified gender and stance in expressing opinions about ABORTION. We provide a new dataset consisting of users’ gender, stance on ABORTION as well as the debates in ABORTION drawn from debate.org. We use the gender and stance information to identify significant linguistic differences across individuals with different gender and stance. We show the importance of considering the stance information along with the gender since we observe significant linguistic differences across individuals with different stance even within the same gender group.

pdf bib
Frustrated, Polite, or Formal: Quantifying Feelings and Tone in Email
Niyati Chhaya | Kushal Chawla | Tanya Goyal | Projjal Chanda | Jaya Singh

Email conversations are the primary mode of communication in enterprises. The email content expresses an individual’s needs, requirements and intentions. Affective information in the email text can be used to get an insight into the sender’s mood or emotion. We present a novel approach to model human frustration in text. We identify linguistic features that influence human perception of frustration and model it as a supervised learning task. The paper provides a detailed comparison across traditional regression and word distribution-based models. We report a mean-squared error (MSE) of 0.018 against human-annotated frustration for the best performing model. The approach establishes the importance of affect features in frustration prediction for email data. We further evaluate the efficacy of the proposed feature set and model in predicting other tone or affects in text, namely formality and politeness; results demonstrate a comparable performance against the state-of-the-art baselines.

pdf bib
Reddit: A Gold Mine for Personality Prediction
Matej Gjurković | Jan Šnajder

Automated personality prediction from social media is gaining increasing attention in natural language processing and social sciences communities. However, due to high labeling costs and privacy issues, the few publicly available datasets are of limited size and low topic diversity. We address this problem by introducing a large-scale dataset derived from Reddit, a source so far overlooked for personality prediction. The dataset is labeled with Myers-Briggs Type Indicators (MBTI) and comes with a rich set of features for more than 9k users. We carry out a preliminary feature analysis, revealing marked differences between the MBTI dimensions and poles. Furthermore, we use the dataset to train and evaluate benchmark personality prediction models, achieving macro F1-scores between 67% and 82% on the individual dimensions and 82% accuracy for exact or one-off accurate type prediction. These results are encouraging and comparable with the reliability of standardized tests.

pdf bib
Predicting Authorship and Author Traits from Keystroke Dynamics
Barbara Plank

Written text transmits a good deal of nonverbal information related to the author’s identity and social factors, such as age, gender and personality. However, it is less known to what extent behavioral biometric traces transmit such information. We use typist data to study the predictiveness of authorship, and present first experiments on predicting both age and gender from keystroke dynamics. Our results show that the model based on keystroke features, while being two orders of magnitude smaller, leads to significantly higher accuracies for authorship than the text-based system. For user attribute prediction, the best approach is to combine the two, suggesting that extralinguistic factors are disclosed to a larger degree in written text, while author identity is better transmitted in typing behavior.

pdf bib
Predicting Twitter User Demographics from Names Alone
Zach Wood-Doughty | Nicholas Andrews | Rebecca Marvin | Mark Dredze

Social media analysis frequently requires tools that can automatically infer demographics to contextualize trends. These tools often require hundreds of user-authored messages for each user, which may be prohibitive to obtain when analyzing millions of users. We explore character-level neural models that learn a representation of a user’s name and screen name to predict gender and ethnicity, allowing for demographic inference with minimal data. We release trained models1 which may enable new demographic analyses that would otherwise require enormous amounts of data collection

pdf bib
Modeling Personality Traits of Filipino Twitter Users
Edward Tighe | Charibeth Cheng

Recent studies in the field of text-based personality recognition experiment with different languages, feature extraction techniques, and machine learning algorithms to create better and more accurate models; however, little focus is placed on exploring the language use of a group of individuals defined by nationality. Individuals of the same nationality share certain practices and communicate certain ideas that can become embedded into their natural language. Many nationals are also not limited to speaking just one language, such as how Filipinos speak Filipino and English, the two national languages of the Philippines. The addition of several regional/indigenous languages, along with the commonness of code-switching, allow for a Filipino to have a rich vocabulary. This presents an opportunity to create a text-based personality model based on how Filipinos speak, regardless of the language they use. To do so, data was collected from 250 Filipino Twitter users. Different combinations of data processing techniques were experimented upon to create personality models for each of the Big Five. The results for both regression and classification show that Conscientiousness is consistently the easiest trait to model, followed by Extraversion. Classification models for Agreeableness and Neuroticism had subpar performances, but performed better than those of Openness. An analysis on personality trait score representation showed that classifying extreme outliers generally produce better results for all traits except for Neuroticism and Openness.

pdf bib
Grounding the Semantics of Part-of-Day Nouns Worldwide using Twitter
David Vilares | Carlos Gómez-Rodríguez

The usage of part-of-day nouns, such as ‘night’, and their time-specific greetings (‘good night’), varies across languages and cultures. We show the possibilities that Twitter offers for studying the semantics of these terms and its variability between countries. We mine a worldwide sample of multilingual tweets with temporal greetings, and study how their frequencies vary in relation with local time. The results provide insights into the semantics of these temporal expressions and the cultural and sociological factors influencing their usage.

up

pdf (full)
bib (full)
Proceedings of the Second Workshop on Subword/Character LEvel Models

pdf bib
Proceedings of the Second Workshop on Subword/Character LEvel Models
Manaal Faruqui | Hinrich Schütze | Isabel Trancoso | Yulia Tsvetkov | Yadollah Yaghoobzadeh

pdf bib
Morphological Word Embeddings for Arabic Neural Machine Translation in Low-Resource Settings
Pamela Shapiro | Kevin Duh

Neural machine translation has achieved impressive results in the last few years, but its success has been limited to settings with large amounts of parallel data. One way to improve NMT for lower-resource settings is to initialize a word-based NMT model with pretrained word embeddings. However, rare words still suffer from lower quality word embeddings when trained with standard word-level objectives. We introduce word embeddings that utilize morphological resources, and compare to purely unsupervised alternatives. We work with Arabic, a morphologically rich language with available linguistic resources, and perform Ar-to-En MT experiments on a small corpus of TED subtitles. We find that word embeddings utilizing subword information consistently outperform standard word embeddings on a word similarity task and as initialization of the source word embeddings in a low-resource NMT system.

pdf bib
Entropy-Based Subword Mining with an Application to Word Embeddings
Ahmed El-Kishky | Frank Xu | Aston Zhang | Stephen Macke | Jiawei Han

Recent literature has shown a wide variety of benefits to mapping traditional one-hot representations of words and phrases to lower-dimensional real-valued vectors known as word embeddings. Traditionally, most word embedding algorithms treat each word as the finest meaningful semantic granularity and perform embedding by learning distinct embedding vectors for each word. Contrary to this line of thought, technical domains such as scientific and medical literature compose words from subword structures such as prefixes, suffixes, and root-words as well as compound words. Treating individual words as the finest-granularity unit discards meaningful shared semantic structure between words sharing substructures. This not only leads to poor embeddings for text corpora that have long-tail distributions, but also heuristic methods for handling out-of-vocabulary words. In this paper we propose SubwordMine, an entropy-based subword mining algorithm that is fast, unsupervised, and fully data-driven. We show that this allows for great cross-domain performance in identifying semantically meaningful subwords. We then investigate utilizing the mined subwords within the FastText embedding model and compare performance of the learned representations in a downstream language modeling task.

pdf bib
A Comparison of Character Neural Language Model and Bootstrapping for Language Identification in Multilingual Noisy Texts
Wafia Adouane | Simon Dobnik | Jean-Philippe Bernardy | Nasredine Semmar

This paper seeks to examine the effect of including background knowledge in the form of character pre-trained neural language model (LM), and data bootstrapping to overcome the problem of unbalanced limited resources. As a test, we explore the task of language identification in mixed-language short non-edited texts with an under-resourced language, namely the case of Algerian Arabic for which both labelled and unlabelled data are limited. We compare the performance of two traditional machine learning methods and a deep neural networks (DNNs) model. The results show that overall DNNs perform better on labelled data for the majority categories and struggle with the minority ones. While the effect of the untokenised and unlabelled data encoded as LM differs for each category, bootstrapping, however, improves the performance of all systems and all categories. These methods are language independent and could be generalised to other under-resourced languages for which a small labelled data and a larger unlabelled data are available.

pdf bib
Addressing Low-Resource Scenarios with Character-aware Embeddings
Sean Papay | Sebastian Padó | Ngoc Thang Vu

Most modern approaches to computing word embeddings assume the availability of text corpora with billions of words. In this paper, we explore a setup where only corpora with millions of words are available, and many words in any new text are out of vocabulary. This setup is both of practical interests – modeling the situation for specific domains and low-resource languages – and of psycholinguistic interest, since it corresponds much more closely to the actual experiences and challenges of human language learning and use. We compare standard skip-gram word embeddings with character-based embeddings on word relatedness prediction. Skip-grams excel on large corpora, while character-based embeddings do well on small corpora generally and rare and complex words specifically. The models can be combined easily.

pdf bib
Subword-level Composition Functions for Learning Word Embeddings
Bofang Li | Aleksandr Drozd | Tao Liu | Xiaoyong Du

Subword-level information is crucial for capturing the meaning and morphology of words, especially for out-of-vocabulary entries. We propose CNN- and RNN-based subword-level composition functions for learning word embeddings, and systematically compare them with popular word-level and subword-level models (Skip-Gram and FastText). Additionally, we propose a hybrid training scheme in which a pure subword-level model is trained jointly with a conventional word-level embedding model based on lookup-tables. This increases the fitness of all types of subword-level word embeddings; the word-level embeddings can be discarded after training, leaving only compact subword-level representation with much smaller data volume. We evaluate these embeddings on a set of intrinsic and extrinsic tasks, showing that subword-level models have advantage on tasks related to morphology and datasets with high OOV rate, and can be combined with other types of embeddings.

pdf bib
Discovering Phonesthemes with Sparse Regularization
Nelson F. Liu | Gina-Anne Levow | Noah A. Smith

We introduce a simple method for extracting non-arbitrary form-meaning representations from a collection of semantic vectors. We treat the problem as one of feature selection for a model trained to predict word vectors from subword features. We apply this model to the problem of automatically discovering phonesthemes, which are submorphemic sound clusters that appear in words with similar meaning. Many of our model-predicted phonesthemes overlap with those proposed in the linguistics literature, and we validate our approach with human judgments.

pdf bib
Meaningless yet meaningful: Morphology grounded subword-level NMT
Tamali Banerjee | Pushpak Bhattacharyya

We explore the use of two independent subsystems Byte Pair Encoding (BPE) and Morfessor as basic units for subword-level neural machine translation (NMT). We show that, for linguistically distant language-pairs Morfessor-based segmentation algorithm produces significantly better quality translation than BPE. However, for close language-pairs BPE-based subword-NMT may translate better than Morfessor-based subword-NMT. We propose a combined approach of these two segmentation algorithms Morfessor-BPE (M-BPE) which outperforms these two baseline systems in terms of BLEU score. Our results are supported by experiments on three language-pairs: English-Hindi, Bengali-Hindi and English-Bengali.

pdf bib
Fast Query Expansion on an Accounting Corpus using Sub-Word Embeddings
Hrishikesh Ganu | Viswa Datha P.

We present early results from a system under development which uses sub-word embeddings for query expansion in presence of mis-spelled words and other aberrations. We work for a company which creates accounting software and the end goal is to improve customer experience when they search for help on our “Customer Care” portal. Our customers use colloquial language, non-standard acronyms and sometimes mis-spell words when they use our Search portal or interact over other channels. However, our Knowledge Base has curated content which leverages technical terms and is in language which is quite formal. This results in the answer not being retrieved even though the answer might actually be present in the documentation (as assessed by a human). We address this problem by creating equivalence classes of words with similar meanings (with the additional property that the mappings to these equivalence classes are robust to mis-spellings) using sub-word embeddings and then use them to fine tune an Elasticsearch index to improve recall. We demonstrate through an end-end system that using sub-word embeddings leads to a significant lift in correct answers retrieved for an accounting corpus available in the public domain.

pdf bib
Incorporating Subword Information into Matrix Factorization Word Embeddings
Alexandre Salle | Aline Villavicencio

The positive effect of adding subword information to word embeddings has been demonstrated for predictive models. In this paper we investigate whether similar benefits can also be derived from incorporating subwords into counting models. We evaluate the impact of different types of subwords (n-grams and unsupervised morphemes), with results confirming the importance of subword information in learning representations of rare and out-of-vocabulary words.

pdf bib
A Multi-Context Character Prediction Model for a Brain-Computer Interface
Shiran Dudy | Shaobin Xu | Steven Bedrick | David Smith

Brain-computer interfaces and other augmentative and alternative communication devices introduce language-modeing challenges distinct from other character-entry methods. In particular, the acquired signal of the EEG (electroencephalogram) signal is noisier, which, in turn, makes the user intent harder to decipher. In order to adapt to this condition, we propose to maintain ambiguous history for every time step, and to employ, apart from the character language model, word information to produce a more robust prediction system. We present preliminary results that compare this proposed Online-Context Language Model (OCLM) to current algorithms that are used in this type of setting. Evaluation on both perplexity and predictive accuracy demonstrates promising results when dealing with ambiguous histories in order to provide to the front end a distribution of the next character the user might type.

up

pdf (full)
bib (full)
Proceedings of the Workshop on Computational Semantics beyond Events and Roles

pdf bib
Proceedings of the Workshop on Computational Semantics beyond Events and Roles
Eduardo Blanco | Roser Morante

pdf bib
Using Hedge Detection to Improve Committed Belief Tagging
Morgan Ulinski | Seth Benjamin | Julia Hirschberg

We describe a novel method for identifying hedge terms using a set of manually constructed rules. We present experiments adding hedge features to a committed belief system to improve classification. We compare performance of this system (a) without hedging features, (b) with dictionary-based features, and (c) with rule-based features. We find that using hedge features improves performance of the committed belief system, particularly in identifying instances of non-committed belief and reported belief.

pdf bib
Paths for uncertainty: Exploring the intricacies of uncertainty identification for news
Chrysoula Zerva | Sophia Ananiadou

Currently, news articles are produced, shared and consumed at an extremely rapid rate. Although their quantity is increasing, at the same time, their quality and trustworthiness is becoming fuzzier. Hence, it is important not only to automate information extraction but also to quantify the certainty of this information. Automated identification of certainty has been studied both in the scientific and newswire domains, but performance is considerably higher in tasks focusing on scientific text. We compare the differences in the definition and expression of uncertainty between a scientific domain, i.e., biomedicine, and newswire. We delve into the different aspects that affect the certainty of an extracted event in a news article and examine whether they can be easily identified by techniques already validated in the biomedical domain. Finally, we present a comparison of the syntactic and lexical differences between the the expression of certainty in the biomedical and newswire domains, using two annotated corpora.

pdf bib
Detecting Sarcasm is Extremely Easy ;-)
Natalie Parde | Rodney Nielsen

Detecting sarcasm in text is a particularly challenging problem in computational semantics, and its solution may vary across different types of text. We analyze the performance of a domain-general sarcasm detection system on datasets from two very different domains: Twitter, and Amazon product reviews. We categorize the errors that we identify with each, and make recommendations for addressing these issues in NLP systems in the future.

pdf bib
GKR: the Graphical Knowledge Representation for semantic parsing
Aikaterini-Lida Kalouli | Richard Crouch

This paper describes the first version of an open-source semantic parser that creates graphical representations of sentences to be used for further semantic processing, e.g. for natural language inference, reasoning and semantic similarity. The Graphical Knowledge Representation which is output by the parser is inspired by the Abstract Knowledge Representation, which separates out conceptual and contextual levels of representation that deal respectively with the subject matter of a sentence and its existential commitments. Our representation is a layered graph with each sub-graph holding different kinds of information, including one sub-graph for concepts and one for contexts. Our first evaluation of the system shows an F-score of 85% in accurately representing sentences as semantic graphs.

pdf bib
Computational Argumentation: A Journey Beyond Semantics, Logic, Opinions, and Easy Tasks
Ivan Habernal

The classical view on argumentation, such that arguments are logical structures consisting of different distinguishable parts and that parties exchange arguments in a rational way, is prevalent in textbooks but nonexistent in the real world. Instead, argumentation is a multifaceted communication tool built upon humans’ capabilities to easily use common sense, emotions, and social context. As humans, we are pretty good at it. Computational Argumentation tries to tackle these phenomena but has a long and not so easy way to go. In this talk, I would like to shed a light on several recent attempts to deal with argumentation computationally, such as addressing argument quality, understanding argument reasoning, dealing with fallacies, and how should we never ever argue online.

up

pdf (full)
bib (full)
Proceedings of the First International Workshop on Spatial Language Understanding

pdf bib
Proceedings of the First International Workshop on Spatial Language Understanding
Parisa Kordjamshidi | Archna Bhatia | James Pustejovsky | Marie-Francine Moens

pdf bib
Exploring the Functional and Geometric Bias of Spatial Relations Using Neural Language Models
Simon Dobnik | Mehdi Ghanimifard | John Kelleher

The challenge for computational models of spatial descriptions for situated dialogue systems is the integration of information from different modalities. The semantics of spatial descriptions are grounded in at least two sources of information: (i) a geometric representation of space and (ii) the functional interaction of related objects that. We train several neural language models on descriptions of scenes from a dataset of image captions and examine whether the functional or geometric bias of spatial descriptions reported in the literature is reflected in the estimated perplexity of these models. The results of these experiments have implications for the creation of models of spatial lexical semantics for human-robot dialogue systems. Furthermore, they also provide an insight into the kinds of the semantic knowledge captured by neural language models trained on spatial descriptions, which has implications for image captioning systems.

pdf bib
Building and Learning Structures in a Situated Blocks World Through Deep Language Understanding
Ian Perera | James Allen | Choh Man Teng | Lucian Galescu

We demonstrate a system for understanding natural language utterances for structure description and placement in a situated blocks world context. By relying on a rich, domain-specific adaptation of a generic ontology and a logical form structure produced by a semantic parser, we obviate the need for an intermediate, domain-specific representation and can produce a reasoner that grounds and reasons over concepts and constraints with real-valued data. This linguistic base enables more flexibility in interpreting natural language expressions invoking intrinsic concepts and features of structures and space. We demonstrate some of the capabilities of a system grounded in deep language understanding and present initial results in a structure learning task.

pdf bib
Computational Models for Spatial Prepositions
Georgiy Platonov | Lenhart Schubert

Developing computational models of spatial prepositions (such as on, in, above, etc.) is crucial for such tasks as human-machine collaboration, story understanding, and 3D model generation from descriptions. However, these prepositions are notoriously vague and ambiguous, with meanings depending on the types, shapes and sizes of entities in the argument positions, the physical and task context, and other factors. As a result truth value judgments for prepositional relations are often uncertain and variable. In this paper we treat the modeling task as calling for assignment of probabilities to such relations as a function of multiple factors, where such probabilities can be viewed as estimates of whether humans would judge the relations to hold in given circumstances. We implemented our models in a 3D blocks world and a room world in a computer graphics setting, and found that true/false judgments based on these models do not differ much more from human judgments that the latter differ from one another. However, what really matters pragmatically is not the accuracy of truth value judgments but whether, for instance, the computer models suffice for identifying objects described in terms of prepositional relations, (e.g., “the box to the left of the table”, where there are multiple boxes). For such tasks, our models achieved accuracies above 90% for most relations.

pdf bib
Lexical Conceptual Structure of Literal and Metaphorical Spatial Language: A Case Study of “Push”
Bonnie Dorr | Mari Olsen

Prior methodologies for understanding spatial language have treated literal expressions such as “Mary pushed the car over the edge” differently from metaphorical extensions such as “Mary’s job pushed her over the edge”. We demonstrate a methodology for standardizing literal and metaphorical meanings, by building on work in Lexical Conceptual Structure (LCS), a general-purpose representational component used in machine translation. We argue that spatial predicates naturally extend into other fields (e.g., circumstantial or temporal), and that LCS provides both a framework for distinguishing spatial from non-spatial, and a system for finding metaphorical meaning extensions. We start with MetaNet (MN), a large repository of conceptual metaphors, condensing 197 spatial entries into sixteen top-level categories of motion frames. Using naturally occurring instances of English push , and expansions of MN frames, we demonstrate that literal and metaphorical extensions exhibit patterns predicted and represented by the LCS model.

pdf bib
Representing Spatial Relations in FrameNet
Miriam R. L. Petruck | Michael J. Ellsworth

While humans use natural language to express spatial relations between and across entities in the world with great facility, natural language systems have a facility that depends on that human facility. This position paper presents approach to representing spatial relations in language, and advocates its adoption for representing the meaning of spatial language. This work shows the importance of axis-orientation systems for capturing the complexity of spatial relations, which FrameNet encodes with semantic types.

pdf bib
Points, Paths, and Playscapes: Large-scale Spatial Language Understanding Tasks Set in the Real World
Jason Baldridge | Tania Bedrax-Weiss | Daphne Luong | Srini Narayanan | Bo Pang | Fernando Pereira | Radu Soricut | Michael Tseng | Yuan Zhang

Spatial language understanding is important for practical applications and as a building block for better abstract language understanding. Much progress has been made through work on understanding spatial relations and values in images and texts as well as on giving and following navigation instructions in restricted domains. We argue that the next big advances in spatial language understanding can be best supported by creating large-scale datasets that focus on points and paths based in the real world, and then extending these to create online, persistent playscapes that mix human and bot players, where the bot players must learn, evolve, and survive according to their depth of understanding of scenes, navigation, and interactions.

pdf bib
Anaphora Resolution for Improving Spatial Relation Extraction from Text
Umar Manzoor | Parisa Kordjamshidi

Spatial relation extraction from generic text is a challenging problem due to the ambiguity of the prepositions spatial meaning as well as the nesting structure of the spatial descriptions. In this work, we highlight the difficulties that the anaphora can make in the extraction of spatial relations. We use external multi-modal (here visual) resources to find the most probable candidates for resolving the anaphoras that refer to the landmarks of the spatial relations. We then use global inference to decide jointly on resolving the anaphora and extraction of the spatial relations. Our preliminary results show that resolving anaphora improves the state-of-the-art results on spatial relation extraction.

pdf bib
The Case for Systematically Derived Spatial Language Usage
Bonnie Dorr | Clare Voss

This position paper argues that, while prior work in spatial language understanding for tasks such as robot navigation focuses on mapping natural language into deep conceptual or non-linguistic representations, it is possible to systematically derive regular patterns of spatial language usage from existing lexical-semantic resources. Furthermore, even with access to such resources, effective solutions to many application areas such as robot navigation and narrative generation also require additional knowledge at the syntax-semantics interface to cover the wide range of spatial expressions observed and available to natural language speakers. We ground our insights in, and present our extensions to, an existing lexico-semantic resource, covering 500 semantic classes of verbs, of which 219 fall within a spatial subset. We demonstrate that these extensions enable systematic derivation of regular patterns of spatial language without requiring manual annotation.

up

pdf (full)
bib (full)
Proceedings of the First Workshop on Storytelling

pdf bib
Proceedings of the First Workshop on Storytelling
Margaret Mitchell | Ting-Hao ‘Kenneth’ Huang | Francis Ferraro | Ishan Misra

pdf bib
Learning to Listen: Critically Considering the Role of AI in Human Storytelling and Character Creation
Anna Kasunic | Geoff Kaufman

In this opinion piece, we argue that there is a need for alternative design directions to complement existing AI efforts in narrative and character generation and algorithm development. To make our argument, we a) outline the predominant roles and goals of AI research in storytelling; b) present existing discourse on the benefits and harms of narratives; and c) highlight the pain points in character creation revealed by semi-structured interviews we conducted with 14 individuals deeply involved in some form of character creation. We conclude by proffering several specific design avenues that we believe can seed fruitful research collaborations. In our vision, AI collaborates with humans during creative processes and narrative generation, helps amplify voices and perspectives that are currently marginalized or misrepresented, and engenders experiences of narrative that support spectatorship and listening roles.

pdf bib
Linguistic Features of Helpfulness in Automated Support for Creative Writing
Melissa Roemmele | Andrew Gordon

We examine an emerging NLP application that supports creative writing by automatically suggesting continuing sentences in a story. The application tracks users’ modifications to generated sentences, which can be used to quantify their “helpfulness” in advancing the story. We explore the task of predicting helpfulness based on automatically detected linguistic features of the suggestions. We illustrate this analysis on a set of user interactions with the application using an initial selection of features relevant to story generation.

pdf bib
A Pipeline for Creative Visual Storytelling
Stephanie Lukin | Reginald Hobbs | Clare Voss

Computational visual storytelling produces a textual description of events and interpretations depicted in a sequence of images. These texts are made possible by advances and cross-disciplinary approaches in natural language processing, generation, and computer vision. We define a computational creative visual storytelling as one with the ability to alter the telling of a story along three aspects: to speak about different environments, to produce variations based on narrative goals, and to adapt the narrative to the audience. These aspects of creative storytelling and their effect on the narrative have yet to be explored in visual storytelling. This paper presents a pipeline of task-modules, Object Identification, Single-Image Inferencing, and Multi-Image Narration, that serve as a preliminary design for building a creative visual storyteller. We have piloted this design for a sequence of images in an annotation task. We present and analyze the collected corpus and describe plans towards automation.

pdf bib
Telling Stories with Soundtracks: An Empirical Analysis of Music in Film
Jon Gillick | David Bamman

Soundtracks play an important role in carrying the story of a film. In this work, we collect a corpus of movies and television shows matched with subtitles and soundtracks and analyze the relationship between story, song, and audience reception. We look at the content of a film through the lens of its latent topics and at the content of a song through descriptors of its musical attributes. In two experiments, we find first that individual topics are strongly associated with musical attributes, and second, that musical attributes of soundtracks are predictive of film ratings, even after controlling for topic and genre.

pdf bib
Towards Controllable Story Generation
Nanyun Peng | Marjan Ghazvininejad | Jonathan May | Kevin Knight

We present a general framework of analyzing existing story corpora to generate controllable and creative new stories. The proposed framework needs little manual annotation to achieve controllable story generation. It creates a new interface for humans to interact with computers to generate personalized stories. We apply the framework to build recurrent neural network (RNN)-based generation models to control story ending valence and storyline. Experiments show that our methods successfully achieve the control and enhance the coherence of stories through introducing storylines. with additional control factors, the generation model gets lower perplexity, and yields more coherent stories that are faithful to the control factors according to human evaluation.

pdf bib
An Encoder-decoder Approach to Predicting Causal Relations in Stories
Melissa Roemmele | Andrew Gordon

We address the task of predicting causally related events in stories according to a standard evaluation framework, the Choice of Plausible Alternatives (COPA). We present a neural encoder-decoder model that learns to predict relations between adjacent sequences in stories as a means of modeling causality. We explore this approach using different methods for extracting and representing sequence pairs as well as different model architectures. We also compare the impact of different training datasets on our model. In particular, we demonstrate the usefulness of a corpus not previously applied to COPA, the ROCStories corpus. While not state-of-the-art, our results establish a new reference point for systems evaluated on COPA, and one that is particularly informative for future neural-based approaches.

pdf bib
Neural Event Extraction from Movies Description
Alex Tozzo | Dejan Jovanović | Mohamed Amer

We present a novel approach for event extraction and abstraction from movie descriptions. Our event frame consists of “who”, “did what” “to whom”, “where”, and “when”. We formulate our problem using a recurrent neural network, enhanced with structural features extracted from syntactic parser, and trained using curriculum learning by progressively increasing the difficulty of the sentences. Our model serves as an intermediate step towards question answering systems, visual storytelling, and story completion tasks. We evaluate our approach on MovieQA dataset.

up

pdf (full)
bib (full)
Proceedings of the Second Workshop on Stylistic Variation

pdf bib
Proceedings of the Second Workshop on Stylistic Variation
Julian Brooke | Lucie Flekova | Moshe Koppel | Thamar Solorio

pdf bib
Stylistic variation over 200 years of court proceedings according to gender and social class
Stefania Degaetano-Ortlieb

We present an approach to detect stylistic variation across social variables (here: gender and social class), considering also diachronic change in language use. For detection of stylistic variation, we use relative entropy, measuring the difference between probability distributions at different linguistic levels (here: lexis and grammar). In addition, by relative entropy, we can determine which linguistic units are related to stylistic variation.

pdf bib
Stylistic Variation in Social Media Part-of-Speech Tagging
Murali Raghu Babu Balusu | Taha Merghani | Jacob Eisenstein

Social media features substantial stylistic variation, raising new challenges for syntactic analysis of online writing. However, this variation is often aligned with author attributes such as age, gender, and geography, as well as more readily-available social network metadata. In this paper, we report new evidence on the link between language and social networks in the task of part-of-speech tagging. We find that tagger error rates are correlated with network structure, with high accuracy in some parts of the network, and lower accuracy elsewhere. As a result, tagger accuracy depends on training from a balanced sample of the network, rather than training on texts from a narrow subcommunity. We also describe our attempts to add robustness to stylistic variation, by building a mixture-of-experts model in which each expert is associated with a region of the social network. While prior work found that similar approaches yield performance improvements in sentiment analysis and entity linking, we were unable to obtain performance improvements in part-of-speech tagging, despite strong evidence for the link between part-of-speech error rates and social network structure.

pdf bib
Detecting Syntactic Features of Translated Chinese
Hai Hu | Wen Li | Sandra Kübler

We present a machine learning approach to distinguish texts translated to Chinese (by humans) from texts originally written in Chinese, with a focus on a wide range of syntactic features. Using Support Vector Machines (SVMs) as classifier on a genre-balanced corpus in translation studies of Chinese, we find that constituent parse trees and dependency triples as features without lexical information perform very well on the task, with an F-measure above 90%, close to the results of lexical n-gram features, without the risk of learning topic information rather than translation features. Thus, we claim syntactic features alone can accurately distinguish translated from original Chinese. Translated Chinese exhibits an increased use of determiners, subject position pronouns, NP + “的” as NP modifiers, multiple NPs or VPs conjoined by "、", among other structures. We also interpret the syntactic features with reference to previous translation studies in Chinese, particularly the usage of pronouns.

pdf bib
Evaluating Creative Language Generation: The Case of Rap Lyric Ghostwriting
Peter Potash | Alexey Romanov | Anna Rumshisky

Language generation tasks that seek to mimic human ability to use language creatively are difficult to evaluate, since one must consider creativity, style, and other non-trivial aspects of the generated text. The goal of this paper is to develop evaluations methods for one such task, ghostwriting of rap lyrics, and to provide an explicit, quantifiable foundation for the goals and future directions for this task. Ghostwriting must produce text that is similar in style to the emulated artist, yet distinct in content. We develop a novel evaluation methodology that addresses several complementary aspects of this task, and illustrate how such evaluation can be used to meaning fully analyze system performance. We provide a corpus of lyrics for 13 rap artists, annotated for stylistic similarity, which allows us to assess the feasibility of manual evaluation for generated verse.

pdf bib
Cross-corpus Native Language Identification via Statistical Embedding
Francisco Rangel | Paolo Rosso | Julian Brooke | Alexandra Uitdenbogerd

In this paper, we approach the task of native language identification in a realistic cross-corpus scenario where a model is trained with available data and has to predict the native language from data of a different corpus. The motivation behind this study is to investigate native language identification in the Australian academic scenario where a majority of students come from China, Indonesia, and Arabic-speaking nations. We have proposed a statistical embedding representation reporting a significant improvement over common single-layer approaches of the state of the art, identifying Chinese, Arabic, and Indonesian in a cross-corpus scenario. The proposed approach was shown to be competitive even when the data is scarce and imbalanced.

up

pdf (full)
bib (full)
Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)

pdf bib
Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)
Goran Glavaš | Swapna Somasundaran | Martin Riedl | Eduard Hovy

pdf bib
Scientific Discovery as Link Prediction in Influence and Citation Graphs
Fan Luo | Marco A. Valenzuela-Escárcega | Gus Hahn-Powell | Mihai Surdeanu

We introduce a machine learning approach for the identification of “white spaces” in scientific knowledge. Our approach addresses this task as link prediction over a graph that contains over 2M influence statements such as “CTCF activates FOXA1”, which were automatically extracted using open-domain machine reading. We model this prediction task using graph-based features extracted from the above influence graph, as well as from a citation graph that captures scientific communities. We evaluated the proposed approach through backtesting. Although the data is heavily unbalanced (50 times more negative examples than positives), our approach predicts which influence links will be discovered in the “near future” with a F1 score of 27 points, and a mean average precision of 68%.

pdf bib
Efficient Generation and Processing of Word Co-occurrence Networks Using corpus2graph
Zheng Zhang | Pierre Zweigenbaum | Ruiqing Yin

Corpus2graph is an open-source NLP-application-oriented tool that generates a word co-occurrence network from a large corpus. It not only contains different built-in methods to preprocess words, analyze sentences, extract word pairs and define edge weights, but also supports user-customized functions. By using parallelization techniques, it can generate a large word co-occurrence network of the whole English Wikipedia data within hours. And thanks to its nodes-edges-weight three-level progressive calculation design, rebuilding networks with different configurations is even faster as it does not need to start all over again. This tool also works with other graph libraries such as igraph, NetworkX and graph-tool as a front end providing data to boost network generation speed.

pdf bib
Multi-hop Inference for Sentence-level TextGraphs: How Challenging is Meaningfully Combining Information for Science Question Answering?
Peter Jansen

Question Answering for complex questions is often modelled as a graph construction or traversal task, where a solver must build or traverse a graph of facts that answer and explain a given question. This “multi-hop” inference has been shown to be extremely challenging, with few models able to aggregate more than two facts before being overwhelmed by “semantic drift”, or the tendency for long chains of facts to quickly drift off topic. This is a major barrier to current inference models, as even elementary science questions require an average of 4 to 6 facts to answer and explain. In this work we empirically characterize the difficulty of building or traversing a graph of sentences connected by lexical overlap, by evaluating chance sentence aggregation quality through 9,784 manually-annotated judgements across knowledge graphs built from three free-text corpora (including study guides and Simple Wikipedia). We demonstrate semantic drift tends to be high and aggregation quality low, at between 0.04 and 3, and highlight scenarios that maximize the likelihood of meaningfully combining information.

pdf bib
Multi-Sentence Compression with Word Vertex-Labeled Graphs and Integer Linear Programming
Elvys Linhares Pontes | Stéphane Huet | Thiago Gouveia da Silva | Andréa carneiro Linhares | Juan-Manuel Torres-Moreno

Multi-Sentence Compression (MSC) aims to generate a short sentence with key information from a cluster of closely related sentences. MSC enables summarization and question-answering systems to generate outputs combining fully formed sentences from one or several documents. This paper describes a new Integer Linear Programming method for MSC using a vertex-labeled graph to select different keywords, and novel 3-gram scores to generate more informative sentences while maintaining their grammaticality. Our system is of good quality and outperforms the state-of-the-art for evaluations led on news dataset. We led both automatic and manual evaluations to determine the informativeness and the grammaticality of compressions for each dataset. Additional tests, which take advantage of the fact that the length of compressions can be modulated, still improve ROUGE scores with shorter output sentences.

pdf bib
Large-scale spectral clustering using diffusion coordinates on landmark-based bipartite graphs
Khiem Pham | Guangliang Chen

Spectral clustering has received a lot of attention due to its ability to separate nonconvex, non-intersecting manifolds, but its high computational complexity has significantly limited its applicability. Motivated by the document-term co-clustering framework by Dhillon (2001), we propose a landmark-based scalable spectral clustering approach in which we first use the selected landmark set and the given data to form a bipartite graph and then run a diffusion process on it to obtain a family of diffusion coordinates for clustering. We show that our proposed algorithm can be implemented based on very efficient operations on the affinity matrix between the given data and selected landmarks, thus capable of handling large data. Finally, we demonstrate the excellent performance of our method by comparing with the state-of-the-art scalable algorithms on several benchmark data sets.

pdf bib
Efficient Graph-based Word Sense Induction by Distributional Inclusion Vector Embeddings
Haw-Shiuan Chang | Amol Agrawal | Ananya Ganesh | Anirudha Desai | Vinayak Mathur | Alfred Hough | Andrew McCallum

Word sense induction (WSI), which addresses polysemy by unsupervised discovery of multiple word senses, resolves ambiguities for downstream NLP tasks and also makes word representations more interpretable. This paper proposes an accurate and efficient graph-based method for WSI that builds a global non-negative vector embedding basis (which are interpretable like topics) and clusters the basis indexes in the ego network of each polysemous word. By adopting distributional inclusion vector embeddings as our basis formation model, we avoid the expensive step of nearest neighbor search that plagues other graph-based methods without sacrificing the quality of sense clusters. Experiments on three datasets show that our proposed method produces similar or better sense clusters and embeddings compared with previous state-of-the-art methods while being significantly more efficient.

pdf bib
Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification
Konstantinos Skianis | Fragkiskos Malliaros | Michalis Vazirgiannis

Contrary to the traditional Bag-of-Words approach, we consider the Graph-of-Words(GoW) model in which each document is represented by a graph that encodes relationships between the different terms. Based on this formulation, the importance of a term is determined by weighting the corresponding node in the document, collection and label graphs, using node centrality criteria. We also introduce novel graph-based weighting schemes by enriching graphs with word-embedding similarities, in order to reward or penalize semantic relationships. Our methods produce more discriminative feature weights for text categorization, outperforming existing frequency-based criteria.

pdf bib
Embedding Text in Hyperbolic Spaces
Bhuwan Dhingra | Christopher Shallue | Mohammad Norouzi | Andrew Dai | George Dahl

Natural language text exhibits hierarchical structure in a variety of respects. Ideally, we could incorporate our prior knowledge of this hierarchical structure into unsupervised learning algorithms that work on text data. Recent work by Nickel and Kiela (2017) proposed using hyperbolic instead of Euclidean embedding spaces to represent hierarchical data and demonstrated encouraging results when embedding graphs. In this work, we extend their method with a re-parameterization technique that allows us to learn hyperbolic embeddings of arbitrarily parameterized objects. We apply this framework to learn word and sentence embeddings in hyperbolic space in an unsupervised manner from text corpora. The resulting embeddings seem to encode certain intuitive notions of hierarchy, such as word-context frequency and phrase constituency. However, the implicit continuous hierarchy in the learned hyperbolic space makes interrogating the model’s learned hierarchies more difficult than for models that learn explicit edges between items. The learned hyperbolic embeddings show improvements over Euclidean embeddings in some – but not all – downstream tasks, suggesting that hierarchical organization is more useful for some tasks than others.

up

pdf (full)
bib (full)
Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Papers)

pdf bib
Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Papers)
Colin Cherry | Graham Neubig

pdf bib
Keynote: Unveiling the Linguistic Weaknesses of Neural MT
Arianna Bisazza

pdf bib
Document-Level Information as Side Constraints for Improved Neural Patent Translation
Laura Jehl | Stefan Riezler

pdf bib
Fluency Over Adequacy: A Pilot Study in Measuring User Trust in Imperfect MT
Marianna Martindale | Marine Carpuat

pdf bib
Combining Quality Estimation and Automatic Post-editing to Enhance Machine Translation output
Rajen Chatterjee | Matteo Negri | Marco Turchi | Frédéric Blain | Lucia Specia

pdf bib
Neural Morphological Tagging of Lemma Sequences for Machine Translation
Costanza Conforti | Matthias Huck | Alexander Fraser

pdf bib
Context Models for OOV Word Translation in Low-Resource Languages
Angli Liu | Katrin Kirchhoff

pdf bib
How Robust Are Character-Based Word Embeddings in Tagging and MT Against Wrod Scramlbing or Randdm Nouse?
Georg Heigold | Stalin Varanasi | Günter Neumann | Josef van Genabith

pdf bib
Balancing Translation Quality and Sentiment Preservation (Non-archival Extended Abstract)
Pintu Lohar | Haithem Afli | Andy Way

pdf bib
Register-sensitive Translation: a Case Study of Mandarin and Cantonese (Non-archival Extended Abstract)
Tak-sum Wong | John Lee

pdf bib
An Evaluation of Two Vocabulary Reduction Methods for Neural Machine Translation
Duygu Ataman | Marcello Federico

pdf bib
A Smorgasbord of Features to Combine Phrase-Based and Neural Machine Translation
Benjamin Marie | Atsushi Fujita

pdf bib
Exploring Word Sense Disambiguation Abilities of Neural Machine Translation Systems (Non-archival Extended Abstract)
Rebecca Marvin | Philipp Koehn

pdf bib
Improving Low Resource Machine Translation using Morphological Glosses (Non-archival Extended Abstract)
Steven Shearing | Christo Kirov | Huda Khayrallah | David Yarowsky

pdf bib
A Dataset and Reranking Method for Multimodal MT of User-Generated Image Captions
Shigehiko Schamoni | Julian Hitschler | Stefan Riezler

pdf bib
Simultaneous Translation using Optimized Segmentation
Maryam Siahbani | Hassan Shavarani | Ashkan Alinejad | Anoop Sarkar

pdf bib
Neural Monkey: The Current State and Beyond
Jindřich Helcl | Jindřich Libovický | Tom Kocmi | Tomáš Musil | Ondřej Cífka | Dušan Variš | Ondřej Bojar

pdf bib
OpenNMT: Neural Machine Translation Toolkit
Guillaume Klein | Yoon Kim | Yuntian Deng | Vincent Nguyen | Jean Senellart | Alexander Rush

pdf bib
XNMT: The eXtensible Neural Machine Translation Toolkit
Graham Neubig | Matthias Sperber | Xinyi Wang | Matthieu Felix | Austin Matthews | Sarguna Padmanabhan | Ye Qi | Devendra Sachan | Philip Arthur | Pierre Godard | John Hewitt | Rachid Riad | Liming Wang

pdf bib
Tensor2Tensor for Neural Machine Translation
Ashish Vaswani | Samy Bengio | Eugene Brevdo | Francois Chollet | Aidan Gomez | Stephan Gouws | Llion Jones | Łukasz Kaiser | Nal Kalchbrenner | Niki Parmar | Ryan Sepassi | Noam Shazeer | Jakob Uszkoreit

pdf bib
The Sockeye Neural Machine Translation Toolkit at AMTA 2018
Felix Hieber | Tobias Domhan | Michael Denkowski | David Vilar | Artem Sokolov | Ann Clifton | Matt Post

pdf bib
Why not be Versatile? Applications of the SGNMT Decoder for Machine Translation
Felix Stahlberg | Danielle Saunders | Gonzalo Iglesias | Bill Byrne


up

pdf (full)
bib (full)
Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 2: User Papers)

pdf bib
Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 2: User Papers)
Janice Campbell | Alex Yanishevsky | Jennifer Doyon | Doug Jones

pdf bib
Keynote: Machine Translation Beyond the Sentence
Macduff Hughes

pdf bib
Keynote: Setting up a Machine Translation Program for IARPA
Carl Rubino

pdf bib
Keynote: Use more Machine Translation and Keep Your Customers Happy
Glen Poor

pdf bib
Technology Showcase and Presentations
Jennifer DeCamp

pdf bib
Augmented Translation: A New Approach to Combining Human and Machine Capabilities
Arle Lommel

pdf bib
Training, feedback and productivity measurement with NMT and Adaptive MT
Jean-Luc Saillard

pdf bib
The Collision of Quality and Technology with Reality
Don DePalma

pdf bib
Same-language machine translation for local flavours/flavors
Gema Ramírez-Sánchez | Janice Campbell

pdf bib
Thinking of Going Neural? Factors Honda R&D Americas is Considering before Making the Switch
Phil Soldini

pdf bib
Developing a Neural Machine Translation Service for the 2017-2018 European Union Presidency
Mārcis Pinnis | Rihards Kalnins

pdf bib
Neural Won! Now What?
Alex Yanishevsky

pdf bib
MT for L10n: How we build and evaluate MT systems at eBay
Jose Sánchez

pdf bib
VMware MT Tiered Model
Lynn Ma

pdf bib
Turning NMT Research into Commercial Products
Dragos Munteanu | Adrià Gispert

pdf bib
Beyond Quality, Considerations for an MT solution
Quinn Lam

pdf bib
Towards Less Post-Editing
Bill Lafferty

pdf bib
Leveraging Data Resources for Cross-Linguistic Information Retrieval Using Statistical Machine Translation
Steve Sloto | Ann Clifton | Greg Hanneman | Patrick Porter | Donna Gates | Almut Hildebrand | Anish Kumar

pdf bib
The Impact of Advances in Neural and Statistical MT on the Translation Workforce
Jennifer DeCamp

pdf bib
PEMT for the Public Sector - Evolution of a Solution
Konstantine Boukhvalov | Sandy Hogg

pdf bib
Embedding Register-Aware MT into the CAT Workflow
Corey Miller | Danielle Silverman | Vanesa Jurica | Elizabeth Richerson | Rodney Morris | Elisabeth Mallard

pdf bib
Challenges in Speech Recognition and Translation of High-Value Low-Density Polysynthetic Languages
Judith Klavans | John Morgan | Stephen LaRocca | Jeffrey Micher | Clare Voss

pdf bib
Evaluating Automatic Speech Recognition in Translation
Evelyne Tzoukermann | Corey Miller

pdf bib
Portable Speech-to-Speech Translation on an Android Smartphone: The MFLTS System
Ralf Meermeier | Sean Colbath | Martha Lillie

pdf bib
Tutorial: De-mystifying Neural MT
Dragos Munteanu | Ling Tsou

pdf bib
Tutorial: MQM-DQF: A Good Marriage (Translation Quality for the 21st Century)
Arle Lommel | Alan Melby

pdf bib
Tutorial: Corpora Quality Management for MT - Practices and Roles
Silvio Picinini | Pete Smith | Nicola Ueffing





up

pdf (full)
bib (full)
Proceedings of the BioNLP 2018 workshop

pdf bib
Proceedings of the BioNLP 2018 workshop
Dina Demner-Fushman | Kevin Bretonnel Cohen | Sophia Ananiadou | Junichi Tsujii

pdf bib
Embedding Transfer for Low-Resource Medical Named Entity Recognition: A Case Study on Patient Mobility
Denis Newman-Griffis | Ayah Zirikly

Functioning is gaining recognition as an important indicator of global health, but remains under-studied in medical natural language processing research. We present the first analysis of automatically extracting descriptions of patient mobility, using a recently-developed dataset of free text electronic health records. We frame the task as a named entity recognition (NER) problem, and investigate the applicability of NER techniques to mobility extraction. As text corpora focused on patient functioning are scarce, we explore domain adaptation of word embeddings for use in a recurrent neural network NER system. We find that embeddings trained on a small in-domain corpus perform nearly as well as those learned from large out-of-domain corpora, and that domain adaptation techniques yield additional improvements in both precision and recall. Our analysis identifies several significant challenges in extracting descriptions of patient mobility, including the length and complexity of annotated entities and high linguistic variability in mobility descriptions.

pdf bib
Multi-task learning for interpretable cause of death classification using key phrase prediction
Serena Jeblee | Mireille Gomes | Graeme Hirst

We introduce a multi-task learning model for cause-of-death classification of verbal autopsy narratives that jointly learns to output interpretable key phrases. Adding these key phrases outperforms the baseline model and topic modeling features.

pdf bib
Identifying Risk Factors For Heart Disease in Electronic Medical Records: A Deep Learning Approach
Thanat Chokwijitkul | Anthony Nguyen | Hamed Hassanzadeh | Siegfried Perez

Automatic identification of heart disease risk factors in clinical narratives can expedite disease progression modelling and support clinical decisions. Existing practical solutions for cardiovascular risk detection are mostly hybrid systems entailing the integration of knowledge-driven and data-driven methods, relying on dictionaries, rules and machine learning methods that require a substantial amount of human effort. This paper proposes a comparative analysis on the applicability of deep learning, a re-emerged data-driven technique, in the context of clinical text classification. Various deep learning architectures were devised and evaluated for extracting heart disease risk factors from clinical documents. The data provided for the 2014 i2b2/UTHealth shared task focusing on identifying risk factors for heart disease was used for system development and evaluation. Results have shown that a relatively simple deep learning model can achieve a high micro-averaged F-measure of 0.9081, which is comparable to the best systems from the shared task. This is highly encouraging given the simplicity of the deep learning approach compared to the heavily feature-engineered hybrid approaches that were required to achieve state-of-the-art performances.

pdf bib
Keyphrases Extraction from User-Generated Contents in Healthcare Domain Using Long Short-Term Memory Networks
Ilham Fathy Saputra | Rahmad Mahendra | Alfan Farizki Wicaksono

We propose keyphrases extraction technique to extract important terms from the healthcare user-generated contents. We employ deep learning architecture, i.e. Long Short-Term Memory, and leverage word embeddings, medical concepts from a knowledge base, and linguistic components as our features. The proposed model achieves 61.37% F-1 score. Experimental results indicate that our proposed approach outperforms the baseline methods, i.e. RAKE and CRF, on the task of extracting keyphrases from Indonesian health forum posts.

pdf bib
Identifying Key Sentences for Precision Oncology Using Semi-Supervised Learning
Jurica Ševa | Martin Wackerbauer | Ulf Leser

We present a machine learning pipeline that identifies key sentences in abstracts of oncological articles to aid evidence-based medicine. This problem is characterized by the lack of gold standard datasets, data imbalance and thematic differences between available silver standard corpora. Additionally, available training and target data differs with regard to their domain (professional summaries vs. sentences in abstracts). This makes supervised machine learning inapplicable. We propose the use of two semi-supervised machine learning approaches: To mitigate difficulties arising from heterogeneous data sources, overcome data imbalance and create reliable training data we propose using transductive learning from positive and unlabelled data (PU Learning). For obtaining a realistic classification model, we propose the use of abstracts summarised in relevant sentences as unlabelled examples through Self-Training. The best model achieves 84% accuracy and 0.84 F1 score on our dataset

pdf bib
Ontology alignment in the biomedical domain using entity definitions and context
Lucy Wang | Chandra Bhagavatula | Mark Neumann | Kyle Lo | Chris Wilhelm | Waleed Ammar

Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system.

pdf bib
Sub-word information in pre-trained biomedical word representations: evaluation and hyper-parameter optimization
Dieter Galea | Ivan Laponogov | Kirill Veselkov

Word2vec embeddings are limited to computing vectors for in-vocabulary terms and do not take into account sub-word information. Character-based representations, such as fastText, mitigate such limitations. We optimize and compare these representations for the biomedical domain. fastText was found to consistently outperform word2vec in named entity recognition tasks for entities such as chemicals and genes. This is likely due to gained information from computed out-of-vocabulary term vectors, as well as the word compositionality of such entities. Contrastingly, performance varied on intrinsic datasets. Optimal hyper-parameters were intrinsic dataset-dependent, likely due to differences in term types distributions. This indicates embeddings should be chosen based on the task at hand. We therefore provide a number of optimized hyper-parameter sets and pre-trained word2vec and fastText models, available on https://github.com/dterg/bionlp-embed.

pdf bib
PICO Element Detection in Medical Text via Long Short-Term Memory Neural Networks
Di Jin | Peter Szolovits

Successful evidence-based medicine (EBM) applications rely on answering clinical questions by analyzing large medical literature databases. In order to formulate a well-defined, focused clinical question, a framework called PICO is widely used, which identifies the sentences in a given medical text that belong to the four components: Participants/Problem (P), Intervention (I), Comparison (C) and Outcome (O). In this work, we present a Long Short-Term Memory (LSTM) neural network based model to automatically detect PICO elements. By jointly classifying subsequent sentences in the given text, we achieve state-of-the-art results on PICO element classification compared to several strong baseline models. We also make our curated data public as a benchmarking dataset so that the community can benefit from it.

pdf bib
Coding Structures and Actions with the COSTA Scheme in Medical Conversations
Nan Wang | Yan Song | Fei Xia

This paper describes the COSTA scheme for coding structures and actions in conversation. Informed by Conversation Analysis, the scheme introduces an innovative method for marking multi-layer structural organization of conversation and a structure-informed taxonomy of actions. In addition, we create a corpus of naturally occurring medical conversations, containing 318 video-recorded and manually transcribed pediatric consultations. Based on the annotated corpus, we investigate 1) treatment decision-making process in medical conversations, and 2) effects of physician-caregiver communication behaviors on antibiotic over-prescribing. Although the COSTA annotation scheme is developed based on data from the task-specific domain of pediatric consultations, it can be easily extended to apply to more general domains and other languages.

pdf bib
A Neural Autoencoder Approach for Document Ranking and Query Refinement in Pharmacogenomic Information Retrieval
Jonas Pfeiffer | Samuel Broscheit | Rainer Gemulla | Mathias Göschl

In this study, we investigate learning-to-rank and query refinement approaches for information retrieval in the pharmacogenomic domain. The goal is to improve the information retrieval process of biomedical curators, who manually build knowledge bases for personalized medicine. We study how to exploit the relationships between genes, variants, drugs, diseases and outcomes as features for document ranking and query refinement. For a supervised approach, we are faced with a small amount of annotated data and a large amount of unannotated data. Therefore, we explore ways to use a neural document auto-encoder in a semi-supervised approach. We show that a combination of established algorithms, feature-engineering and a neural auto-encoder model yield promising results in this setting.

pdf bib
Biomedical Event Extraction Using Convolutional Neural Networks and Dependency Parsing
Jari Björne | Tapio Salakoski

Event and relation extraction are central tasks in biomedical text mining. Where relation extraction concerns the detection of semantic connections between pairs of entities, event extraction expands this concept with the addition of trigger words, multiple arguments and nested events, in order to more accurately model the diversity of natural language. In this work we develop a convolutional neural network that can be used for both event and relation extraction. We use a linear representation of the input text, where information is encoded with various vector space embeddings. Most notably, we encode the parse graph into this linear space using dependency path embeddings. We integrate our neural network into the open source Turku Event Extraction System (TEES) framework. Using this system, our machine learning model can be easily applied to a large set of corpora from e.g. the BioNLP, DDI Extraction and BioCreative shared tasks. We evaluate our system on 12 different event, relation and NER corpora, showing good generalizability to many tasks and achieving improved performance on several corpora.

pdf bib
BioAMA: Towards an End to End BioMedical Question Answering System
Vasu Sharma | Nitish Kulkarni | Srividya Pranavi | Gabriel Bayomi | Eric Nyberg | Teruko Mitamura

In this paper, we present a novel Biomedical Question Answering system, BioAMA: “Biomedical Ask Me Anything” on task 5b of the annual BioASQ challenge. In this work, we focus on a wide variety of question types including factoid, list based, summary and yes/no type questions that generate both exact and well-formed ‘ideal’ answers. For summary-type questions, we combine effective IR-based techniques for retrieval and diversification of relevant snippets for a question to create an end-to-end system which achieves a ROUGE-2 score of 0.72 and a ROUGE-SU4 score of 0.71 on ideal answer questions (7% improvement over the previous best model). Additionally, we propose a novel NLI-based framework to answer the yes/no questions. To train the NLI model, we also devise a transfer-learning technique by cross-domain projection of word embeddings. Finally, we present a two-stage approach to address the factoid and list type questions by first generating a candidate set using NER taggers and ranking them using both supervised or unsupervised techniques.

pdf bib
Phrase2VecGLM: Neural generalized language model–based semantic tagging for complex query reformulation in medical IR
Manirupa Das | Eric Fosler-Lussier | Simon Lin | Soheil Moosavinasab | David Chen | Steve Rust | Yungui Huang | Rajiv Ramnath

In this work, we develop a novel, completely unsupervised, neural language model-based document ranking approach to semantic tagging of documents, using the document to be tagged as a query into the GLM to retrieve candidate phrases from top-ranked related documents, thus associating every document with novel related concepts extracted from the text. For this we extend the word embedding-based general language model due to Ganguly et al 2015, to employ phrasal embeddings, and use the semantic tags thus obtained for downstream query expansion, both directly and in feedback loop settings. Our method, evaluated using the TREC 2016 clinical decision support challenge dataset, shows statistically significant improvement not only over various baselines that use standard MeSH terms and UMLS concepts for query expansion, but also over baselines using human expert–assigned concept tags for the queries, run on top of a standard Okapi BM25–based document retrieval system.

pdf bib
Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings
Dat Quoc Nguyen | Karin Verspoor

We investigate the incorporation of character-based word representations into a standard CNN-based relation extraction model. We experiment with two common neural architectures, CNN and LSTM, to learn word vector representations from character embeddings. Through a task on the BioCreative-V CDR corpus, extracting relationships between chemicals and diseases, we show that models exploiting the character-based word representations improve on models that do not use this information, obtaining state-of-the-art result relative to previous neural approaches.

pdf bib
Domain Adaptation for Disease Phrase Matching with Adversarial Networks
Miaofeng Liu | Jialong Han | Haisong Zhang | Yan Song

With the development of medical information management, numerous medical data are being classified, indexed, and searched in various systems. Disease phrase matching, i.e., deciding whether two given disease phrases interpret each other, is a basic but crucial preprocessing step for the above tasks. Being capable of relieving the scarceness of annotations, domain adaptation is generally considered useful in medical systems. However, efforts on applying it to phrase matching remain limited. This paper presents a domain-adaptive matching network for disease phrases. Our network achieves domain adaptation by adversarial training, i.e., preferring features indicating whether the two phrases match, rather than which domain they come from. Experiments suggest that our model has the best performance among the very few non-adaptive or adaptive methods that can benefit from out-of-domain annotations.

pdf bib
Predicting Discharge Disposition Using Patient Complaint Notes in Electronic Medical Records
Mohamad Salimi | Alla Rozovskaya

Overcrowding in emergency rooms is a major challenge faced by hospitals across the United States. Overcrowding can result in longer wait times, which, in turn, has been shown to adversely affect patient satisfaction, clinical outcomes, and procedure reimbursements. This paper presents research that aims to automatically predict discharge disposition of patients who received medical treatment in an emergency department. We make use of a corpus that consists of notes containing patient complaints, diagnosis information, and disposition, entered by health care providers. We use this corpus to develop a model that uses the complaint and diagnosis information to predict patient disposition. We show that the proposed model substantially outperforms the baseline of predicting the most common disposition type. The long-term goal of this research is to build a model that can be implemented as a real-time service in an application to predict disposition as patients arrive.

pdf bib
Bacteria and Biotope Entity Recognition Using A Dictionary-Enhanced Neural Network Model
Qiuyue Wang | Xiaofeng Meng

Automatic recognition of biomedical entities in text is the crucial initial step in biomedical text mining. In this pa-per, we investigate employing modern neural network models for recognizing biomedical entities. To compensate for the small amount of training data in biomedical domain, we propose to integrate dictionaries into the neural model. Our experiments on BB3 data sets demonstrate that state-of-the-art neural network model is promising in recognizing biomedical entities even with very little training data. When integrated with dictionaries, its performance could be greatly improved, achieving the competitive performance compared with the best dictionary-based system on the entities with specific terminology, and much higher performance on the entities with more general terminology.

pdf bib
SingleCite: Towards an improved Single Citation Search in PubMed
Lana Yeganova | Donald C Comeau | Won Kim | W John Wilbur | Zhiyong Lu

A search that is targeted at finding a specific document in databases is called a Single Citation search. Single citation searches are particularly important for scholarly databases, such as PubMed, because users are frequently searching for a specific publication. In this work we describe SingleCite, a single citation matching system designed to facilitate user’s search for a specific document. We report on the progress that has been achieved towards building that functionality.

pdf bib
A Framework for Developing and Evaluating Word Embeddings of Drug-named Entity
Mengnan Zhao | Aaron J. Masino | Christopher C. Yang

We investigate the quality of task specific word embeddings created with relatively small, targeted corpora. We present a comprehensive evaluation framework including both intrinsic and extrinsic evaluation that can be expanded to named entities beyond drug name. Intrinsic evaluation results tell that drug name embeddings created with a domain specific document corpus outperformed the previously published versions that derived from a very large general text corpus. Extrinsic evaluation uses word embedding for the task of drug name recognition with Bi-LSTM model and the results demonstrate the advantage of using domain-specific word embeddings as the only input feature for drug name recognition with F1-score achieving 0.91. This work suggests that it may be advantageous to derive domain specific embeddings for certain tasks even when the domain specific corpus is of limited size.

pdf bib
MeSH-based dataset for measuring the relevance of text retrieval
Won Gyu Kim | Lana Yeganova | Donald Comeau | W John Wilbur | Zhiyong Lu

Creating simulated search environments has been of a significant interest in infor-mation retrieval, in both general and bio-medical search domains. Existing collec-tions include modest number of queries and are constructed by manually evaluat-ing retrieval results. In this work we pro-pose leveraging MeSH term assignments for creating synthetic test beds. We select a suitable subset of MeSH terms as queries, and utilize MeSH term assignments as pseudo-relevance rankings for retrieval evaluation. Using well studied retrieval functions, we show that their performance on the proposed data is consistent with similar findings in previous work. We further use the proposed retrieval evaluation framework to better understand how to combine heterogeneous sources of textual information.

pdf bib
CRF-LSTM Text Mining Method Unveiling the Pharmacological Mechanism of Off-target Side Effect of Anti-Multiple Myeloma Drugs
Kaiyin Zhou | Sheng Zhang | Xiangyu Meng | Qi Luo | Yuxing Wang | Ke Ding | Yukun Feng | Mo Chen | Kevin Cohen | Jingbo Xia

Sequence labeling of biomedical entities, e.g., side effects or phenotypes, was a long-term task in BioNLP and MedNLP communities. Thanks to effects made among these communities, adverse reaction NER has developed dramatically in recent years. As an illuminative application, to achieve knowledge discovery via the combination of the text mining result and bioinformatics idea shed lights on the pharmacological mechanism research.

pdf bib
Prediction Models for Risk of Type-2 Diabetes Using Health Claims
Masatoshi Nagata | Kohichi Takai | Keiji Yasuda | Panikos Heracleous | Akio Yoneyama

This study focuses on highly accurate prediction of the onset of type-2 diabetes. We investigated whether prediction accuracy can be improved by utilizing lab test data obtained from health checkups and incorporating health claim text data such as medically diagnosed diseases with ICD10 codes and pharmacy information. In a previous study, prediction accuracy was increased slightly by adding diagnosis disease name and independent variables such as prescription medicine. Therefore, in the current study we explored more suitable models for prediction by using state-of-the-art techniques such as XGBoost and long short-term memory (LSTM) based on recurrent neural networks. In the current study, text data was vectorized using word2vec, and the prediction model was compared with logistic regression. The results obtained confirmed that onset of type-2 diabetes can be predicted with a high degree of accuracy when the XGBoost model is used.

pdf bib
On Learning Better Embeddings from Chinese Clinical Records: Study on Combining In-Domain and Out-Domain Data
Yaqiang Wang | Yunhui Chen | Hongping Shu | Yongguang Jiang

High quality word embeddings are of great significance to advance applications of biomedical natural language processing. In recent years, a surge of interest on how to learn good embeddings and evaluate embedding quality based on English medical text has become increasing evident, however a limited number of studies based on Chinese medical text, particularly Chinese clinical records, were performed. Herein, we proposed a novel approach of improving the quality of learned embeddings using out-domain data as a supplementary in the case of limited Chinese clinical records. Moreover, the embedding quality evaluation method was conducted based on Medical Conceptual Similarity Property. The experimental results revealed that selecting good training samples was necessary, and collecting right amount of out-domain data and trading off between the quality of embeddings and the training time consumption were essential factors for better embeddings.

pdf bib
Investigating Domain-Specific Information for Neural Coreference Resolution on Biomedical Texts
Hai-Long Trieu | Nhung T. H. Nguyen | Makoto Miwa | Sophia Ananiadou

Existing biomedical coreference resolution systems depend on features and/or rules based on syntactic parsers. In this paper, we investigate the utility of the state-of-the-art general domain neural coreference resolution system on biomedical texts. The system is an end-to-end system without depending on any syntactic parsers. We also investigate the domain specific features to enhance the system for biomedical texts. Experimental results on the BioNLP Protein Coreference dataset and the CRAFT corpus show that, with no parser information, the adapted system compared favorably with the systems that depend on parser information on these datasets, achieving 51.23% on the BioNLP dataset and 36.33% on the CRAFT corpus in F1 score. In-domain embeddings and domain-specific features helped improve the performance on the BioNLP dataset, but they did not on the CRAFT corpus.

pdf bib
Toward Cross-Domain Engagement Analysis in Medical Notes
Sara Rosenthal | Adam Faulkner

We present a novel annotation task evaluating a patient’s engagement with their health care regimen. The concept of engagement supplements the traditional concept of adherence with a focus on the patient’s affect, lifestyle choices, and health goal status. We describe an engagement annotation task across two patient note domains: traditional clinical notes and a novel domain, care manager notes, where we find engagement to be more common. The annotation task resulted in a kappa of .53, suggesting strong annotator intuitions regarding engagement-bearing language. In addition, we report the results of a series of preliminary engagement classification experiments using domain adaptation.

up

pdf (full)
bib (full)
Proceedings of the Seventh Named Entities Workshop

pdf bib
Proceedings of the Seventh Named Entities Workshop
Nancy Chen | Rafael E. Banchs | Xiangyu Duan | Min Zhang | Haizhou Li

pdf bib
Automatic Extraction of Entities and Relation from Legal Documents
Judith Jeyafreeda Andrew

In recent years, the journalists and computer sciences speak to each other to identify useful technologies which would help them in extracting useful information. This is called “computational Journalism”. In this paper, we present a method that will enable the journalists to automatically identifies and annotates entities such as names of people, organizations, role and functions of people in legal documents; the relationship between these entities are also explored. The system uses a combination of both statistical and rule based technique. The statistical method used is Conditional Random Fields and for the rule based technique, document and language specific regular expressions are used.

pdf bib
Connecting Distant Entities with Induction through Conditional Random Fields for Named Entity Recognition: Precursor-Induced CRF
Wangjin Lee | Jinwook Choi

This paper presents a method of designing specific high-order dependency factor on the linear chain conditional random fields (CRFs) for named entity recognition (NER). Named entities tend to be separated from each other by multiple outside tokens in a text, and thus the first-order CRF, as well as the second-order CRF, may innately lose transition information between distant named entities. The proposed design uses outside label in NER as a transmission medium of precedent entity information on the CRF. Then, empirical results apparently demonstrate that it is possible to exploit long-distance label dependency in the original first-order linear chain CRF structure upon NER while reducing computational loss rather than in the second-order CRF.

pdf bib
A Sequence Learning Method for Domain-Specific Entity Linking
Emrah Inan | Oguz Dikenelli

Recent collective Entity Linking studies usually promote global coherence of all the mapped entities in the same document by using semantic embeddings and graph-based approaches. Although graph-based approaches are shown to achieve remarkable results, they are computationally expensive for general datasets. Also, semantic embeddings only indicate relatedness between entity pairs without considering sequences. In this paper, we address these problems by introducing a two-fold neural model. First, we match easy mention-entity pairs and using the domain information of this pair to filter candidate entities of closer mentions. Second, we resolve more ambiguous pairs using bidirectional Long Short-Term Memory and CRF models for the entity disambiguation. Our proposed system outperforms state-of-the-art systems on the generated domain-specific evaluation dataset.

pdf bib
Attention-based Semantic Priming for Slot-filling
Jiewen Wu | Rafael E. Banchs | Luis Fernando D’Haro | Pavitra Krishnaswamy | Nancy Chen

The problem of sequence labelling in language understanding would benefit from approaches inspired by semantic priming phenomena. We propose that an attention-based RNN architecture can be used to simulate semantic priming for sequence labelling. Specifically, we employ pre-trained word embeddings to characterize the semantic relationship between utterances and labels. We validate the approach using varying sizes of the ATIS and MEDIA datasets, and show up to 1.4-1.9% improvement in F1 score. The developed framework can enable more explainable and generalizable spoken language understanding systems.

pdf bib
Named Entity Recognition for Hindi-English Code-Mixed Social Media Text
Vinay Singh | Deepanshu Vijay | Syed Sarfaraz Akhtar | Manish Shrivastava

Named Entity Recognition (NER) is a major task in the field of Natural Language Processing (NLP), and also is a sub-task of Information Extraction. The challenge of NER for tweets lie in the insufficient information available in a tweet. There has been a significant amount of work done related to entity extraction, but only for resource rich languages and domains such as newswire. Entity extraction is, in general, a challenging task for such an informal text, and code-mixed text further complicates the process with it’s unstructured and incomplete information. We propose experiments with different machine learning classification algorithms with word, character and lexical features. The algorithms we experimented with are Decision tree, Long Short-Term Memory (LSTM), and Conditional Random Field (CRF). In this paper, we present a corpus for NER in Hindi-English Code-Mixed along with extensive experiments on our machine learning models which achieved the best f1-score of 0.95 with both CRF and LSTM.

pdf bib
Forms of Anaphoric Reference to Organisational Named Entities: Hoping to widen appeal, they diversified
Christian Hardmeier | Luca Bevacqua | Sharid Loáiciga | Hannah Rohde

Proper names of organisations are a special case of collective nouns. Their meaning can be conceptualised as a collective unit or as a plurality of persons, allowing for different morphological marking of coreferent anaphoric pronouns. This paper explores the variability of references to organisation names with 1) a corpus analysis and 2) two crowd-sourced story continuation experiments. The first shows that the preference for singular vs. plural conceptualisation is dependent on the level of formality of a text. In the second, we observe a strong preference for the plural they otherwise typical of informal speech. Using edited corpus data instead of constructed sentences as stimuli reduces this preference.

pdf bib
Named-Entity Tagging and Domain adaptation for Better Customized Translation
Zhongwei Li | Xuancong Wang | Ai Ti Aw | Eng Siong Chng | Haizhou Li

Customized translation need pay spe-cial attention to the target domain ter-minology especially the named-entities for the domain. Adding linguistic features to neural machine translation (NMT) has been shown to benefit translation in many studies. In this paper, we further demonstrate that adding named-entity (NE) feature with named-entity recognition (NER) into the source language produces better translation with NMT. Our experiments show that by just including the different NE classes and boundary tags, we can increase the BLEU score by around 1 to 2 points using the standard test sets from WMT2017. We also show that adding NE tags using NER and applying in-domain adaptation can be combined to further improve customized machine translation.

pdf bib
NEWS 2018 Whitepaper
Nancy Chen | Xiangyu Duan | Min Zhang | Rafael E. Banchs | Haizhou Li

Transliteration is defined as phonetic translation of names across languages. Transliteration of Named Entities (NEs) is necessary in many applications, such as machine translation, corpus alignment, cross-language IR, information extraction and automatic lexicon acquisition. All such systems call for high-performance transliteration, which is the focus of shared task in the NEWS 2018 workshop. The objective of the shared task is to promote machine transliteration research by providing a common benchmarking platform for the community to evaluate the state-of-the-art technologies.

pdf bib
Report of NEWS 2018 Named Entity Transliteration Shared Task
Nancy Chen | Rafael E. Banchs | Min Zhang | Xiangyu Duan | Haizhou Li

This report presents the results from the Named Entity Transliteration Shared Task conducted as part of The Seventh Named Entities Workshop (NEWS 2018) held at ACL 2018 in Melbourne, Australia. Similar to previous editions of NEWS, the Shared Task featured 19 tasks on proper name transliteration, including 13 different languages and two different Japanese scripts. A total of 6 teams from 8 different institutions participated in the evaluation, submitting 424 runs, involving different transliteration methodologies. Four performance metrics were used to report the evaluation results. The NEWS shared task on machine transliteration has successfully achieved its objectives by providing a common ground for the research community to conduct comparative evaluations of state-of-the-art technologies that will benefit the future research and development in this area.

pdf bib
Statistical Machine Transliteration Baselines for NEWS 2018
Snigdha Singhania | Minh Nguyen | Gia H. Ngo | Nancy Chen

This paper reports the results of our trans-literation experiments conducted on NEWS 2018 Shared Task dataset. We focus on creating the baseline systems trained using two open-source, statistical transliteration tools, namely Sequitur and Moses. We discuss the pre-processing steps performed on this dataset for both the systems. We also provide a re-ranking system which uses top hypotheses from Sequitur and Moses to create a consolidated list of transliterations. The results obtained from each of these models can be used to present a good starting point for the participating teams.

pdf bib
A Deep Learning Based Approach to Transliteration
Soumyadeep Kundu | Sayantan Paul | Santanu Pal

In this paper, we propose different architectures for language independent machine transliteration which is extremely important for natural language processing (NLP) applications. Though a number of statistical models for transliteration have already been proposed in the past few decades, we proposed some neural network based deep learning architectures for the transliteration of named entities. Our transliteration systems adapt two different neural machine translation (NMT) frameworks: recurrent neural network and convolutional sequence to sequence based NMT. It is shown that our method provides quite satisfactory results when it comes to multi lingual machine transliteration. Our submitted runs are an ensemble of different transliteration systems for all the language pairs. In the NEWS 2018 Shared Task on Transliteration, our method achieves top performance for the En–Pe and Pe–En language pairs and comparable results for other cases.

pdf bib
Comparison of Assorted Models for Transliteration
Saeed Najafi | Bradley Hauer | Rashed Rubby Riyadh | Leyuan Yu | Grzegorz Kondrak

We report the results of our experiments in the context of the NEWS 2018 Shared Task on Transliteration. We focus on the comparison of several diverse systems, including three neural MT models. A combination of discriminative, generative, and neural models obtains the best results on the development sets. We also put forward ideas for improving the shared task.

pdf bib
Neural Machine Translation Techniques for Named Entity Transliteration
Roman Grundkiewicz | Kenneth Heafield

Transliterating named entities from one language into another can be approached as neural machine translation (NMT) problem, for which we use deep attentional RNN encoder-decoder models. To build a strong transliteration system, we apply well-established techniques from NMT, such as dropout regularization, model ensembling, rescoring with right-to-left models, and back-translation. Our submission to the NEWS 2018 Shared Task on Named Entity Transliteration ranked first in several tracks.

pdf bib
Low-Resource Machine Transliteration Using Recurrent Neural Networks of Asian Languages
Ngoc Tan Le | Fatiha Sadat

Grapheme-to-phoneme models are key components in automatic speech recognition and text-to-speech systems. With low-resource language pairs that do not have available and well-developed pronunciation lexicons, grapheme-to-phoneme models are particularly useful. These models are based on initial alignments between grapheme source and phoneme target sequences. Inspired by sequence-to-sequence recurrent neural network-based translation methods, the current research presents an approach that applies an alignment representation for input sequences and pre-trained source and target embeddings to overcome the transliteration problem for a low-resource languages pair. We participated in the NEWS 2018 shared task for the English-Vietnamese transliteration task.

up

pdf (full)
bib (full)
Proceedings of Workshop for NLP Open Source Software (NLP-OSS)

pdf bib
Proceedings of Workshop for NLP Open Source Software (NLP-OSS)
Eunjeong L. Park | Masato Hagiwara | Dmitrijs Milajevs | Liling Tan

pdf bib
AllenNLP: A Deep Semantic Natural Language Processing Platform
Matt Gardner | Joel Grus | Mark Neumann | Oyvind Tafjord | Pradeep Dasigi | Nelson F. Liu | Matthew Peters | Michael Schmitz | Luke Zettlemoyer

Modern natural language processing (NLP) research requires writing code. Ideally this code would provide a precise definition of the approach, easy repeatability of results, and a basis for extending the research. However, many research codebases bury high-level parameters under implementation details, are challenging to run and debug, and are difficult enough to extend that they are more likely to be rewritten. This paper describes AllenNLP, a library for applying deep learning methods to NLP research that addresses these issues with easy-to-use command-line tools, declarative configuration-driven experiments, and modular NLP abstractions. AllenNLP has already increased the rate of research experimentation and the sharing of NLP components at the Allen Institute for Artificial Intelligence, and we are working to have the same impact across the field.

pdf bib
Stop Word Lists in Free Open-source Software Packages
Joel Nothman | Hanmin Qin | Roman Yurchak

Open-source software packages for language processing often include stop word lists. Users may apply them without awareness of their surprising omissions (e.g. “hasn’t” but not “hadn’t”) and inclusions (“computer”), or their incompatibility with a particular tokenizer. Motivated by issues raised about the Scikit-learn stop list, we investigate variation among and consistency within 52 popular English-language stop lists, and propose strategies for mitigating these issues.

pdf bib
Texar: A Modularized, Versatile, and Extensible Toolbox for Text Generation
Zhiting Hu | Zichao Yang | Tiancheng Zhao | Haoran Shi | Junxian He | Di Wang | Xuezhe Ma | Zhengzhong Liu | Xiaodan Liang | Lianhui Qin | Devendra Singh Chaplot | Bowen Tan | Xingjiang Yu | Eric Xing

We introduce Texar, an open-source toolkit aiming to support the broad set of text generation tasks. Different from many existing toolkits that are specialized for specific applications (e.g., neural machine translation), Texar is designed to be highly flexible and versatile. This is achieved by abstracting the common patterns underlying the diverse tasks and methodologies, creating a library of highly reusable modules and functionalities, and enabling arbitrary model architectures and various algorithmic paradigms. The features make Texar particularly suitable for technique sharing and generalization across different text generation applications. The toolkit emphasizes heavily on extensibility and modularized system design, so that components can be freely plugged in or swapped out. We conduct extensive experiments and case studies to demonstrate the use and advantage of the toolkit.

pdf bib
The ACL Anthology: Current State and Future Directions
Daniel Gildea | Min-Yen Kan | Nitin Madnani | Christoph Teichmann | Martín Villalba

The Association of Computational Linguistic’s Anthology is the open source archive, and the main source for computational linguistics and natural language processing’s scientific literature. The ACL Anthology is currently maintained exclusively by community volunteers and has to be available and up-to-date at all times. We first discuss the current, open source approach used to achieve this, and then discuss how the planned use of Docker images will improve the Anthology’s long-term stability. This change will make it easier for researchers to utilize Anthology data for experimentation. We believe the ACL community can directly benefit from the extension-friendly architecture of the Anthology. We end by issuing an open challenge of reviewer matching we encourage the community to rally towards.

pdf bib
The risk of sub-optimal use of Open Source NLP Software: UKB is inadvertently state-of-the-art in knowledge-based WSD
Eneko Agirre | Oier López de Lacalle | Aitor Soroa

UKB is an open source collection of programs for performing, among other tasks, Knowledge-Based Word Sense Disambiguation (WSD). Since it was released in 2009 it has been often used out-of-the-box in sub-optimal settings. We show that nine years later it is the state-of-the-art on knowledge-based WSD. This case shows the pitfalls of releasing open source NLP software without optimal default settings and precise instructions for reproducibility.

pdf bib
Baseline: A Library for Rapid Modeling, Experimentation and Development of Deep Learning Algorithms targeting NLP
Daniel Pressel | Sagnik Ray Choudhury | Brian Lester | Yanjie Zhao | Matt Barta

We introduce Baseline: a library for reproducible deep learning research and fast model development for NLP. The library provides easily extensible abstractions and implementations for data loading, model development, training and export of deep learning architectures. It also provides implementations for simple, high-performance, deep learning models for various NLP tasks, against which newly developed models can be compared. Deep learning experiments are hard to reproduce, Baseline provides functionalities to track them. The goal is to allow a researcher to focus on model development, delegating the repetitive tasks to the library.

pdf bib
OpenSeq2Seq: Extensible Toolkit for Distributed and Mixed Precision Training of Sequence-to-Sequence Models
Oleksii Kuchaiev | Boris Ginsburg | Igor Gitman | Vitaly Lavrukhin | Carl Case | Paulius Micikevicius

We present OpenSeq2Seq – an open-source toolkit for training sequence-to-sequence models. The main goal of our toolkit is to allow researchers to most effectively explore different sequence-to-sequence architectures. The efficiency is achieved by fully supporting distributed and mixed-precision training. OpenSeq2Seq provides building blocks for training encoder-decoder models for neural machine translation and automatic speech recognition. We plan to extend it with other modalities in the future.

pdf bib
Integrating Multiple NLP Technologies into an Open-source Platform for Multilingual Media Monitoring
Ulrich Germann | Renārs Liepins | Didzis Gosko | Guntis Barzdins

The open-source SUMMA Platform is a highly scalable distributed architecture for monitoring a large number of media broadcasts in parallel, with a lag behind actual broadcast time of at most a few minutes. It assembles numerous state-of-the-art NLP technologies into a fully automated media ingestion pipeline that can record live broadcasts, detect and transcribe spoken content, translate from several languages (original text or transcribed speech) into English, recognize Named Entities, detect topics, cluster and summarize documents across language barriers, and extract and store factual claims in these news items. This paper describes the intended use cases and discusses the system design decisions that allowed us to integrate state-of-the-art NLP modules into an effective workflow with comparatively little effort.

pdf bib
The Annotated Transformer
Alexander Rush

(Note this is not being submitted blind. The chair of the workshop requested this submission unblinded from me on twitter, so assuming that is okay.) A major goal of open-source NLP is to quickly and accurately reproduce the results of new work, in a manner that the community can easily use and modify. While most papers publish enough detail for replication, it still may be difficult to achieve good results in practice. This paper presents a worked exercise of paper reproduction with the goal of implementing the results of the recent Transformer model. The replication exercise aims at simple code structure that follows closely with the original work, while achieving an efficient usable system.

up

pdf (full)
bib (full)
Proceedings of the Workshop on Machine Reading for Question Answering

pdf bib
Proceedings of the Workshop on Machine Reading for Question Answering
Eunsol Choi | Minjoon Seo | Danqi Chen | Robin Jia | Jonathan Berant

pdf bib
Ruminating Reader: Reasoning with Gated Multi-hop Attention
Yichen Gong | Samuel Bowman

To answer the question in machine comprehension (MC) task, the models need to establish the interaction between the question and the context. To tackle the problem that the single-pass model cannot reflect on and correct its answer, we present Ruminating Reader. Ruminating Reader adds a second pass of attention and a novel information fusion component to the Bi-Directional Attention Flow model (BiDAF). We propose novel layer structures that construct a query aware context vector representation and fuse encoding representation with intermediate representation on top of BiDAF model. We show that a multi-hop attention mechanism can be applied to a bi-directional attention structure. In experiments on SQuAD, we find that the Reader outperforms the BiDAF baseline by 2.1 F1 score and 2.7 EM score. Our analysis shows that different hops of the attention have different responsibilities in selecting answers.

pdf bib
Systematic Error Analysis of the Stanford Question Answering Dataset
Marc-Antoine Rondeau | T. J. Hazen

We analyzed the outputs of multiple question answering (QA) models applied to the Stanford Question Answering Dataset (SQuAD) to identify the core challenges for QA systems on this data set. Through an iterative process, challenging aspects were hypothesized through qualitative analysis of the common error cases. A classifier was then constructed to predict whether SQuAD test examples were likely to be difficult for systems to answer based on features associated with the hypothesized aspects. The classifier’s performance was used to accept or reject each aspect as an indicator of difficulty. With this approach, we ensured that our hypotheses were systematically tested and not simply accepted based on our pre-existing biases. Our explanations are not accepted based on human evaluation of individual examples. This process also enabled us to identify the primary QA strategy learned by the models, i.e., systems determined the acceptable answer type for a question and then selected the acceptable answer span of that type containing the highest density of words present in the question within its local vicinity in the passage.

pdf bib
A Multi-Stage Memory Augmented Neural Network for Machine Reading Comprehension
Seunghak Yu | Sathish Reddy Indurthi | Seohyun Back | Haejun Lee

Reading Comprehension (RC) of text is one of the fundamental tasks in natural language processing. In recent years, several end-to-end neural network models have been proposed to solve RC tasks. However, most of these models suffer in reasoning over long documents. In this work, we propose a novel Memory Augmented Machine Comprehension Network (MAMCN) to address long-range dependencies present in machine reading comprehension. We perform extensive experiments to evaluate proposed method with the renowned benchmark datasets such as SQuAD, QUASAR-T, and TriviaQA. We achieve the state of the art performance on both the document-level (QUASAR-T, TriviaQA) and paragraph-level (SQuAD) datasets compared to all the previously published approaches.

pdf bib
Tackling Adversarial Examples in QA via Answer Sentence Selection
Yuanhang Ren | Ye Du | Di Wang

Question answering systems deteriorate dramatically in the presence of adversarial sentences in articles. According to Jia and Liang (2017), the single BiDAF system (Seo et al., 2016) only achieves an F1 score of 4.8 on the ADDANY adversarial dataset. In this paper, we present a method to tackle this problem via answer sentence selection. Given a paragraph of an article and a corresponding query, instead of directly feeding the whole paragraph to the single BiDAF system, a sentence that most likely contains the answer to the query is first selected, which is done via a deep neural network based on TreeLSTM (Tai et al., 2015). Experiments on ADDANY adversarial dataset validate the effectiveness of our method. The F1 score has been improved to 52.3.

pdf bib
DuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications
Wei He | Kai Liu | Jing Liu | Yajuan Lyu | Shiqi Zhao | Xinyan Xiao | Yuan Liu | Yizhong Wang | Hua Wu | Qiaoqiao She | Xuan Liu | Tian Wu | Haifeng Wang

This paper introduces DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, designed to address real-world MRC. DuReader has three advantages over previous MRC datasets: (1) data sources: questions and documents are based on Baidu Search and Baidu Zhidao; answers are manually generated. (2) question types: it provides rich annotations for more question types, especially yes-no and opinion questions, that leaves more opportunity for the research community. (3) scale: it contains 200K questions, 420K answers and 1M documents; it is the largest Chinese MRC dataset so far. Experiments show that human performance is well above current state-of-the-art baseline systems, leaving plenty of room for the community to make improvements. To help the community make these improvements, both DuReader and baseline systems have been posted online. We also organize a shared competition to encourage the exploration of more models. Since the release of the task, there are significant improvements over the baselines.

pdf bib
Robust and Scalable Differentiable Neural Computer for Question Answering
Jörg Franke | Jan Niehues | Alex Waibel

Deep learning models are often not easily adaptable to new tasks and require task-specific adjustments. The differentiable neural computer (DNC), a memory-augmented neural network, is designed as a general problem solver which can be used in a wide range of tasks. But in reality, it is hard to apply this model to new tasks. We analyze the DNC and identify possible improvements within the application of question answering. This motivates a more robust and scalable DNC (rsDNC). The objective precondition is to keep the general character of this model intact while making its application more reliable and speeding up its required training time. The rsDNC is distinguished by a more robust training, a slim memory unit and a bidirectional architecture. We not only achieve new state-of-the-art performance on the bAbI task, but also minimize the performance variance between different initializations. Furthermore, we demonstrate the simplified applicability of the rsDNC to new tasks with passable results on the CNN RC task without adaptions.

pdf bib
A Systematic Classification of Knowledge, Reasoning, and Context within the ARC Dataset
Michael Boratko | Harshit Padigela | Divyendra Mikkilineni | Pritish Yuvraj | Rajarshi Das | Andrew McCallum | Maria Chang | Achille Fokoue-Nkoutche | Pavan Kapanipathi | Nicholas Mattei | Ryan Musa | Kartik Talamadupula | Michael Witbrock

The recent work of Clark et al. (2018) introduces the AI2 Reasoning Challenge (ARC) and the associated ARC dataset that partitions open domain, complex science questions into easy and challenge sets. That paper includes an analysis of 100 questions with respect to the types of knowledge and reasoning required to answer them; however, it does not include clear definitions of these types, nor does it offer information about the quality of the labels. We propose a comprehensive set of definitions of knowledge and reasoning types necessary for answering the questions in the ARC dataset. Using ten annotators and a sophisticated annotation interface, we analyze the distribution of labels across the challenge set and statistics related to them. Additionally, we demonstrate that although naive information retrieval methods return sentences that are irrelevant to answering the query, sufficient supporting text is often present in the (ARC) corpus. Evaluating with human-selected relevant sentences improves the performance of a neural machine comprehension model by 42 points.

pdf bib
RECIPE: Applying Open Domain Question Answering to Privacy Policies
Yan Shvartzshanider | Ananth Balashankar | Thomas Wies | Lakshminarayanan Subramanian

We describe our experiences in using an open domain question answering model (Chen et al., 2017) to evaluate an out-of-domain QA task of assisting in analyzing privacy policies of companies. Specifically, Relevant CI Parameters Extractor (RECIPE) seeks to answer questions posed by the theory of contextual integrity (CI) regarding the information flows described in the privacy statements. These questions have a simple syntactic structure and the answers are factoids or descriptive in nature. The model achieved an F1 score of 72.33, but we noticed that combining the results of this model with a neural dependency parser based approach yields a significantly higher F1 score of 92.35 compared to manual annotations. This indicates that future work which in-corporates signals from parsing like NLP tasks more explicitly can generalize better on out-of-domain tasks.

pdf bib
Neural Models for Key Phrase Extraction and Question Generation
Sandeep Subramanian | Tong Wang | Xingdi Yuan | Saizheng Zhang | Adam Trischler | Yoshua Bengio

We propose a two-stage neural model to tackle question generation from documents. First, our model estimates the probability that word sequences in a document are ones that a human would pick when selecting candidate answers by training a neural key-phrase extractor on the answers in a question-answering corpus. Predicted key phrases then act as target answers and condition a sequence-to-sequence question-generation model with a copy mechanism. Empirically, our key-phrase extraction model significantly outperforms an entity-tagging baseline and existing rule-based approaches. We further demonstrate that our question generation system formulates fluent, answerable questions from key phrases. This two-stage system could be used to augment or generate reading comprehension datasets, which may be leveraged to improve machine reading systems or in educational settings.

pdf bib
Comparative Analysis of Neural QA models on SQuAD
Soumya Wadhwa | Khyathi Chandu | Eric Nyberg

The task of Question Answering has gained prominence in the past few decades for testing the ability of machines to understand natural language. Large datasets for Machine Reading have led to the development of neural models that cater to deeper language understanding compared to information retrieval tasks. Different components in these neural architectures are intended to tackle different challenges. As a first step towards achieving generalization across multiple domains, we attempt to understand and compare the peculiarities of existing end-to-end neural models on the Stanford Question Answering Dataset (SQuAD) by performing quantitative as well as qualitative analysis of the results attained by each of them. We observed that prediction errors reflect certain model-specific biases, which we further discuss in this paper.

pdf bib
Adaptations of ROUGE and BLEU to Better Evaluate Machine Reading Comprehension Task
An Yang | Kai Liu | Jing Liu | Yajuan Lyu | Sujian Li

Current evaluation metrics to question answering based machine reading comprehension (MRC) systems generally focus on the lexical overlap between candidate and reference answers, such as ROUGE and BLEU. However, bias may appear when these metrics are used for specific question types, especially questions inquiring yes-no opinions and entity lists. In this paper, we make adaptations on the metrics to better correlate n-gram overlap with the human judgment for answers to these two question types. Statistical analysis proves the effectiveness of our approach. Our adaptations may provide positive guidance for the development of real-scene MRC systems.

up

pdf (full)
bib (full)
Proceedings of the 2nd Workshop on Neural Machine Translation and Generation

pdf bib
Proceedings of the 2nd Workshop on Neural Machine Translation and Generation
Alexandra Birch | Andrew Finch | Thang Luong | Graham Neubig | Yusuke Oda

pdf bib
Findings of the Second Workshop on Neural Machine Translation and Generation
Alexandra Birch | Andrew Finch | Minh-Thang Luong | Graham Neubig | Yusuke Oda

This document describes the findings of the Second Workshop on Neural Machine Translation and Generation, held in concert with the annual conference of the Association for Computational Linguistics (ACL 2018). First, we summarize the research trends of papers presented in the proceedings, and note that there is particular interest in linguistic structure, domain adaptation, data augmentation, handling inadequate resources, and analysis of models. Second, we describe the results of the workshop’s shared task on efficient neural machine translation, where participants were tasked with creating MT systems that are both accurate and efficient.

pdf bib
A Shared Attention Mechanism for Interpretation of Neural Automatic Post-Editing Systems
Inigo Jauregi Unanue | Ehsan Zare Borzeshi | Massimo Piccardi

Automatic post-editing (APE) systems aim to correct the systematic errors made by machine translators. In this paper, we propose a neural APE system that encodes the source (src) and machine translated (mt) sentences with two separate encoders, but leverages a shared attention mechanism to better understand how the two inputs contribute to the generation of the post-edited (pe) sentences. Our empirical observations have showed that when the mt is incorrect, the attention shifts weight toward tokens in the src sentence to properly edit the incorrect translation. The model has been trained and evaluated on the official data from the WMT16 and WMT17 APE IT domain English-German shared tasks. Additionally, we have used the extra 500K artificial data provided by the shared task. Our system has been able to reproduce the accuracies of systems trained with the same data, while at the same time providing better interpretability.

pdf bib
Iterative Back-Translation for Neural Machine Translation
Vu Cong Duy Hoang | Philipp Koehn | Gholamreza Haffari | Trevor Cohn

We present iterative back-translation, a method for generating increasingly better synthetic parallel data from monolingual data to train neural machine translation systems. Our proposed method is very simple yet effective and highly applicable in practice. We demonstrate improvements in neural machine translation quality in both high and low resourced scenarios, including the best reported BLEU scores for the WMT 2017 German↔English tasks.

pdf bib
Inducing Grammars with and for Neural Machine Translation
Yonatan Bisk | Ke Tran

Machine translation systems require semantic knowledge and grammatical understanding. Neural machine translation (NMT) systems often assume this information is captured by an attention mechanism and a decoder that ensures fluency. Recent work has shown that incorporating explicit syntax alleviates the burden of modeling both types of knowledge. However, requiring parses is expensive and does not explore the question of what syntax a model needs during translation. To address both of these issues we introduce a model that simultaneously translates while inducing dependency trees. In this way, we leverage the benefits of structure while investigating what syntax NMT must induce to maximize performance. We show that our dependency trees are 1. language pair dependent and 2. improve translation quality.

pdf bib
Regularized Training Objective for Continued Training for Domain Adaptation in Neural Machine Translation
Huda Khayrallah | Brian Thompson | Kevin Duh | Philipp Koehn

Supervised domain adaptation—where a large generic corpus and a smaller in-domain corpus are both available for training—is a challenge for neural machine translation (NMT). Standard practice is to train a generic model and use it to initialize a second model, then continue training the second model on in-domain data to produce an in-domain model. We add an auxiliary term to the training objective during continued training that minimizes the cross entropy between the in-domain model’s output word distribution and that of the out-of-domain model to prevent the model’s output from differing too much from the original out-of-domain model. We perform experiments on EMEA (descriptions of medicines) and TED (rehearsed presentations), initialized from a general domain (WMT) model. Our method shows improvements over standard continued training by up to 1.5 BLEU.

pdf bib
Controllable Abstractive Summarization
Angela Fan | David Grangier | Michael Auli

Current models for document summarization disregard user preferences such as the desired length, style, the entities that the user might be interested in, or how much of the document the user has already read. We present a neural summarization model with a simple but effective mechanism to enable users to specify these high level attributes in order to control the shape of the final summaries to better suit their needs. With user input, our system can produce high quality summaries that follow user preferences. Without user input, we set the control variables automatically – on the full text CNN-Dailymail dataset, we outperform state of the art abstractive systems (both in terms of F1-ROUGE1 40.38 vs. 39.53 F1-ROUGE and human evaluation.

pdf bib
Enhancement of Encoder and Attention Using Target Monolingual Corpora in Neural Machine Translation
Kenji Imamura | Atsushi Fujita | Eiichiro Sumita

A large-scale parallel corpus is required to train encoder-decoder neural machine translation. The method of using synthetic parallel texts, in which target monolingual corpora are automatically translated into source sentences, is effective in improving the decoder, but is unreliable for enhancing the encoder. In this paper, we propose a method that enhances the encoder and attention using target monolingual corpora by generating multiple source sentences via sampling. By using multiple source sentences, diversity close to that of humans is achieved. Our experimental results show that the translation quality is improved by increasing the number of synthetic source sentences for each given target sentence, and quality close to that using a manually created parallel corpus was achieved.

pdf bib
Document-Level Adaptation for Neural Machine Translation
Sachith Sri Ram Kothur | Rebecca Knowles | Philipp Koehn

It is common practice to adapt machine translation systems to novel domains, but even a well-adapted system may be able to perform better on a particular document if it were to learn from a translator’s corrections within the document itself. We focus on adaptation within a single document – appropriate for an interactive translation scenario where a model adapts to a human translator’s input over the course of a document. We propose two methods: single-sentence adaptation (which performs online adaptation one sentence at a time) and dictionary adaptation (which specifically addresses the issue of translating novel words). Combining the two models results in improvements over both approaches individually, and over baseline systems, even on short documents. On WMT news test data, we observe an improvement of +1.8 BLEU points and +23.3% novel word translation accuracy and on EMEA data (descriptions of medications) we observe an improvement of +2.7 BLEU points and +49.2% novel word translation accuracy.

pdf bib
On the Impact of Various Types of Noise on Neural Machine Translation
Huda Khayrallah | Philipp Koehn

We examine how various types of noise in the parallel training data impact the quality of neural machine translation systems. We create five types of artificial noise and analyze how they degrade performance in neural and statistical machine translation. We find that neural models are generally more harmed by noise than statistical models. For one especially egregious type of noise they learn to just copy the input sentence.

pdf bib
Bi-Directional Neural Machine Translation with Synthetic Parallel Data
Xing Niu | Michael Denkowski | Marine Carpuat

Despite impressive progress in high-resource settings, Neural Machine Translation (NMT) still struggles in low-resource and out-of-domain scenarios, often failing to match the quality of phrase-based translation. We propose a novel technique that combines back-translation and multilingual NMT to improve performance in these difficult cases. Our technique trains a single model for both directions of a language pair, allowing us to back-translate source or target monolingual data without requiring an auxiliary model. We then continue training on the augmented parallel data, enabling a cycle of improvement for a single model that can incorporate any source, target, or parallel data to improve both translation directions. As a byproduct, these models can reduce training and deployment costs significantly compared to uni-directional models. Extensive experiments show that our technique outperforms standard back-translation in low-resource scenarios, improves quality on cross-domain tasks, and effectively reduces costs across the board.

pdf bib
Multi-Source Neural Machine Translation with Missing Data
Yuta Nishimura | Katsuhito Sudoh | Graham Neubig | Satoshi Nakamura

Multi-source translation is an approach to exploit multiple inputs (e.g. in two different languages) to increase translation accuracy. In this paper, we examine approaches for multi-source neural machine translation (NMT) using an incomplete multilingual corpus in which some translations are missing. In practice, many multilingual corpora are not complete due to the difficulty to provide translations in all of the relevant languages (for example, in TED talks, most English talks only have subtitles for a small portion of the languages that TED supports). Existing studies on multi-source translation did not explicitly handle such situations. This study focuses on the use of incomplete multilingual corpora in multi-encoder NMT and mixture of NMT experts and examines a very simple implementation where missing source translations are replaced by a special symbol <NULL>. These methods allow us to use incomplete corpora both at training time and test time. In experiments with real incomplete multilingual corpora of TED Talks, the multi-source NMT with the <NULL> tokens achieved higher translation accuracies measured by BLEU than those by any one-to-one NMT systems.

pdf bib
Towards one-shot learning for rare-word translation with external experts
Ngoc-Quan Pham | Jan Niehues | Alexander Waibel

Neural machine translation (NMT) has significantly improved the quality of automatic translation models. One of the main challenges in current systems is the translation of rare words. We present a generic approach to address this weakness by having external models annotate the training data as Experts, and control the model-expert interaction with a pointer network and reinforcement learning. Our experiments using phrase-based models to simulate Experts to complement neural machine translation models show that the model can be trained to copy the annotations into the output consistently. We demonstrate the benefit of our proposed framework in outof domain translation scenarios with only lexical resources, improving more than 1.0 BLEU point in both translation directions English-Spanish and German-English.

pdf bib
NICT Self-Training Approach to Neural Machine Translation at NMT-2018
Kenji Imamura | Eiichiro Sumita

This paper describes the NICT neural machine translation system submitted at the NMT-2018 shared task. A characteristic of our approach is the introduction of self-training. Since our self-training does not change the model structure, it does not influence the efficiency of translation, such as the translation speed. The experimental results showed that the translation quality improved not only in the sequence-to-sequence (seq-to-seq) models but also in the transformer models.

pdf bib
Fast Neural Machine Translation Implementation
Hieu Hoang | Tomasz Dwojak | Rihards Krislauks | Daniel Torregrosa | Kenneth Heafield

This paper describes the submissions to the efficiency track for GPUs at the Workshop for Neural Machine Translation and Generation by members of the University of Edinburgh, Adam Mickiewicz University, Tilde and University of Alicante. We focus on efficient implementation of the recurrent deep-learning model as implemented in Amun, the fast inference engine for neural machine translation. We improve the performance with an efficient mini-batching algorithm, and by fusing the softmax operation with the k-best extraction algorithm. Submissions using Amun were first, second and third fastest in the GPU efficiency track.

pdf bib
OpenNMT System Description for WNMT 2018: 800 words/sec on a single-core CPU
Jean Senellart | Dakun Zhang | Bo Wang | Guillaume Klein | Jean-Pierre Ramatchandirin | Josep Crego | Alexander Rush

We present a system description of the OpenNMT Neural Machine Translation entry for the WNMT 2018 evaluation. In this work, we developed a heavily optimized NMT inference model targeting a high-performance CPU system. The final system uses a combination of four techniques, all of them lead to significant speed-ups in combination: (a) sequence distillation, (b) architecture modifications, (c) precomputation, particularly of vocabulary, and (d) CPU targeted quantization. This work achieves the fastest performance of the shared task, and led to the development of new features that have been integrated to OpenNMT and available to the community.

pdf bib
Marian: Cost-effective High-Quality Neural Machine Translation in C++
Marcin Junczys-Dowmunt | Kenneth Heafield | Hieu Hoang | Roman Grundkiewicz | Anthony Aue

This paper describes the submissions of the “Marian” team to the WNMT 2018 shared task. We investigate combinations of teacher-student training, low-precision matrix products, auto-tuning and other methods to optimize the Transformer model on GPU and CPU. By further integrating these methods with the new averaging attention networks, a recently introduced faster Transformer variant, we create a number of high-quality, high-performance models on the GPU and CPU, dominating the Pareto frontier for this shared task.

up

pdf (full)
bib (full)
Proceedings of the Eight Workshop on Cognitive Aspects of Computational Language Learning and Processing

pdf bib
Proceedings of the Eight Workshop on Cognitive Aspects of Computational Language Learning and Processing
Marco Idiart | Alessandro Lenci | Thierry Poibeau | Aline Villavicencio

pdf bib
Predicting Brain Activation with WordNet Embeddings
João António Rodrigues | Ruben Branco | João Silva | Chakaveh Saedi | António Branco

The task of taking a semantic representation of a noun and predicting the brain activity triggered by it in terms of fMRI spatial patterns was pioneered by Mitchell et al. 2008. That seminal work used word co-occurrence features to represent the meaning of the nouns. Even though the task does not impose any specific type of semantic representation, the vast majority of subsequent approaches resort to feature-based models or to semantic spaces (aka word embeddings). We address this task, with competitive results, by using instead a semantic network to encode lexical semantics, thus providing further evidence for the cognitive plausibility of this approach to model lexical meaning.

pdf bib
Do Speakers Produce Discourse Connectives Rationally?
Frances Yung | Vera Demberg

A number of different discourse connectives can be used to mark the same discourse relation, but it is unclear what factors affect connective choice. One recent account is the Rational Speech Acts theory, which predicts that speakers try to maximize the informativeness of an utterance such that the listener can interpret the intended meaning correctly. Existing prior work uses referential language games to test the rational account of speakers’ production of concrete meanings, such as identification of objects within a picture. Building on the same paradigm, we design a novel Discourse Continuation Game to investigate speakers’ production of abstract discourse relations. Experimental results reveal that speakers significantly prefer a more informative connective, in line with predictions of the RSA model.

pdf bib
Language Production Dynamics with Recurrent Neural Networks
Jesús Calvillo | Matthew Crocker

We present an analysis of the internal mechanism of the recurrent neural model of sentence production presented by Calvillo et al. (2016). The results show clear patterns of computation related to each layer in the network allowing to infer an algorithmic account, where the semantics activates the semantically related words, then each word generated at each time step activates syntactic and semantic constraints on possible continuations, while the recurrence preserves information through time. We propose that such insights could generalize to other models with similar architecture, including some used in computational linguistics for language modeling, machine translation and image caption generation.

pdf bib
Multi-glance Reading Model for Text Understanding
Pengcheng Zhu | Yujiu Yang | Wenqiang Gao | Yi Liu

In recent years, a variety of recurrent neural networks have been proposed, e.g LSTM. However, existing models only read the text once, it cannot describe the situation of repeated reading in reading comprehension. In fact, when reading or analyzing a text, we may read the text several times rather than once if we couldn’t well understand it. So, how to model this kind of the reading behavior? To address the issue, we propose a multi-glance mechanism (MGM) for modeling the habit of reading behavior. In the proposed framework, the actual reading process can be fully simulated, and then the obtained information can be consistent with the task. Based on the multi-glance mechanism, we design two types of recurrent neural network models for repeated reading: Glance Cell Model (GCM) and Glance Gate Model (GGM). Visualization analysis of the GCM and the GGM demonstrates the effectiveness of multi-glance mechanisms. Experiments results on the large-scale datasets show that the proposed methods can achieve better performance.

pdf bib
Predicting Japanese Word Order in Double Object Constructions
Masayuki Asahara | Satoshi Nambu | Shin-Ichiro Sano

This paper presents a statistical model to predict Japanese word order in the double object constructions. We employed a Bayesian linear mixed model with manually annotated predicate-argument structure data. The findings from the refined corpus analysis confirmed the effects of information status of an NP as ‘givennew ordering’ in addition to the effects of ‘long-before-short’ as a tendency of the general Japanese word order.

pdf bib
Affordances in Grounded Language Learning
Stephen McGregor | KyungTae Lim

We present a novel methodology involving mappings between different modes of semantic representation. We propose distributional semantic models as a mechanism for representing the kind of world knowledge inherent in the system of abstract symbols characteristic of a sophisticated community of language users. Then, motivated by insight from ecological psychology, we describe a model approximating affordances, by which we mean a language learner’s direct perception of opportunities for action in an environment. We present a preliminary experiment involving mapping between these two representational modalities, and propose that our methodology can become the basis for a cognitively inspired model of grounded language learning.

pdf bib
Rating Distributions and Bayesian Inference: Enhancing Cognitive Models of Spatial Language Use
Thomas Kluth | Holger Schultheis

We present two methods that improve the assessment of cognitive models. The first method is applicable to models computing average acceptability ratings. For these models, we propose an extension that simulates a full rating distribution (instead of average ratings) and allows generating individual ratings. Our second method enables Bayesian inference for models generating individual data. To this end, we propose to use the cross-match test (Rosenbaum, 2005) as a likelihood function. We exemplarily present both methods using cognitive models from the domain of spatial language use. For spatial language use, determining linguistic acceptability judgments of a spatial preposition for a depicted spatial relation is assumed to be a crucial process (Logan and Sadler, 1996). Existing models of this process compute an average acceptability rating. We extend the models and – based on existing data – show that the extended models allow extracting more information from the empirical data and yield more readily interpretable information about model successes and failures. Applying Bayesian inference, we find that model performance relies less on mechanisms of capturing geometrical aspects than on mapping the captured geometry to a rating interval.

pdf bib
The Role of Syntax During Pronoun Resolution: Evidence from fMRI
Jixing Li | Murielle Fabre | Wen-Ming Luh | John Hale

The current study examined the role of syntactic structure during pronoun resolution. We correlated complexity measures derived by the syntax-sensitive Hobbs algorithm and a neural network model for pronoun resolution with brain activity of participants listening to an audiobook during fMRI recording. Compared to the neural network model, the Hobbs algorithm is associated with larger clusters of brain activation in a network including the left Broca’s area.

pdf bib
A Sound and Complete Left-Corner Parsing for Minimalist Grammars
Miloš Stanojević | Edward Stabler

This paper presents a left-corner parser for minimalist grammars. The relation between the parser and the grammar is transparent in the sense that there is a very simple 1-1 correspondence between derivations and parses. Like left-corner context-free parsers, left-corner minimalist parsers can be non-terminating when the grammar has empty left corners, so an easily computed left-corner oracle is defined to restrict the search.

up

pdf (full)
bib (full)
Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP

pdf bib
Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP
Georgiana Dinu | Miguel Ballesteros | Avirup Sil | Sam Bowman | Wael Hamza | Anders Sogaard | Tahira Naseem | Yoav Goldberg

pdf bib
Compositional Morpheme Embeddings with Affixes as Functions and Stems as Arguments
Daniel Edmiston | Karl Stratos

This work introduces a novel, linguistically motivated architecture for composing morphemes to derive word embeddings. The principal novelty in the work is to treat stems as vectors and affixes as functions over vectors. In this way, our model’s architecture more closely resembles the compositionality of morphemes in natural language. Such a model stands in opposition to models which treat morphemes uniformly, making no distinction between stem and affix. We run this new architecture on a dependency parsing task in Korean—a language rich in derivational morphology—and compare it against a lexical baseline,along with other sub-word architectures. StAffNet, the name of our architecture, shows competitive performance with the state-of-the-art on this task.

pdf bib
Unsupervised Source Hierarchies for Low-Resource Neural Machine Translation
Anna Currey | Kenneth Heafield

Incorporating source syntactic information into neural machine translation (NMT) has recently proven successful (Eriguchi et al., 2016; Luong et al., 2016). However, this is generally done using an outside parser to syntactically annotate the training data, making this technique difficult to use for languages or domains for which a reliable parser is not available. In this paper, we introduce an unsupervised tree-to-sequence (tree2seq) model for neural machine translation; this model is able to induce an unsupervised hierarchical structure on the source sentence based on the downstream task of neural machine translation. We adapt the Gumbel tree-LSTM of Choi et al. (2018) to NMT in order to create the encoder. We evaluate our model against sequential and supervised parsing baselines on three low- and medium-resource language pairs. For low-resource cases, the unsupervised tree2seq encoder significantly outperforms the baselines; no improvements are seen for medium-resource translation.

pdf bib
Latent Tree Learning with Differentiable Parsers: Shift-Reduce Parsing and Chart Parsing
Jean Maillard | Stephen Clark

Latent tree learning models represent sentences by composing their words according to an induced parse tree, all based on a downstream task. These models often outperform baselines which use (externally provided) syntax trees to drive the composition order. This work contributes (a) a new latent tree learning model based on shift-reduce parsing, with competitive downstream performance and non-trivial induced trees, and (b) an analysis of the trees learned by our shift-reduce model and by a chart-based model.

pdf bib
Syntax Helps ELMo Understand Semantics: Is Syntax Still Relevant in a Deep Neural Architecture for SRL?
Emma Strubell | Andrew McCallum

Do unsupervised methods for learning rich, contextualized token representations obviate the need for explicit modeling of linguistic structure in neural network models for semantic role labeling (SRL)? We address this question by incorporating the massively successful ELMo embeddings (Peters et al., 2018) into LISA (Strubell and McCallum, 2018), a strong, linguistically-informed neural network architecture for SRL. In experiments on the CoNLL-2005 shared task we find that though ELMo out-performs typical word embeddings, beginning to close the gap in F1 between LISA with predicted and gold syntactic parses, syntactically-informed models still out-perform syntax-free models when both use ELMo, especially on out-of-domain data. Our results suggest that linguistic structures are indeed still relevant in this golden age of deep learning for NLP.

pdf bib
Subcharacter Information in Japanese Embeddings: When Is It Worth It?
Marzena Karpinska | Bofang Li | Anna Rogers | Aleksandr Drozd

Languages with logographic writing systems present a difficulty for traditional character-level models. Leveraging the subcharacter information was recently shown to be beneficial for a number of intrinsic and extrinsic tasks in Chinese. We examine whether the same strategies could be applied for Japanese, and contribute a new analogy dataset for this language.

pdf bib
A neural parser as a direct classifier for head-final languages
Hiroshi Kanayama | Masayasu Muraoka | Ryosuke Kohita

This paper demonstrates a neural parser implementation suitable for consistently head-final languages such as Japanese. Unlike the transition- and graph-based algorithms in most state-of-the-art parsers, our parser directly selects the head word of a dependent from a limited number of candidates. This method drastically simplifies the model so that we can easily interpret the output of the neural model. Moreover, by exploiting grammatical knowledge to restrict possible modification types, we can control the output of the parser to reduce specific errors without adding annotated corpora. The neural parser performed well both on conventional Japanese corpora and the Japanese version of Universal Dependency corpus, and the advantages of distributed representations were observed in the comparison with the non-neural conventional model.

pdf bib
Syntactic Dependency Representations in Neural Relation Classification
Farhad Nooralahzadeh | Lilja Øvrelid

We investigate the use of different syntactic dependency representations in a neural relation classification task and compare the CoNLL, Stanford Basic and Universal Dependencies schemes. We further compare with a syntax-agnostic approach and perform an error analysis in order to gain a better understanding of the results.

up

pdf (full)
bib (full)
Proceedings of The Third Workshop on Representation Learning for NLP

pdf bib
Proceedings of The Third Workshop on Representation Learning for NLP
Isabelle Augenstein | Kris Cao | He He | Felix Hill | Spandana Gella | Jamie Kiros | Hongyuan Mei | Dipendra Misra

pdf bib
Corpus Specificity in LSA and Word2vec: The Role of Out-of-Domain Documents
Edgar Altszyler | Mariano Sigman | Diego Fernández Slezak

Despite the popularity of word embeddings, the precise way by which they acquire semantic relations between words remain unclear. In the present article, we investigate whether LSA and word2vec capacity to identify relevant semantic relations increases with corpus size. One intuitive hypothesis is that the capacity to identify relevant associations should increase as the amount of data increases. However, if corpus size grows in topics which are not specific to the domain of interest, signal to noise ratio may weaken. Here we investigate the effect of corpus specificity and size in word-embeddings, and for this, we study two ways for progressive elimination of documents: the elimination of random documents vs. the elimination of documents unrelated to a specific task. We show that word2vec can take advantage of all the documents, obtaining its best performance when it is trained with the whole corpus. On the contrary, the specialization (removal of out-of-domain documents) of the training corpus, accompanied by a decrease of dimensionality, can increase LSA word-representation quality while speeding up the processing time. From a cognitive-modeling point of view, we point out that LSA’s word-knowledge acquisitions may not be efficiently exploiting higher-order co-occurrences and global relations, whereas word2vec does.

pdf bib
Hierarchical Convolutional Attention Networks for Text Classification
Shang Gao | Arvind Ramanathan | Georgia Tourassi

Recent work in machine translation has demonstrated that self-attention mechanisms can be used in place of recurrent neural networks to increase training speed without sacrificing model accuracy. We propose combining this approach with the benefits of convolutional filters and a hierarchical structure to create a document classification model that is both highly accurate and fast to train – we name our method Hierarchical Convolutional Attention Networks. We demonstrate the effectiveness of this architecture by surpassing the accuracy of the current state-of-the-art on several classification tasks while being twice as fast to train.

pdf bib
Extrofitting: Enriching Word Representation and its Vector Space with Semantic Lexicons
Hwiyeol Jo | Stanley Jungkyu Choi

We propose post-processing method for enriching not only word representation but also its vector space using semantic lexicons, which we call extrofitting. The method consists of 3 steps as follows: (i) Expanding 1 or more dimension(s) on all the word vectors, filling with their representative value. (ii) Transferring semantic knowledge by averaging each representative values of synonyms and filling them in the expanded dimension(s). These two steps make representations of the synonyms close together. (iii) Projecting the vector space using Linear Discriminant Analysis, which eliminates the expanded dimension(s) with semantic knowledge. When experimenting with GloVe, we find that our method outperforms Faruqui’s retrofitting on some of word similarity task. We also report further analysis on our method in respect to word vector dimensions, vocabulary size as well as other well-known pretrained word vectors (e.g., Word2Vec, Fasttext).

pdf bib
Chat Discrimination for Intelligent Conversational Agents with a Hybrid CNN-LMTGRU Network
Dennis Singh Moirangthem | Minho Lee

Recently, intelligent dialog systems and smart assistants have attracted the attention of many, and development of novel dialogue agents have become a research challenge. Intelligent agents that can handle both domain-specific task-oriented and open-domain chit-chat dialogs are one of the major requirements in the current systems. In order to address this issue and to realize such smart hybrid dialogue systems, we develop a model to discriminate user utterance between task-oriented and chit-chat conversations. We introduce a hybrid of convolutional neural network (CNN) and a lateral multiple timescale gated recurrent units (LMTGRU) that can represent multiple temporal scale dependencies for the discrimination task. With the help of the combined slow and fast units of the LMTGRU, our model effectively determines whether a user will have a chit-chat conversation or a task-specific conversation with the system. We also show that the LMTGRU structure helps the model to perform well on longer text inputs. We address the lack of dataset by constructing a dataset using Twitter and Maluuba Frames data. The results of the experiments demonstrate that the proposed hybrid network outperforms the conventional models on the chat discrimination task as well as performed comparable to the baselines on various benchmark datasets.

pdf bib
Text Completion using Context-Integrated Dependency Parsing
Amr Rekaby Salama | Özge Alaçam | Wolfgang Menzel

Incomplete linguistic input, i.e. due to a noisy environment, is one of the challenges that a successful communication system has to deal with. In this paper, we study text completion with a data set composed of sentences with gaps where a successful completion cannot be achieved through a uni-modal (language-based) approach. We present a solution based on a context-integrating dependency parser incorporating an additional non-linguistic modality. An incompleteness in one channel is compensated by information from another one and the parser learns the association between the two modalities from a multiple level knowledge representation. We examined several model variations by adjusting the degree of influence of different modalities in the decision making on possible filler words and their exact reference to a non-linguistic context element. Our model is able to fill the gap with 95.4% word and 95.2% exact reference accuracy hence the successful prediction can be achieved not only on the word level (such as mug) but also with respect to the correct identification of its context reference (such as mug 2 among several mug instances).

pdf bib
Quantum-Inspired Complex Word Embedding
Qiuchi Li | Sagar Uprety | Benyou Wang | Dawei Song

A challenging task for word embeddings is to capture the emergent meaning or polarity of a combination of individual words. For example, existing approaches in word embeddings will assign high probabilities to the words “Penguin” and “Fly” if they frequently co-occur, but it fails to capture the fact that they occur in an opposite sense - Penguins do not fly. We hypothesize that humans do not associate a single polarity or sentiment to each word. The word contributes to the overall polarity of a combination of words depending upon which other words it is combined with. This is analogous to the behavior of microscopic particles which exist in all possible states at the same time and interfere with each other to give rise to new states depending upon their relative phases. We make use of the Hilbert Space representation of such particles in Quantum Mechanics where we subscribe a relative phase to each word, which is a complex number, and investigate two such quantum inspired models to derive the meaning of a combination of words. The proposed models achieve better performances than state-of-the-art non-quantum models on binary sentence classification tasks.

pdf bib
Natural Language Inference with Definition Embedding Considering Context On the Fly
Kosuke Nishida | Kyosuke Nishida | Hisako Asano | Junji Tomita

Natural language inference (NLI) is one of the most important tasks in NLP. In this study, we propose a novel method using word dictionaries, which are pairs of a word and its definition, as external knowledge. Our neural definition embedding mechanism encodes input sentences with the definitions of each word of the sentences on the fly. It can encode the definition of words considering the context of input sentences by using an attention mechanism. We evaluated our method using WordNet as a dictionary and confirmed that our method performed better than baseline models when using the full or a subset of 100d GloVe as word embeddings.

pdf bib
Comparison of Representations of Named Entities for Document Classification
Lidia Pivovarova | Roman Yangarber

We explore representations for multi-word names in text classification tasks, on Reuters (RCV1) topic and sector classification. We find that: the best way to treat names is to split them into tokens and use each token as a separate feature; NEs have more impact on sector classification than topic classification; replacing NEs with entity types is not an effective strategy; representing tokens by different embeddings for proper names vs. common nouns does not improve results. We highlight the improvements over state-of-the-art results that our CNN models yield.

pdf bib
Speeding up Context-based Sentence Representation Learning with Non-autoregressive Convolutional Decoding
Shuai Tang | Hailin Jin | Chen Fang | Zhaowen Wang | Virginia de Sa

We propose an asymmetric encoder-decoder structure, which keeps an RNN as the encoder and has a CNN as the decoder, and the model only explores the subsequent context information as the supervision. The asymmetry in both model architecture and training pair reduces a large amount of the training time. The contribution of our work is summarized as 1. We design experiments to show that an autoregressive decoder or an RNN decoder is not necessary for the encoder-decoder type of models in terms of learning sentence representations, and based on our results, we present 2 findings. 2. The two interesting findings lead to our final model design, which has an RNN encoder and a CNN decoder, and it learns to encode the current sentence and decode the subsequent contiguous words all at once. 3. With a suite of techniques, our model performs good on downstream tasks and can be trained efficiently on a large unlabelled corpus.

pdf bib
Connecting Supervised and Unsupervised Sentence Embeddings
Gil Levi

Representing sentences as numerical vectors while capturing their semantic context is an important and useful intermediate step in natural language processing. Representations that are both general and discriminative can serve as a tool for tackling various NLP tasks. While common sentence representation methods are unsupervised in nature, recently, an approach for learning universal sentence representation in a supervised setting was presented in (Conneau et al.,2017). We argue that although promising results were obtained, an improvement can be reached by adding various unsupervised constraints that are motivated by auto-encoders and by language models. We show that by adding such constraints, superior sentence embeddings can be achieved. We compare our method with the original implementation and show improvements in several tasks.

pdf bib
A Hybrid Learning Scheme for Chinese Word Embedding
Wenfan Chen | Weiguo Sheng

To improve word embedding, subword information has been widely employed in state-of-the-art methods. These methods can be classified to either compositional or predictive models. In this paper, we propose a hybrid learning scheme, which integrates compositional and predictive model for word embedding. Such a scheme can take advantage of both models, thus effectively learning word embedding. The proposed scheme has been applied to learn word representation on Chinese. Our results show that the proposed scheme can significantly improve the performance of word embedding in terms of analogical reasoning and is robust to the size of training data.

pdf bib
Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline
Kawin Ethayarajh

Using a random walk model of text generation, Arora et al. (2017) proposed a strong baseline for computing sentence embeddings: take a weighted average of word embeddings and modify with SVD. This simple method even outperforms far more complex approaches such as LSTMs on textual similarity tasks. In this paper, we first show that word vector length has a confounding effect on the probability of a sentence being generated in Arora et al.’s model. We propose a random walk model that is robust to this confound, where the probability of word generation is inversely related to the angular distance between the word and sentence embeddings. Our approach beats Arora et al.’s by up to 44.4% on textual similarity tasks and is competitive with state-of-the-art methods. Unlike Arora et al.’s method, ours requires no hyperparameter tuning, which means it can be used when there is no labelled data.

pdf bib
Evaluating Word Embeddings in Multi-label Classification Using Fine-Grained Name Typing
Yadollah Yaghoobzadeh | Katharina Kann | Hinrich Schütze

Embedding models typically associate each word with a single real-valued vector, representing its different properties. Evaluation methods, therefore, need to analyze the accuracy and completeness of these properties in embeddings. This requires fine-grained analysis of embedding subspaces. Multi-label classification is an appropriate way to do so. We propose a new evaluation method for word embeddings based on multi-label classification given a word embedding. The task we use is fine-grained name typing: given a large corpus, find all types that a name can refer to based on the name embedding. Given the scale of entities in knowledge bases, we can build datasets for this task that are complementary to the current embedding evaluation datasets in: they are very large, contain fine-grained classes, and allow the direct evaluation of embeddings without confounding factors like sentence context.

pdf bib
Exploiting Common Characters in Chinese and Japanese to Learn Cross-Lingual Word Embeddings via Matrix Factorization
Jilei Wang | Shiying Luo | Weiyan Shi | Tao Dai | Shu-Tao Xia

Learning vector space representation of words (i.e., word embeddings) has recently attracted wide research interests, and has been extended to cross-lingual scenario. Currently most cross-lingual word embedding learning models are based on sentence alignment, which inevitably introduces much noise. In this paper, we show in Chinese and Japanese, the acquisition of semantic relation among words can benefit from the large number of common characters shared by both languages; inspired by this unique feature, we design a method named CJC targeting to generate cross-lingual context of words. We combine CJC with GloVe based on matrix factorization, and then propose an integrated model named CJ-Glo. Taking two sentence-aligned models and CJ-BOC (also exploits common characters but is based on CBOW) as baseline algorithms, we compare them with CJ-Glo on a series of NLP tasks including cross-lingual synonym, word analogy and sentence alignment. The result indicates CJ-Glo achieves the best performance among these methods, and is more stable in cross-lingual tasks; moreover, compared with CJ-BOC, CJ-Glo is less sensitive to the alteration of parameters.

pdf bib
WordNet Embeddings
Chakaveh Saedi | António Branco | João António Rodrigues | João Silva

Semantic networks and semantic spaces have been two prominent approaches to represent lexical semantics. While a unified account of the lexical meaning relies on one being able to convert between these representations, in both directions, the conversion direction from semantic networks into semantic spaces started to attract more attention recently. In this paper we present a methodology for this conversion and assess it with a case study. When it is applied over WordNet, the performance of the resulting embeddings in a mainstream semantic similarity task is very good, substantially superior to the performance of word embeddings based on very large collections of texts like word2vec.

pdf bib
Knowledge Graph Embedding with Numeric Attributes of Entities
Yanrong Wu | Zhichun Wang

Knowledge Graph (KG) embedding projects entities and relations into low dimensional vector space, which has been successfully applied in KG completion task. The previous embedding approaches only model entities and their relations, ignoring a large number of entities’ numeric attributes in KGs. In this paper, we propose a new KG embedding model which jointly model entity relations and numeric attributes. Our approach combines an attribute embedding model with a translation-based structure embedding model, which learns the embeddings of entities, relations, and attributes simultaneously. Experiments of link prediction on YAGO and Freebase show that the performance is effectively improved by adding entities’ numeric attributes in the embedding model.

pdf bib
Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisation
Ivan Vulić

Word vector space specialisation models offer a portable, light-weight approach to fine-tuning arbitrary distributional vector spaces to discern between synonymy and antonymy. Their effectiveness is drawn from external linguistic constraints that specify the exact lexical relation between words. In this work, we show that a careful selection of the external constraints can steer and improve the specialisation. By simply selecting appropriate constraints, we report state-of-the-art results on a suite of tasks with well-defined benchmarks where modeling lexical contrast is crucial: 1) true semantic similarity, with highest reported scores on SimLex-999 and SimVerb-3500 to date; 2) detecting antonyms; and 3) distinguishing antonyms from synonyms.

pdf bib
Characters or Morphemes: How to Represent Words?
Ahmet Üstün | Murathan Kurfalı | Burcu Can

In this paper, we investigate the effects of using subword information in representation learning. We argue that using syntactic subword units effects the quality of the word representations positively. We introduce a morpheme-based model and compare it against to word-based, character-based, and character n-gram level models. Our model takes a list of candidate segmentations of a word and learns the representation of the word based on different segmentations that are weighted by an attention mechanism. We performed experiments on Turkish as a morphologically rich language and English with a comparably poorer morphology. The results show that morpheme-based models are better at learning word representations of morphologically complex languages compared to character-based and character n-gram level models since the morphemes help to incorporate more syntactic knowledge in learning, that makes morpheme-based models better at syntactic tasks.

pdf bib
Learning Hierarchical Structures On-The-Fly with a Recurrent-Recursive Model for Sequences
Athul Paul Jacob | Zhouhan Lin | Alessandro Sordoni | Yoshua Bengio

We propose a hierarchical model for sequential data that learns a tree on-the-fly, i.e. while reading the sequence. In the model, a recurrent network adapts its structure and reuses recurrent weights in a recursive manner. This creates adaptive skip-connections that ease the learning of long-term dependencies. The tree structure can either be inferred without supervision through reinforcement learning, or learned in a supervised manner. We provide preliminary experiments in a novel Math Expression Evaluation (MEE) task, which is created to have a hierarchical tree structure that can be used to study the effectiveness of our model. Additionally, we test our model in a well-known propositional logic and language modelling tasks. Experimental results have shown the potential of our approach.

pdf bib
Limitations of Cross-Lingual Learning from Image Search
Mareike Hartmann | Anders Søgaard

Cross-lingual representation learning is an important step in making NLP scale to all the world’s languages. Previous work on bilingual lexicon induction suggests that it is possible to learn cross-lingual representations of words based on similarities between images associated with these words. However, that work focused (almost exclusively) on the translation of nouns only. Here, we investigate whether the meaning of other parts-of-speech (POS), in particular adjectives and verbs, can be learned in the same way. Our experiments across five language pairs indicate that previous work does not scale to the problem of learning cross-lingual representations beyond simple nouns.

pdf bib
Learning Semantic Textual Similarity from Conversations
Yinfei Yang | Steve Yuan | Daniel Cer | Sheng-yi Kong | Noah Constant | Petr Pilar | Heming Ge | Yun-Hsuan Sung | Brian Strope | Ray Kurzweil

We present a novel approach to learn representations for sentence-level semantic similarity using conversational data. Our method trains an unsupervised model to predict conversational responses. The resulting sentence embeddings perform well on the Semantic Textual Similarity (STS) Benchmark and SemEval 2017’s Community Question Answering (CQA) question similarity subtask. Performance is further improved by introducing multitask training, combining conversational response prediction and natural language inference. Extensive experiments show the proposed model achieves the best performance among all neural models on the STS Benchmark and is competitive with the state-of-the-art feature engineered and mixed systems for both tasks.

pdf bib
Multilingual Seq2seq Training with Similarity Loss for Cross-Lingual Document Classification
Katherine Yu | Haoran Li | Barlas Oguz

In this paper we continue experiments where neural machine translation training is used to produce joint cross-lingual fixed-dimensional sentence embeddings. In this framework we introduce a simple method of adding a loss to the learning objective which penalizes distance between representations of bilingually aligned sentences. We evaluate cross-lingual transfer using two approaches, cross-lingual similarity search on an aligned corpus (Europarl) and cross-lingual document classification on a recently published benchmark Reuters corpus, and we find the similarity loss significantly improves performance on both. Furthermore, we notice that while our Reuters results are very competitive, our English results are not as competitive, showing room for improvement in the current cross-lingual state-ofthe-art. Our results are based on a set of 6 European languages.

pdf bib
LSTMs Exploit Linguistic Attributes of Data
Nelson F. Liu | Omer Levy | Roy Schwartz | Chenhao Tan | Noah A. Smith

While recurrent neural networks have found success in a variety of natural language processing applications, they are general models of sequential data. We investigate how the properties of natural language data affect an LSTM’s ability to learn a nonlinguistic task: recalling elements from its input. We find that models trained on natural language data are able to recall tokens from much longer sequences than models trained on non-language sequential data. Furthermore, we show that the LSTM learns to solve the memorization task by explicitly using a subset of its neurons to count timesteps in the input. We hypothesize that the patterns and structure in natural language data enable LSTMs to learn by providing approximate ways of reducing loss, but understanding the effect of different training data on the learnability of LSTMs remains an open question.

pdf bib
Learning Distributional Token Representations from Visual Features
Samuel Broscheit

In this study, we compare token representations constructed from visual features (i.e., pixels) with standard lookup-based embeddings. Our goal is to gain insight about the challenges of encoding a text representation from low-level features, e.g. from characters or pixels. We focus on Chinese, which—as a logographic language—has properties that make a representation via visual features challenging and interesting. To train and evaluate different models for the token representation, we chose the task of character-based neural machine translation (NMT) from Chinese to English. We found that a token representation computed only from visual features can achieve competitive results to lookup embeddings. However, we also show different strengths and weaknesses in the models’ performance in a part-of-speech tagging task and also a semantic similarity task. In summary, we show that it is possible to achieve a text representation only from pixels. We hope that this is a useful stepping stone for future studies that exclusively rely on visual input, or aim at exploiting visual features of written language.

pdf bib
Jointly Embedding Entities and Text with Distant Supervision
Denis Newman-Griffis | Albert M Lai | Eric Fosler-Lussier

Learning representations for knowledge base entities and concepts is becoming increasingly important for NLP applications. However, recent entity embedding methods have relied on structured resources that are expensive to create for new domains and corpora. We present a distantly-supervised method for jointly learning embeddings of entities and text from an unnanotated corpus, using only a list of mappings between entities and surface forms. We learn embeddings from open-domain and biomedical corpora, and compare against prior methods that rely on human-annotated text or large knowledge graph structure. Our embeddings capture entity similarity and relatedness better than prior work, both in existing biomedical datasets and a new Wikipedia-based dataset that we release to the community. Results on analogy completion and entity sense disambiguation indicate that entities and words capture complementary information that can be effectively combined for downstream use.

pdf bib
A Sequence-to-Sequence Model for Semantic Role Labeling
Angel Daza | Anette Frank

We explore a novel approach for Semantic Role Labeling (SRL) by casting it as a sequence-to-sequence process. We employ an attention-based model enriched with a copying mechanism to ensure faithful regeneration of the input sequence, while enabling interleaved generation of argument role labels. We apply this model in a monolingual setting, performing PropBank SRL on English language data. The constrained sequence generation set-up enforced with the copying mechanism allows us to analyze the performance and special properties of the model on manually labeled data and benchmarking against state-of-the-art sequence labeling models. We show that our model is able to solve the SRL argument labeling task on English data, yet further structural decoding constraints will need to be added to make the model truly competitive. Our work represents the first step towards more advanced, generative SRL labeling setups.

pdf bib
Predicting Concreteness and Imageability of Words Within and Across Languages via Word Embeddings
Nikola Ljubešić | Darja Fišer | Anita Peti-Stantić

The notions of concreteness and imageability, traditionally important in psycholinguistics, are gaining significance in semantic-oriented natural language processing tasks. In this paper we investigate the predictability of these two concepts via supervised learning, using word embeddings as explanatory variables. We perform predictions both within and across languages by exploiting collections of cross-lingual embeddings aligned to a single vector space. We show that the notions of concreteness and imageability are highly predictable both within and across languages, with a moderate loss of up to 20% in correlation when predicting across languages. We further show that the cross-lingual transfer via word embeddings is more efficient than the simple transfer via bilingual dictionaries.

up

pdf (full)
bib (full)
Proceedings of the First Workshop on Economics and Natural Language Processing

pdf bib
Proceedings of the First Workshop on Economics and Natural Language Processing
Udo Hahn | Véronique Hoste | Ming-Feng Tsai

pdf bib
Economic Event Detection in Company-Specific News Text
Gilles Jacobs | Els Lefever | Véronique Hoste

This paper presents a dataset and supervised classification approach for economic event detection in English news articles. Currently, the economic domain is lacking resources and methods for data-driven supervised event detection. The detection task is conceived as a sentence-level classification task for 10 different economic event types. Two different machine learning approaches were tested: a rich feature set Support Vector Machine (SVM) set-up and a word-vector-based long short-term memory recurrent neural network (RNN-LSTM) set-up. We show satisfactory results for most event types, with the linear kernel SVM outperforming the other experimental set-ups

pdf bib
Causality Analysis of Twitter Sentiments and Stock Market Returns
Narges Tabari | Piyusha Biswas | Bhanu Praneeth | Armin Seyeditabari | Mirsad Hadzikadic | Wlodek Zadrozny

Sentiment analysis is the process of identifying the opinion expressed in text. Recently, it has been used to study behavioral finance, and in particular the effect of opinions and emotions on economic or financial decisions. In this paper, we use a public dataset of labeled tweets that has been labeled by Amazon Mechanical Turk and then we propose a baseline classification model. Then, by using Granger causality of both sentiment datasets with the different stocks, we shows that there is causality between social media and stock market returns (in both directions) for many stocks. Finally, We evaluate this causality analysis by showing that in the event of a specific news on certain dates, there are evidences of trending the same news on Twitter for that stock.

pdf bib
A Corpus of Corporate Annual and Social Responsibility Reports: 280 Million Tokens of Balanced Organizational Writing
Sebastian G.M. Händschke | Sven Buechel | Jan Goldenstein | Philipp Poschmann | Tinghui Duan | Peter Walgenbach | Udo Hahn

We introduce JOCo, a novel text corpus for NLP analytics in the field of economics, business and management. This corpus is composed of corporate annual and social responsibility reports of the top 30 US, UK and German companies in the major (DJIA, FTSE 100, DAX), middle-sized (S&P 500, FTSE 250, MDAX) and technology (NASDAQ, FTSE AIM 100, TECDAX) stock indices, respectively. Altogether, this adds up to 5,000 reports from 270 companies headquartered in three of the world’s most important economies. The corpus spans a time frame from 2000 up to 2015 and contains, in total, 282M tokens. We also feature JOCo in a small-scale experiment to demonstrate its potential for NLP-fueled studies in economics, business and management research.

pdf bib
Word Embeddings-Based Uncertainty Detection in Financial Disclosures
Christoph Kilian Theil | Sanja Štajner | Heiner Stuckenschmidt

In this paper, we use NLP techniques to detect linguistic uncertainty in financial disclosures. Leveraging general-domain and domain-specific word embedding models, we automatically expand an existing dictionary of uncertainty triggers. We furthermore examine how an expert filtering affects the quality of such an expansion. We show that the dictionary expansions significantly improve regressions on stock return volatility. Lastly, we prove that the expansions significantly boost the automatic detection of uncertain sentences.

pdf bib
A Simple End-to-End Question Answering Model for Product Information
Tuan Lai | Trung Bui | Sheng Li | Nedim Lipka

When evaluating a potential product purchase, customers may have many questions in mind. They want to get adequate information to determine whether the product of interest is worth their money. In this paper we present a simple deep learning model for answering questions regarding product facts and specifications. Given a question and a product specification, the model outputs a score indicating their relevance. To train and evaluate our proposed model, we collected a dataset of 7,119 questions that are related to 153 different products. Experimental results demonstrate that –despite its simplicity– the performance of our model is shown to be comparable to a more complex state-of-the-art baseline.

pdf bib
Sentence Classification for Investment Rules Detection
Youness Mansar | Sira Ferradans

In the last years, compliance requirements for the banking sector have greatly augmented, making the current compliance processes difficult to maintain. Any process that allows to accelerate the identification and implementation of compliance requirements can help address this issues. The contributions of the paper are twofold: we propose a new NLP task that is the investment rule detection, and a group of methods identify them. We show that the proposed methods are highly performing and fast, thus can be deployed in production.

pdf bib
Leveraging News Sentiment to Improve Microblog Sentiment Classification in the Financial Domain
Tobias Daudert | Paul Buitelaar | Sapna Negi

With the rising popularity of social media in the society and in research, analysing texts short in length, such as microblogs, becomes an increasingly important task. As a medium of communication, microblogs carry peoples sentiments and express them to the public. Given that sentiments are driven by multiple factors including the news media, the question arises if the sentiment expressed in news and the news article themselves can be leveraged to detect and classify sentiment in microblogs. Prior research has highlighted the impact of sentiments and opinions on the market dynamics, making the financial domain a prime case study for this approach. Therefore, this paper describes ongoing research dealing with the exploitation of news contained sentiment to improve microblog sentiment classification in a financial context.

pdf bib
Implicit and Explicit Aspect Extraction in Financial Microblogs
Thomas Gaillat | Bernardo Stearns | Gopal Sridhar | Ross McDermott | Manel Zarrouk | Brian Davis

This paper focuses on aspect extraction which is a sub-task of Aspect-based Sentiment Analysis. The goal is to report an extraction method of financial aspects in microblog messages. Our approach uses a stock-investment taxonomy for the identification of explicit and implicit aspects. We compare supervised and unsupervised methods to assign predefined categories at message level. Results on 7 aspect classes show 0.71 accuracy, while the 32 class classification gives 0.82 accuracy for messages containing explicit aspects and 0.35 for implicit aspects.

pdf bib
Unsupervised Word Influencer Networks from News Streams
Ananth Balashankar | Sunandan Chakraborty | Lakshminarayanan Subramanian

In this paper, we propose a new unsupervised learning framework to use news events for predicting trends in stock prices. We present Word Influencer Networks (WIN), a graph framework to extract longitudinal temporal relationships between any pair of informative words from news streams. Using the temporal occurrence of words, WIN measures how the appearance of one word in a news stream influences the emergence of another set of words in the future. The latent word-word influencer relationships in WIN are the building blocks for causal reasoning and predictive modeling. We demonstrate the efficacy of WIN by using it for unsupervised extraction of latent features for stock price prediction and obtain 2 orders lower prediction error compared to a similar causal graph based method. WIN discovered influencer links from seemingly unrelated words from topics like politics to finance. WIN also validated 67% of the causal evidence found manually in the text through a direct edge and the rest 33% through a path of length 2.

up

pdf (full)
bib (full)
Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching

pdf bib
Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching
Gustavo Aguilar | Fahad AlGhamdi | Victor Soto | Thamar Solorio | Mona Diab | Julia Hirschberg

pdf bib
Joint Part-of-Speech and Language ID Tagging for Code-Switched Data
Victor Soto | Julia Hirschberg

Code-switching is the fluent alternation between two or more languages in conversation between bilinguals. Large populations of speakers code-switch during communication, but little effort has been made to develop tools for code-switching, including part-of-speech taggers. In this paper, we propose an approach to POS tagging of code-switched English-Spanish data based on recurrent neural networks. We test our model on known monolingual benchmarks to demonstrate that our neural POS tagging model is on par with state-of-the-art methods. We next test our code-switched methods on the Miami Bangor corpus of English Spanish conversation, focusing on two types of experiments: POS tagging alone, for which we achieve 96.34% accuracy, and joint part-of-speech and language ID tagging, which achieves similar POS tagging accuracy (96.39%) and very high language ID accuracy (98.78%). Finally, we show that our proposed models outperform other state-of-the-art code-switched taggers.

pdf bib
Phone Merging For Code-Switched Speech Recognition
Sunit Sivasankaran | Brij Mohan Lal Srivastava | Sunayana Sitaram | Kalika Bali | Monojit Choudhury

Speakers in multilingual communities often switch between or mix multiple languages in the same conversation. Automatic Speech Recognition (ASR) of code-switched speech faces many challenges including the influence of phones of different languages on each other. This paper shows evidence that phone sharing between languages improves the Acoustic Model performance for Hindi-English code-switched speech. We compare baseline system built with separate phones for Hindi and English with systems where the phones were manually merged based on linguistic knowledge. Encouraged by the improved ASR performance after manually merging the phones, we further investigate multiple data-driven methods to identify phones to be merged across the languages. We show detailed analysis of automatic phone merging in this language pair and the impact it has on individual phone accuracies and WER. Though the best performance gain of 1.2% WER was observed with manually merged phones, we show experimentally that the manual phone merge is not optimal.

pdf bib
Improving Neural Network Performance by Injecting Background Knowledge: Detecting Code-switching and Borrowing in Algerian texts
Wafia Adouane | Jean-Philippe Bernardy | Simon Dobnik

We explore the effect of injecting background knowledge to different deep neural network (DNN) configurations in order to mitigate the problem of the scarcity of annotated data when applying these models on datasets of low-resourced languages. The background knowledge is encoded in the form of lexicons and pre-trained sub-word embeddings. The DNN models are evaluated on the task of detecting code-switching and borrowing points in non-standardised user-generated Algerian texts. Overall results show that DNNs benefit from adding background knowledge. However, the gain varies between models and categories. The proposed DNN architectures are generic and could be applied to other low-resourced languages.

pdf bib
Code-Mixed Question Answering Challenge: Crowd-sourcing Data and Techniques
Khyathi Chandu | Ekaterina Loginova | Vishal Gupta | Josef van Genabith | Günter Neumann | Manoj Chinnakotla | Eric Nyberg | Alan W. Black

Code-Mixing (CM) is the phenomenon of alternating between two or more languages which is prevalent in bi- and multi-lingual communities. Most NLP applications today are still designed with the assumption of a single interaction language and are most likely to break given a CM utterance with multiple languages mixed at a morphological, phrase or sentence level. For example, popular commercial search engines do not yet fully understand the intents expressed in CM queries. As a first step towards fostering research which supports CM in NLP applications, we systematically crowd-sourced and curated an evaluation dataset for factoid question answering in three CM languages - Hinglish (Hindi+English), Tenglish (Telugu+English) and Tamlish (Tamil+English) which belong to two language families (Indo-Aryan and Dravidian). We share the details of our data collection process, techniques which were used to avoid inducing lexical bias amongst the crowd workers and other CM specific linguistic properties of the dataset. Our final dataset, which is available freely for research purposes, has 1,694 Hinglish, 2,848 Tamlish and 1,391 Tenglish factoid questions and their answers. We discuss the techniques used by the participants for the first edition of this ongoing challenge.

pdf bib
Transliteration Better than Translation? Answering Code-mixed Questions over a Knowledge Base
Vishal Gupta | Manoj Chinnakotla | Manish Shrivastava

Humans can learn multiple languages. If they know a fact in one language, they can answer a question in another language they understand. They can also answer Code-mix (CM) questions: questions which contain both languages. This behavior is attributed to the unique learning ability of humans. Our task aims to study if machines can achieve this. We demonstrate how effectively a machine can answer CM questions. In this work, we adopt a two phase approach: candidate generation and candidate re-ranking to answer questions. We propose a Triplet-Siamese-Hybrid CNN (TSHCNN) to re-rank candidate answers. We show experiments on the SimpleQuestions dataset. Our network is trained only on English questions provided in this dataset and noisy Hindi translations of these questions and can answer English-Hindi CM questions effectively without the need of translation into English. Back-transliterated CM questions outperform their lexical and sentence level translated counterparts by 5% & 35% in accuracy respectively, highlighting the efficacy of our approach in a resource constrained setting.

pdf bib
Language Identification and Analysis of Code-Switched Social Media Text
Deepthi Mave | Suraj Maharjan | Thamar Solorio

In this paper, we detail our work on comparing different word-level language identification systems for code-switched Hindi-English data and a standard Spanish-English dataset. In this regard, we build a new code-switched dataset for Hindi-English. To understand the code-switching patterns in these language pairs, we investigate different code-switching metrics. We find that the CRF model outperforms the neural network based models by a margin of 2-5 percentage points for Spanish-English and 3-5 percentage points for Hindi-English.

pdf bib
Code-Switching Language Modeling using Syntax-Aware Multi-Task Learning
Genta Indra Winata | Andrea Madotto | Chien-Sheng Wu | Pascale Fung

Lack of text data has been the major issue on code-switching language modeling. In this paper, we introduce multi-task learning based language model which shares syntax representation of languages to leverage linguistic information and tackle the low resource data issue. Our model jointly learns both language modeling and Part-of-Speech tagging on code-switched utterances. In this way, the model is able to identify the location of code-switching points and improves the prediction of next word. Our approach outperforms standard LSTM based language model, with an improvement of 9.7% and 7.4% in perplexity on SEAME Phase I and Phase II dataset respectively.

pdf bib
Predicting the presence of a Matrix Language in code-switching
Barbara Bullock | Wally Guzmán | Jacqueline Serigos | Vivek Sharath | Almeida Jacqueline Toribio

One language is often assumed to be dominant in code-switching but this assumption has not been empirically tested. We operationalize the matrix language (ML) at the level of the sentence, using three common definitions from linguistics. We test whether these converge and then model this convergence via a set of metrics that together quantify the nature of C-S. We conduct our experiment on four Spanish-English corpora. Our results demonstrate that our model can separate some corpora according to whether they have a dominant ML or not but that the corpora span a range of mixing types that cannot be sorted neatly into an insertional vs. alternational dichotomy.

pdf bib
Automatic Detection of Code-switching Style from Acoustics
SaiKrishna Rallabandi | Sunayana Sitaram | Alan W Black

Multilingual speakers switch between languages in an non-trivial fashion displaying inter sentential, intra sentential, and congruent lexicalization based transitions. While monolingual ASR systems may be capable of recognizing a few words from a foreign language, they are usually not robust enough to handle these varied styles of code-switching. There is also a lack of large code-switched speech corpora capturing all these styles making it difficult to build code-switched speech recognition systems. We hypothesize that it may be useful for an ASR system to be able to first detect the switching style of a particular utterance from acoustics, and then use specialized language models or other adaptation techniques for decoding the speech. In this paper, we look at the first problem of detecting code-switching style from acoustics. We classify code-switched Spanish-English and Hindi-English corpora using two metrics and show that features extracted from acoustics alone can distinguish between different kinds of code-switching in these language pairs.

pdf bib
Accommodation of Conversational Code-Choice
Anshul Bawa | Monojit Choudhury | Kalika Bali

Bilingual speakers often freely mix languages. However, in such bilingual conversations, are the language choices of the speakers coordinated? How much does one speaker’s choice of language affect other speakers? In this paper, we formulate code-choice as a linguistic style, and show that speakers are indeed sensitive to and accommodating of each other’s code-choice. We find that the saliency or markedness of a language in context directly affects the degree of accommodation observed. More importantly, we discover that accommodation of code-choices persists over several conversational turns. We also propose an alternative interpretation of conversational accommodation as a retrieval problem, and show that the differences in accommodation characteristics of code-choices are based on their markedness in context.

pdf bib
Language Informed Modeling of Code-Switched Text
Khyathi Chandu | Thomas Manzini | Sumeet Singh | Alan W. Black

Code-switching (CS), the practice of alternating between two or more languages in conversations, is pervasive in most multi-lingual communities. CS texts have a complex interplay between languages and occur in informal contexts that make them harder to collect and construct NLP tools for. We approach this problem through Language Modeling (LM) on a new Hindi-English mixed corpus containing 59,189 unique sentences collected from blogging websites. We implement and discuss different Language Models derived from a multi-layered LSTM architecture. We hypothesize that encoding language information strengthens a language model by helping to learn code-switching points. We show that our highest performing model achieves a test perplexity of 19.52 on the CS corpus that we collected and processed. On this data we demonstrate that our performance is an improvement over AWD-LSTM LM (a recent state of the art on monolingual English).

pdf bib
GHHT at CALCS 2018: Named Entity Recognition for Dialectal Arabic Using Neural Networks
Mohammed Attia | Younes Samih | Wolfgang Maier

This paper describes our system submission to the CALCS 2018 shared task on named entity recognition on code-switched data for the language variant pair of Modern Standard Arabic and Egyptian dialectal Arabic. We build a a Deep Neural Network that combines word and character-based representations in convolutional and recurrent networks with a CRF layer. The model is augmented with stacked layers of enriched information such pre-trained embeddings, Brown clusters and named entity gazetteers. Our system is ranked second among those participating in the shared task achieving an FB1 average of 70.09%.

pdf bib
Simple Features for Strong Performance on Named Entity Recognition in Code-Switched Twitter Data
Devanshu Jain | Maria Kustikova | Mayank Darbari | Rishabh Gupta | Stephen Mayhew

In this work, we address the problem of Named Entity Recognition (NER) in code-switched tweets as a part of the Workshop on Computational Approaches to Linguistic Code-switching (CALCS) at ACL’18. Code-switching is the phenomenon where a speaker switches between two languages or variants of the same language within or across utterances, known as intra-sentential or inter-sentential code-switching, respectively. Processing such data is challenging using state of the art methods since such technology is generally geared towards processing monolingual text. In this paper we explored ways to use language identification and translation to recognize named entities in such data, however, utilizing simple features (sans multi-lingual features) with Conditional Random Field (CRF) classifier achieved the best results. Our experiments were mainly aimed at the (ENG-SPA) English-Spanish dataset but we submitted a language-independent version of our system to the (MSA-EGY) Arabic-Egyptian dataset as well and achieved good results.

pdf bib
Bilingual Character Representation for Efficiently Addressing Out-of-Vocabulary Words in Code-Switching Named Entity Recognition
Genta Indra Winata | Chien-Sheng Wu | Andrea Madotto | Pascale Fung

We propose an LSTM-based model with hierarchical architecture on named entity recognition from code-switching Twitter data. Our model uses bilingual character representation and transfer learning to address out-of-vocabulary words. In order to mitigate data noise, we propose to use token replacement and normalization. In the 3rd Workshop on Computational Approaches to Linguistic Code-Switching Shared Task, we achieved second place with 62.76% harmonic mean F1-score for English-Spanish language pair without using any gazetteer and knowledge-based information.

pdf bib
Named Entity Recognition on Code-Switched Data Using Conditional Random Fields
Utpal Kumar Sikdar | Biswanath Barik | Björn Gambäck

Named Entity Recognition is an important information extraction task that identifies proper names in unstructured texts and classifies them into some pre-defined categories. Identification of named entities in code-mixed social media texts is a more difficult and challenging task as the contexts are short, ambiguous and often noisy. This work proposes a Conditional Random Fields based named entity recognition system to identify proper names in code-switched data and classify them into nine categories. The system ranked fifth among nine participant systems and achieved a 59.25% F1-score.

pdf bib
The University of Texas System Submission for the Code-Switching Workshop Shared Task 2018
Florian Janke | Tongrui Li | Eric Rincón | Gualberto Guzmán | Barbara Bullock | Almeida Jacqueline Toribio

This paper describes the system for the Named Entity Recognition Shared Task of the Third Workshop on Computational Approaches to Linguistic Code-Switching (CALCS) submitted by the Bilingual Annotations Tasks (BATs) research group of the University of Texas. Our system uses several features to train a Conditional Random Field (CRF) model for classifying input words as Named Entities (NEs) using the Inside-Outside-Beginning (IOB) tagging scheme. We participated in the Modern Standard Arabic-Egyptian Arabic (MSA-EGY) and English-Spanish (ENG-SPA) tasks, achieving weighted average F-scores of 65.62 and 54.16 respectively. We also describe the performance of a deep neural network (NN) trained on a subset of the CRF features, which did not surpass CRF performance.

pdf bib
Tackling Code-Switched NER: Participation of CMU
Parvathy Geetha | Khyathi Chandu | Alan W Black

Named Entity Recognition plays a major role in several downstream applications in NLP. Though this task has been heavily studied in formal monolingual texts and also noisy texts like Twitter data, it is still an emerging task in code-switched (CS) content on social media. This paper describes our participation in the shared task of NER on code-switched data for Spanglish (Spanish + English) and Arabish (Arabic + English). In this paper we describe models that intuitively developed from the data for the shared task Named Entity Recognition on Code-switched Data. Owing to the sparse and non-linear relationships between words in Twitter data, we explored neural architectures that are capable of non-linearities fairly well. In specific, we trained character level models and word level models based on Bidirectional LSTMs (Bi-LSTMs) to perform sequential tagging. We train multiple models to identify nominal mentions and subsequently use this information to predict the labels of named entity in a sequence. Our best model is a character level model along with word level pre-trained multilingual embeddings that gave an F-score of 56.72 in Spanglish and a word level model that gave an F-score of 65.02 in Arabish on the test data.

pdf bib
Multilingual Named Entity Recognition on Spanish-English Code-switched Tweets using Support Vector Machines
Daniel Claeser | Samantha Kent | Dennis Felske

This paper describes our system submission for the ACL 2018 shared task on named entity recognition (NER) in code-switched Twitter data. Our best result (F1 = 53.65) was obtained using a Support Vector Machine (SVM) with 14 features combined with rule-based post processing.

pdf bib
Named Entity Recognition on Code-Switched Data: Overview of the CALCS 2018 Shared Task
Gustavo Aguilar | Fahad AlGhamdi | Victor Soto | Mona Diab | Julia Hirschberg | Thamar Solorio

In the third shared task of the Computational Approaches to Linguistic Code-Switching (CALCS) workshop, we focus on Named Entity Recognition (NER) on code-switched social-media data. We divide the shared task into two competitions based on the English-Spanish (ENG-SPA) and Modern Standard Arabic-Egyptian (MSA-EGY) language pairs. We use Twitter data and 9 entity types to establish a new dataset for code-switched NER benchmarks. In addition to the CS phenomenon, the diversity of the entities and the social media challenges make the task considerably hard to process. As a result, the best scores of the competitions are 63.76% and 71.61% for ENG-SPA and MSA-EGY, respectively. We present the scores of 9 participants and discuss the most common challenges among submissions.

pdf bib
IIT (BHU) Submission for the ACL Shared Task on Named Entity Recognition on Code-switched Data
Shashwat Trivedi | Harsh Rangwani | Anil Kumar Singh

This paper describes the best performing system for the shared task on Named Entity Recognition (NER) on code-switched data for the language pair Spanish-English (ENG-SPA). We introduce a gated neural architecture for the NER task. Our final model achieves an F1 score of 63.76%, outperforming the baseline by 10%.

pdf bib
Code-Switched Named Entity Recognition with Embedding Attention
Changhan Wang | Kyunghyun Cho | Douwe Kiela

We describe our work for the CALCS 2018 shared task on named entity recognition on code-switched data. Our system ranked first place for MS Arabic-Egyptian named entity recognition and third place for English-Spanish.

up

pdf (full)
bib (full)
Proceedings of Grand Challenge and Workshop on Human Multimodal Language (Challenge-HML)

pdf bib
Proceedings of Grand Challenge and Workshop on Human Multimodal Language (Challenge-HML)
Amir Zadeh | Paul Pu Liang | Louis-Philippe Morency | Soujanya Poria | Erik Cambria | Stefan Scherer

pdf bib
Getting the subtext without the text: Scalable multimodal sentiment classification from visual and acoustic modalities
Nathaniel Blanchard | Daniel Moreira | Aparna Bharati | Walter Scheirer

In the last decade, video blogs (vlogs) have become an extremely popular method through which people express sentiment. The ubiquitousness of these videos has increased the importance of multimodal fusion models, which incorporate video and audio features with traditional text features for automatic sentiment detection. Multimodal fusion offers a unique opportunity to build models that learn from the full depth of expression available to human viewers. In the detection of sentiment in these videos, acoustic and video features provide clarity to otherwise ambiguous transcripts. In this paper, we present a multimodal fusion model that exclusively uses high-level video and audio features to analyze spoken sentences for sentiment. We discard traditional transcription features in order to minimize human intervention and to maximize the deployability of our model on at-scale real-world data. We select high-level features for our model that have been successful in non-affect domains in order to test their generalizability in the sentiment detection domain. We train and test our model on the newly released CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset, obtaining an F1 score of 0.8049 on the validation set and an F1 score of 0.6325 on the held-out challenge test set.

pdf bib
Recognizing Emotions in Video Using Multimodal DNN Feature Fusion
Jennifer Williams | Steven Kleinegesse | Ramona Comanescu | Oana Radu

We present our system description of input-level multimodal fusion of audio, video, and text for recognition of emotions and their intensities for the 2018 First Grand Challenge on Computational Modeling of Human Multimodal Language. Our proposed approach is based on input-level feature fusion with sequence learning from Bidirectional Long-Short Term Memory (BLSTM) deep neural networks (DNNs). We show that our fusion approach outperforms unimodal predictors. Our system performs 6-way simultaneous classification and regression, allowing for overlapping emotion labels in a video segment. This leads to an overall binary accuracy of 90%, overall 4-class accuracy of 89.2% and an overall mean-absolute-error (MAE) of 0.12. Our work shows that an early fusion technique can effectively predict the presence of multi-label emotions as well as their coarse-grained intensities. The presented multimodal approach creates a simple and robust baseline on this new Grand Challenge dataset. Furthermore, we provide a detailed analysis of emotion intensity distributions as output from our DNN, as well as a related discussion concerning the inherent difficulty of this task.

pdf bib
Multimodal Relational Tensor Network for Sentiment and Emotion Classification
Saurav Sahay | Shachi H Kumar | Rui Xia | Jonathan Huang | Lama Nachman

Understanding Affect from video segments has brought researchers from the language, audio and video domains together. Most of the current multimodal research in this area deals with various techniques to fuse the modalities, and mostly treat the segments of a video independently. Motivated by the work of (Zadeh et al., 2017) and (Poria et al., 2017), we present our architecture, Relational Tensor Network, where we use the inter-modal interactions within a segment (intra-segment) and also consider the sequence of segments in a video to model the inter-segment inter-modal interactions. We also generate rich representations of text and audio modalities by leveraging richer audio and linguistic context alongwith fusing fine-grained knowledge based polarity scores from text. We present the results of our model on CMU-MOSEI dataset and show that our model outperforms many baselines and state of the art methods for sentiment classification and emotion recognition.

pdf bib
Convolutional Attention Networks for Multimodal Emotion Recognition from Speech and Text Data
Woo Yong Choi | Kyu Ye Song | Chan Woo Lee

Emotion recognition has become a popular topic of interest, especially in the field of human computer interaction. Previous works involve unimodal analysis of emotion, while recent efforts focus on multimodal emotion recognition from vision and speech. In this paper, we propose a new method of learning about the hidden representations between just speech and text data using convolutional attention networks. Compared to the shallow model which employs simple concatenation of feature vectors, the proposed attention model performs much better in classifying emotion from speech and text data contained in the CMU-MOSEI dataset.

pdf bib
Sentiment Analysis using Imperfect Views from Spoken Language and Acoustic Modalities
Imran Sheikh | Sri Harsha Dumpala | Rupayan Chakraborty | Sunil Kumar Kopparapu

Multimodal sentiment classification in practical applications may have to rely on erroneous and imperfect views, namely (a) language transcription from a speech recognizer and (b) under-performing acoustic views. This work focuses on improving the representations of these views by performing a deep canonical correlation analysis with the representations of the better performing manual transcription view. Enhanced representations of the imperfect views can be obtained even in absence of the perfect views and give an improved performance during test conditions. Evaluations on the CMU-MOSI and CMU-MOSEI datasets demonstrate the effectiveness of the proposed approach.

pdf bib
Polarity and Intensity: the Two Aspects of Sentiment Analysis
Leimin Tian | Catherine Lai | Johanna Moore

Current multimodal sentiment analysis frames sentiment score prediction as a general Machine Learning task. However, what the sentiment score actually represents has often been overlooked. As a measurement of opinions and affective states, a sentiment score generally consists of two aspects: polarity and intensity. We decompose sentiment scores into these two aspects and study how they are conveyed through individual modalities and combined multimodal models in a naturalistic monologue setting. In particular, we build unimodal and multimodal multi-task learning models with sentiment score prediction as the main task and polarity and/or intensity classification as the auxiliary tasks. Our experiments show that sentiment analysis benefits from multi-task learning, and individual modalities differ when conveying the polarity and intensity aspects of sentiment.

pdf bib
ASR-based Features for Emotion Recognition: A Transfer Learning Approach
Noé Tits | Kevin El Haddad | Thierry Dutoit

During the last decade, the applications of signal processing have drastically improved with deep learning. However areas of affecting computing such as emotional speech synthesis or emotion recognition from spoken language remains challenging. In this paper, we investigate the use of a neural Automatic Speech Recognition (ASR) as a feature extractor for emotion recognition. We show that these features outperform the eGeMAPS feature set to predict the valence and arousal emotional dimensions, which means that the audio-to-text mapping learned by the ASR system contains information related to the emotional dimensions in spontaneous speech. We also examine the relationship between first layers (closer to speech) and last layers (closer to text) of the ASR and valence/arousal.

pdf bib
Seq2Seq2Sentiment: Multimodal Sequence to Sequence Models for Sentiment Analysis
Hai Pham | Thomas Manzini | Paul Pu Liang | Barnabás Poczós

Multimodal machine learning is a core research area spanning the language, visual and acoustic modalities. The central challenge in multimodal learning involves learning representations that can process and relate information from multiple modalities. In this paper, we propose two methods for unsupervised learning of joint multimodal representations using sequence to sequence (Seq2Seq) methods: a Seq2Seq Modality Translation Model and a Hierarchical Seq2Seq Modality Translation Model. We also explore multiple different variations on the multimodal inputs and outputs of these seq2seq models. Our experiments on multimodal sentiment analysis using the CMU-MOSI dataset indicate that our methods learn informative multimodal representations that outperform the baselines and achieve improved performance on multimodal sentiment analysis, specifically in the Bimodal case where our model is able to improve F1 Score by twelve points. We also discuss future directions for multimodal Seq2Seq methods.

pdf bib
DNN Multimodal Fusion Techniques for Predicting Video Sentiment
Jennifer Williams | Ramona Comanescu | Oana Radu | Leimin Tian

We present our work on sentiment prediction using the benchmark MOSI dataset from the CMU-MultimodalDataSDK. Previous work on multimodal sentiment analysis have been focused on input-level feature fusion or decision-level fusion for multimodal fusion. Here, we propose an intermediate-level feature fusion, which merges weights from each modality (audio, video, and text) during training with subsequent additional training. Moreover, we tested principle component analysis (PCA) for feature selection. We found that applying PCA increases unimodal performance, and multimodal fusion outperforms unimodal models. Our experiments show that our proposed intermediate-level feature fusion outperforms other fusion techniques, and it achieves the best performance with an overall binary accuracy of 74.0% on video+text modalities. Our work also improves feature selection for unimodal sentiment analysis, while proposing a novel and effective multimodal fusion architecture for this task.

up

pdf (full)
bib (full)
Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP

pdf bib
Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP
Reza Haffari | Colin Cherry | George Foster | Shahram Khadivi | Bahar Salehi

pdf bib
Character-level Supervision for Low-resource POS Tagging
Katharina Kann | Johannes Bjerva | Isabelle Augenstein | Barbara Plank | Anders Søgaard

Neural part-of-speech (POS) taggers are known to not perform well with little training data. As a step towards overcoming this problem, we present an architecture for learning more robust neural POS taggers by jointly training a hierarchical, recurrent model and a recurrent character-based sequence-to-sequence network supervised using an auxiliary objective. This way, we introduce stronger character-level supervision into the model, which enables better generalization to unseen words and provides regularization, making our encoding less prone to overfitting. We experiment with three auxiliary tasks: lemmatization, character-based word autoencoding, and character-based random string autoencoding. Experiments with minimal amounts of labeled data on 34 languages show that our new architecture outperforms a single-task baseline and, surprisingly, that, on average, raw text autoencoding can be as beneficial for low-resource POS tagging as using lemma information. Our neural POS tagger closes the gap to a state-of-the-art POS tagger (MarMoT) for low-resource scenarios by 43%, even outperforming it on languages with templatic morphology, e.g., Arabic, Hebrew, and Turkish, by some margin.

pdf bib
Training a Neural Network in a Low-Resource Setting on Automatically Annotated Noisy Data
Michael A. Hedderich | Dietrich Klakow

Manually labeled corpora are expensive to create and often not available for low-resource languages or domains. Automatic labeling approaches are an alternative way to obtain labeled data in a quicker and cheaper way. However, these labels often contain more errors which can deteriorate a classifier’s performance when trained on this data. We propose a noise layer that is added to a neural network architecture. This allows modeling the noise and train on a combination of clean and noisy data. We show that in a low-resource NER task we can improve performance by up to 35% by using additional, noisy data and handling the noise.

pdf bib
Multi-task learning for historical text normalization: Size matters
Marcel Bollmann | Anders Søgaard | Joachim Bingel

Historical text normalization suffers from small datasets that exhibit high variance, and previous work has shown that multi-task learning can be used to leverage data from related problems in order to obtain more robust models. Previous work has been limited to datasets from a specific language and a specific historical period, and it is not clear whether results generalize. It therefore remains an open problem, when historical text normalization benefits from multi-task learning. We explore the benefits of multi-task learning across 10 different datasets, representing different languages and periods. Our main finding—contrary to what has been observed for other NLP tasks—is that multi-task learning mainly works when target task data is very scarce.

pdf bib
Compositional Language Modeling for Icon-Based Augmentative and Alternative Communication
Shiran Dudy | Steven Bedrick

Icon-based communication systems are widely used in the field of Augmentative and Alternative Communication. Typically, icon-based systems have lagged behind word- and character-based systems in terms of predictive typing functionality, due to the challenges inherent to training icon-based language models. We propose a method for synthesizing training data for use in icon-based language models, and explore two different modeling strategies. We propose a method to generate language models for corpus-less symbol-set.

pdf bib
Multimodal Neural Machine Translation for Low-resource Language Pairs using Synthetic Data
Koel Dutta Chowdhury | Mohammed Hasanuzzaman | Qun Liu

In this paper, we investigate the effectiveness of training a multimodal neural machine translation (MNMT) system with image features for a low-resource language pair, Hindi and English, using synthetic data. A three-way parallel corpus which contains bilingual texts and corresponding images is required to train a MNMT system with image features. However, such a corpus is not available for low resource language pairs. To address this, we developed both a synthetic training dataset and a manually curated development/test dataset for Hindi based on an existing English-image parallel corpus. We used these datasets to build our image description translation system by adopting state-of-the-art MNMT models. Our results show that it is possible to train a MNMT system for low-resource language pairs through the use of synthetic data and that such a system can benefit from image features.

pdf bib
Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource Conversational Corpus
Fariz Ikhwantri | Samuel Louvan | Kemal Kurniawan | Bagas Abisena | Valdi Rachman | Alfan Farizki Wicaksono | Rahmad Mahendra

Most Semantic Role Labeling (SRL) approaches are supervised methods which require a significant amount of annotated corpus, and the annotation requires linguistic expertise. In this paper, we propose a Multi-Task Active Learning framework for Semantic Role Labeling with Entity Recognition (ER) as the auxiliary task to alleviate the need for extensive data and use additional information from ER to help SRL. We evaluate our approach on Indonesian conversational dataset. Our experiments show that multi-task active learning can outperform single-task active learning method and standard multi-task learning. According to our results, active learning is more efficient by using 12% less of training data compared to passive learning in both single-task and multi-task setting. We also introduce a new dataset for SRL in Indonesian conversational domain to encourage further research in this area.

pdf bib
Domain Adapted Word Embeddings for Improved Sentiment Classification
Prathusha Kameswara Sarma | Yingyu Liang | Bill Sethares

Generic word embeddings are trained on large-scale generic corpora; Domain Specific (DS) word embeddings are trained only on data from a domain of interest. This paper proposes a method to combine the breadth of generic embeddings with the specificity of domain specific embeddings. The resulting embeddings, called Domain Adapted (DA) word embeddings, are formed by first aligning corresponding word vectors using Canonical Correlation Analysis (CCA) or the related nonlinear Kernel CCA (KCCA) and then combining them via convex optimization. Results from evaluation on sentiment classification tasks show that the DA embeddings substantially outperform both generic, DS embeddings when used as input features to standard or state-of-the-art sentence encoding algorithms for classification.

pdf bib
Investigating Effective Parameters for Fine-tuning of Word Embeddings Using Only a Small Corpus
Kanako Komiya | Hiroyuki Shinnou

Fine-tuning is a popular method to achieve better performance when only a small target corpus is available. However, it requires tuning of a number of metaparameters and thus it might carry risk of adverse effect when inappropriate metaparameters are used. Therefore, we investigate effective parameters for fine-tuning when only a small target corpus is available. In the current study, we target at improving Japanese word embeddings created from a huge corpus. First, we demonstrate that even the word embeddings created from the huge corpus are affected by domain shift. After that, we investigate effective parameters for fine-tuning of the word embeddings using a small target corpus. We used perplexity of a language model obtained from a Long Short-Term Memory network to assess the word embeddings input into the network. The experiments revealed that fine-tuning sometimes give adverse effect when only a small target corpus is used and batch size is the most important parameter for fine-tuning. In addition, we confirmed that effect of fine-tuning is higher when size of a target corpus was larger.

pdf bib
Semi-Supervised Learning with Auxiliary Evaluation Component for Large Scale e-Commerce Text Classification
Mingkuan Liu | Musen Wen | Selcuk Kopru | Xianjing Liu | Alan Lu

The lack of high-quality labeled training data has been one of the critical challenges facing many industrial machine learning tasks. To tackle this challenge, in this paper, we propose a semi-supervised learning method to utilize unlabeled data and user feedback signals to improve the performance of ML models. The method employs a primary model Main and an auxiliary evaluation model Eval, where Main and Eval models are trained iteratively by automatically generating labeled data from unlabeled data and/or users’ feedback signals. The proposed approach is applied to different text classification tasks. We report results on both the publicly available Yahoo! Answers dataset and our e-commerce product classification dataset. The experimental results show that the proposed method reduces the classification error rate by 4% and up to 15% across various experimental setups and datasets. A detailed comparison with other semi-supervised learning approaches is also presented later in the paper. The results from various text classification tasks demonstrate that our method outperforms those developed in previous related studies.

pdf bib
Low-rank passthrough neural networks
Antonio Valerio Miceli Barone

Various common deep learning architectures, such as LSTMs, GRUs, Resnets and Highway Networks, employ state passthrough connections that support training with high feed-forward depth or recurrence over many time steps. These “Passthrough Networks” architectures also enable the decoupling of the network state size from the number of parameters of the network, a possibility has been studied by Sak et al. (2014) with their low-rank parametrization of the LSTM. In this work we extend this line of research, proposing effective, low-rank and low-rank plus diagonal matrix parametrizations for Passthrough Networks which exploit this decoupling property, reducing the data complexity and memory requirements of the network while preserving its memory capacity. This is particularly beneficial in low-resource settings as it supports expressive models with a compact parametrization less susceptible to overfitting. We present competitive experimental results on several tasks, including language modeling and a near state of the art result on sequential randomly-permuted MNIST classification, a hard task on natural data.

up

pdf (full)
bib (full)
Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media

pdf bib
Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media
Lun-Wei Ku | Cheng-Te Li

pdf bib
Sociolinguistic Corpus of WhatsApp Chats in Spanish among College Students
Alejandro Dorantes | Gerardo Sierra | Tlauhlia Yamín Donohue Pérez | Gemma Bel-Enguix | Mónica Jasso Rosales

This work presents the Sociolinguistic Corpus of WhatsApp Chats in Spanish among College Students, a corpus of raw data for general use. Its purpose is to offer data for the study of of language and interactions via Instant Messaging (IM) among bachelors. Our paper consists of an overview of both the corpus’s content and demographic metadata. Furthermore, it presents the current research being conducted with it —namely parenthetical expressions, orality traits, and code-switching. This work also includes a brief outline of similar corpora and recent studies in the field of IM.

pdf bib
A Crowd-Annotated Spanish Corpus for Humor Analysis
Santiago Castro | Luis Chiruzzo | Aiala Rosá | Diego Garat | Guillermo Moncecchi

Computational Humor involves several tasks, such as humor recognition, humor generation, and humor scoring, for which it is useful to have human-curated data. In this work we present a corpus of 27,000 tweets written in Spanish and crowd-annotated by their humor value and funniness score, with about four annotations per tweet, tagged by 1,300 people over the Internet. It is equally divided between tweets coming from humorous and non-humorous accounts. The inter-annotator agreement Krippendorff’s alpha value is 0.5710. The dataset is available for general usage and can serve as a basis for humor detection and as a first step to tackle subjectivity.

pdf bib
A Twitter Corpus for Hindi-English Code Mixed POS Tagging
Kushagra Singh | Indira Sen | Ponnurangam Kumaraguru

Code-mixing is a linguistic phenomenon where multiple languages are used in the same occurrence that is increasingly common in multilingual societies. Code-mixed content on social media is also on the rise, prompting the need for tools to automatically understand such content. Automatic Parts-of-Speech (POS) tagging is an essential step in any Natural Language Processing (NLP) pipeline, but there is a lack of annotated data to train such models. In this work, we present a unique language tagged and POS-tagged dataset of code-mixed English-Hindi tweets related to five incidents in India that led to a lot of Twitter activity. Our dataset is unique in two dimensions: (i) it is larger than previous annotated datasets and (ii) it closely resembles typical real-world tweets. Additionally, we present a POS tagging model that is trained on this dataset to provide an example of how this dataset can be used. The model also shows the efficacy of our dataset in enabling the creation of code-mixed social media POS taggers.

pdf bib
Detecting Offensive Tweets in Hindi-English Code-Switched Language
Puneet Mathur | Rajiv Shah | Ramit Sawhney | Debanjan Mahata

The exponential rise of social media websites like Twitter, Facebook and Reddit in linguistically diverse geographical regions has led to hybridization of popular native languages with English in an effort to ease communication. The paper focuses on the classification of offensive tweets written in Hinglish language, which is a portmanteau of the Indic language Hindi with the Roman script. The paper introduces a novel tweet dataset, titled Hindi-English Offensive Tweet (HEOT) dataset, consisting of tweets in Hindi-English code switched language split into three classes: non-offensive, abusive and hate-speech. Further, we approach the problem of classification of the tweets in HEOT dataset using transfer learning wherein the proposed model employing Convolutional Neural Networks is pre-trained on tweets in English followed by retraining on Hinglish tweets.

pdf bib
SocialNLP 2018 EmotionX Challenge Overview: Recognizing Emotions in Dialogues
Chao-Chun Hsu | Lun-Wei Ku

This paper describes an overview of the Dialogue Emotion Recognition Challenge, EmotionX, at the Sixth SocialNLP Workshop, which recognizes the emotion of each utterance in dialogues. This challenge offers the EmotionLines dataset as the experimental materials. The EmotionLines dataset contains conversations from Friends TV show transcripts (Friends) and real chatting logs (EmotionPush), where every dialogue utterance is labeled with emotions. Organizers provide baseline results. 18 teams registered in this challenge and 5 of them submitted their results successfully. The best team achieves the unweighted accuracy 62.48 and 62.5 on EmotionPush and Friends, respectively. In this paper we present the task definition, test collection, the evaluation results of the groups that participated in this challenge, and their approach.

pdf bib
EmotionX-DLC: Self-Attentive BiLSTM for Detecting Sequential Emotions in Dialogues
Linkai Luo | Haiqin Yang | Francis Y. L. Chin

In this paper, we propose a self-attentive bidirectional long short-term memory (SA-BiLSTM) network to predict multiple emotions for the EmotionX challenge. The BiLSTM exhibits the power of modeling the word dependencies, and extracting the most relevant features for emotion classification. Building on top of BiLSTM, the self-attentive network can model the contextual dependencies between utterances which are helpful for classifying the ambiguous emotions. We achieve 59.6 and 55.0 unweighted accuracy scores in the Friends and the EmotionPush test sets, respectively.

pdf bib
EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier
Sopan Khosla

In this paper, we model emotions in EmotionLines dataset using a convolutional-deconvolutional autoencoder (CNN-DCNN) framework. We show that adding a joint reconstruction loss improves performance. Quantitative evaluation with jointly trained network, augmented with linguistic features, reports best accuracies for emotion prediction; namely joy, sadness, anger, and neutral emotion in text.

pdf bib
EmotionX-SmartDubai_NLP: Detecting User Emotions In Social Media Text
Hessa AlBalooshi | Shahram Rahmanian | Rahul Venkatesh Kumar

This paper describes the working note on “EmotionX” shared task. It is hosted by SocialNLP 2018. The objective of this task is to detect the emotions, based on each speaker’s utterances that are in English. Taking this as multiclass text classification problem, we have experimented to develop a model to classify the target class. The primary challenge in this task is to detect the emotions in short messages, communicated through social media. This paper describes the participation of SmartDubai_NLP team in EmotionX shared task and our investigation to detect the emotions from utterance using Neural networks and Natural language understanding.

pdf bib
EmotionX-Area66: Predicting Emotions in Dialogues using Hierarchical Attention Network with Sequence Labeling
Rohit Saxena | Savita Bhat | Niranjan Pedanekar

This paper presents our system submitted to the EmotionX challenge. It is an emotion detection task on dialogues in the EmotionLines dataset. We formulate this as a hierarchical network where network learns data representation at both utterance level and dialogue level. Our model is inspired by Hierarchical Attention network (HAN) and uses pre-trained word embeddings as features. We formulate emotion detection in dialogues as a sequence labeling problem to capture the dependencies among labels. We report the performance accuracy for four emotions (anger, joy, neutral and sadness). The model achieved unweighted accuracy of 55.38% on Friends test dataset and 56.73% on EmotionPush test dataset. We report an improvement of 22.51% in Friends dataset and 36.04% in EmotionPush dataset over baseline results.

pdf bib
EmotionX-JTML: Detecting emotions with Attention
Johnny Torres

This paper addresses the problem of automatic recognition of emotions in conversational text datasets for the EmotionX challenge. Emotion is a human characteristic expressed through several modalities (e.g., auditory, visual, tactile). Trying to detect emotions only from the text becomes a difficult task even for humans. This paper evaluates several neural architectures based on Attention Models, which allow extracting relevant parts of the context within a conversation to identify the emotion associated with each utterance. Empirical results in the validation datasets demonstrate the effectiveness of the approach compared to the reference models for some instances, and other cases show better results with simpler models.

pdf bib
Towards Automation of Sense-type Identification of Verbs in OntoSenseNet
Sreekavitha Parupalli | Vijjini Anvesh Rao | Radhika Mamidi

In this paper, we discuss the enrichment of a manually developed resource, OntoSenseNet for Telugu. OntoSenseNet is a sense annotated resource that marks each verb of Telugu with a primary and a secondary sense. The area of research is relatively recent but has a large scope of development. We provide an introductory work to enrich the OntoSenseNet to promote further research in Telugu. Classifiers are adopted to learn the sense relevant features of the words in the resource and also to automate the tagging of sense-types for verbs. We perform a comparative analysis of different classifiers applied on OntoSenseNet. The results of the experiment prove that automated enrichment of the resource is effective using SVM classifiers and Adaboost ensemble.

pdf bib
Improving Classification of Twitter Behavior During Hurricane Events
Kevin Stowe | Jennings Anderson | Martha Palmer | Leysia Palen | Ken Anderson

A large amount of social media data is generated during natural disasters, and identifying the relevant portions of this data is critical for researchers attempting to understand human behavior, the effects of information sources, and preparatory actions undertaken during these events. In order to classify human behavior during hazard events, we employ machine learning for two tasks: identifying hurricane related tweets and classifying user evacuation behavior during hurricanes. We show that feature-based and deep learning methods provide different benefits for tweet classification, and ensemble-based methods using linguistic, temporal, and geospatial features can effectively classify user behavior.

pdf bib
Political discourse classification in social networks using context sensitive convolutional neural networks
Aritz Bilbao-Jayo | Aitor Almeida

In this study we propose a new approach to analyse the political discourse in on-line social networks such as Twitter. To do so, we have built a discourse classifier using Convolutional Neural Networks. Our model has been trained using election manifestos annotated manually by political scientists following the Regional Manifestos Project (RMP) methodology. In total, it has been trained with more than 88,000 sentences extracted from more that 100 annotated manifestos. Our approach takes into account the context of the phrase in order to classify it, like what was previously said and the political affiliation of the transmitter. To improve the classification results we have used a simplified political message taxonomy developed within the Electronic Regional Manifestos Project (E-RMP). Using this taxonomy, we have validated our approach analysing the Twitter activity of the main Spanish political parties during 2015 and 2016 Spanish general election and providing a study of their discourse.

up

pdf (full)
bib (full)
Proceedings of the First Workshop on Multilingual Surface Realisation

pdf bib
Proceedings of the First Workshop on Multilingual Surface Realisation
Simon Mille | Anja Belz | Bernd Bohnet | Emily Pitler | Leo Wanner

pdf bib
The First Multilingual Surface Realisation Shared Task (SR’18): Overview and Evaluation Results
Simon Mille | Anja Belz | Bernd Bohnet | Yvette Graham | Emily Pitler | Leo Wanner

We report results from the SR’18 Shared Task, a new multilingual surface realisation task organised as part of the ACL’18 Workshop on Multilingual Surface Realisation. As in its English-only predecessor task SR’11, the shared task comprised two tracks with different levels of complexity: (a) a shallow track where the inputs were full UD structures with word order information removed and tokens lemmatised; and (b) a deep track where additionally, functional words and morphological information were removed. The shallow track was offered in ten, and the deep track in three languages. Systems were evaluated (a) automatically, using a range of intrinsic metrics, and (b) by human judges in terms of readability and meaning similarity. This report presents the evaluation results, along with descriptions of the SR’18 tracks, data and evaluation methods. For full descriptions of the participating systems, please see the separate system reports elsewhere in this volume.

pdf bib
BinLin: A Simple Method of Dependency Tree Linearization
Yevgeniy Puzikov | Iryna Gurevych

Surface Realization Shared Task 2018 is a workshop on generating sentences from lemmatized sets of dependency triples. This paper describes the results of our participation in the challenge. We develop a data-driven pipeline system which first orders the lemmas and then conjugates the words to finish the surface realization process. Our contribution is a novel sequential method of ordering lemmas, which, despite its simplicity, achieves promising results. We demonstrate the effectiveness of the proposed approach, describe its limitations and outline ways to improve it.

pdf bib
IIT (BHU) Varanasi at MSR-SRST 2018: A Language Model Based Approach for Natural Language Generation
Shreyansh Singh | Ayush Sharma | Avi Chawla | A.K. Singh

This paper describes our submission system for the Shallow Track of Surface Realization Shared Task 2018 (SRST’18). The task was to convert genuine UD structures, from which word order information had been removed and the tokens had been lemmatized, into their correct sentential form. We divide the problem statement into two parts, word reinflection and correct word order prediction. For the first sub-problem, we use a Long Short Term Memory based Encoder-Decoder approach. For the second sub-problem, we present a Language Model (LM) based approach. We apply two different sub-approaches in the LM Based approach and the combined result of these two approaches is considered as the final output of the system.

pdf bib
Surface Realization Shared Task 2018 (SR18): The Tilburg University Approach
Thiago Castro Ferreira | Sander Wubben | Emiel Krahmer

This study describes the approach developed by the Tilburg University team to the shallow task of the Multilingual Surface Realization Shared Task 2018 (SR18). Based on (Castro Ferreira et al., 2017), the approach works by first preprocessing an input dependency tree into an ordered linearized string, which is then realized using a statistical machine translation model. Our approach shows promising results, with BLEU scores above 50 for 5 different languages (English, French, Italian, Portuguese and Spanish) and above 35 for the Dutch language.

pdf bib
The OSU Realizer for SRST ‘18: Neural Sequence-to-Sequence Inflection and Incremental Locality-Based Linearization
David King | Michael White

Surface realization is a nontrivial task as it involves taking structured data and producing grammatically and semantically correct utterances. Many competing grammar-based and statistical models for realization still struggle with relatively simple sentences. For our submission to the 2018 Surface Realization Shared Task, we tackle the shallow task by first generating inflected wordforms with a neural sequence-to-sequence model before incrementally linearizing them. For linearization, we use a global linear model trained using early update that makes use of features that take into account the dependency structure and dependency locality. Using this pipeline sufficed to produce surprisingly strong results in the shared task. In future work, we intend to pursue joint approaches to linearization and morphological inflection and incorporating a neural language model into the linearization choices.

pdf bib
Generating High-Quality Surface Realizations Using Data Augmentation and Factored Sequence Models
Henry Elder | Chris Hokamp

This work presents state of the art results in reconstruction of surface realizations from obfuscated text. We identify the lack of sufficient training data as the major obstacle to training high-performing models, and solve this issue by generating large amounts of synthetic training data. We also propose preprocessing techniques which make the structure contained in the input features more accessible to sequence models. Our models were ranked first on all evaluation metrics in the English portion of the 2018 Surface Realization shared task.

pdf bib
AX Semantics’ Submission to the Surface Realization Shared Task 2018
Andreas Madsack | Johanna Heininger | Nyamsuren Davaasambuu | Vitaliia Voronik | Michael Käufl | Robert Weißgraeber

In this paper we describe our system and experimental results on the development set of the Surface Realisation Shared Task. Our system is an entry for the Shallow-Task, with two different models based on deep-learning implementations for building the sentence combined with a rule-based morphology component.

pdf bib
NILC-SWORNEMO at the Surface Realization Shared Task: Exploring Syntax-Based Word Ordering using Neural Models
Marco Antonio Sobrevilla Cabezudo | Thiago Pardo

This paper describes the submission by the NILC Computational Linguistics research group of the University of São Paulo/Brazil to the Track 1 of the Surface Realization Shared Task (SRST Track 1). We present a neural-based method that works at the syntactic level to order the words (which we refer by NILC-SWORNEMO, standing for “Syntax-based Word ORdering using NEural MOdels”). Additionally, we apply a bottom-up approach to build the sentence and, using language-specific lexicons, we produce the proper word form of each lemma in the sentence. The results obtained by our method outperformed the average of the results for English, Portuguese and Spanish in the track.

pdf bib
The DipInfo-UniTo system for SRST 2018
Valerio Basile | Alessandro Mazzei

This paper describes the system developed by the DipInfo-UniTo team to participate to the shallow track of the Surface Realization Shared Task 2018. The system employs two separate neural networks with different architectures to predict the word ordering and the morphological inflection independently from each other. The UniTO realizer is language independent, and its simple architecture allowed it to be scored in the central part of the final ranking of the shared task.

up

pdf (full)
bib (full)
Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications

pdf bib
Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications
Yuen-Hsien Tseng | Hsin-Hsi Chen | Vincent Ng | Mamoru Komachi

pdf bib
Generating Questions for Reading Comprehension using Coherence Relations
Takshak Desai | Parag Dakle | Dan Moldovan

In this paper, we have proposed a technique for generating complex reading comprehension questions from a discourse that are more useful than factual ones derived from assertions. Our system produces a set of general-level questions using coherence relations and a set of well-defined syntactic transformations on the input text. Generated questions evaluate comprehension abilities like a comprehensive analysis of the text and its structure, correct identification of the author’s intent, a thorough evaluation of stated arguments; and a deduction of the high-level semantic relations that hold between text spans. Experiments performed on the RST-DT corpus allow us to conclude that our system possesses a strong aptitude for generating intricate questions. These questions are capable of effectively assessing a student’s interpretation of the text.

pdf bib
Syntactic and Lexical Approaches to Reading Comprehension
Henry Lin

Among the challenges of teaching reading comprehension in K – 12 are identifying the portions of a text that are difficult for a student, comprehending major critical ideas, and understanding context-dependent polysemous words. We present a simple, unsupervised but robust and accurate syntactic method for achieving the first objective and a modified hierarchical lexical method for the second objective. Focusing on pinpointing troublesome sentences instead of the overall readability and on concepts central to a reading, we believe these methods will greatly facilitate efforts to help students improve reading skills

pdf bib
Feature Optimization for Predicting Readability of Arabic L1 and L2
Hind Saddiki | Nizar Habash | Violetta Cavalli-Sforza | Muhamed Al Khalil

Advances in automatic readability assessment can impact the way people consume information in a number of domains. Arabic, being a low-resource and morphologically complex language, presents numerous challenges to the task of automatic readability assessment. In this paper, we present the largest and most in-depth computational readability study for Arabic to date. We study a large set of features with varying depths, from shallow words to syntactic trees, for both L1 and L2 readability tasks. Our best L1 readability accuracy result is 94.8% (75% error reduction from a commonly used baseline). The comparable results for L2 are 72.4% (45% error reduction). We also demonstrate the added value of leveraging L1 features for L2 readability prediction.

pdf bib
A Tutorial Markov Analysis of Effective Human Tutorial Sessions
Nabin Maharjan | Vasile Rus

This paper investigates what differentiates effective tutorial sessions from less effective sessions. Towards this end, we characterize and explore human tutors’ actions in tutorial dialogue sessions by mapping the tutor-tutee interactions, which are streams of dialogue utterances, into streams of actions, based on the language-as-action theory. Next, we use human expert judgment measures, evidence of learning (EL) and evidence of soundness (ES), to identify effective and ineffective sessions. We perform sub-sequence pattern mining to identify sub-sequences of dialogue modes that discriminate good sessions from bad sessions. We finally use the results of sub-sequence analysis method to generate a tutorial Markov process for effective tutorial sessions.

pdf bib
Thank “Goodness”! A Way to Measure Style in Student Essays
Sandeep Mathias | Pushpak Bhattacharyya

Essays have two major components for scoring - content and style. In this paper, we describe a property of the essay, called goodness, and use it to predict the score given for the style of student essays. We compare our approach to solve this problem with baseline approaches, like language modeling and also a state-of-the-art deep learning system. We show that, despite being quite intuitive, our approach is very powerful in predicting the style of the essays.

pdf bib
Overview of NLPTEA-2018 Share Task Chinese Grammatical Error Diagnosis
Gaoqi Rao | Qi Gong | Baolin Zhang | Endong Xun

This paper presents the NLPTEA 2018 shared task for Chinese Grammatical Error Diagnosis (CGED) which seeks to identify grammatical error types, their range of occurrence and recommended corrections within sentences written by learners of Chinese as foreign language. We describe the task definition, data preparation, performance metrics, and evaluation results. Of the 20 teams registered for this shared task, 13 teams developed the system and submitted a total of 32 runs. Progress in system performances was obviously, reaching F1 of 36.12% in position level and 25.27% in correction level. All data sets with gold standards and scoring scripts are made publicly available to researchers.

pdf bib
Chinese Grammatical Error Diagnosis using Statistical and Prior Knowledge driven Features with Probabilistic Ensemble Enhancement
Ruiji Fu | Zhengqi Pei | Jiefu Gong | Wei Song | Dechuan Teng | Wanxiang Che | Shijin Wang | Guoping Hu | Ting Liu

This paper describes our system at NLPTEA-2018 Task #1: Chinese Grammatical Error Diagnosis. Grammatical Error Diagnosis is one of the most challenging NLP tasks, which is to locate grammar errors and tell error types. Our system is built on the model of bidirectional Long Short-Term Memory with a conditional random field layer (BiLSTM-CRF) but integrates with several new features. First, richer features are considered in the BiLSTM-CRF model; second, a probabilistic ensemble approach is adopted; third, Template Matcher are used during a post-processing to bring in human knowledge. In official evaluation, our system obtains the highest F1 scores at identifying error types and locating error positions, the second highest F1 score at sentence level error detection. We also recommend error corrections for specific error types and achieve the best F1 performance among all participants.

pdf bib
A Hybrid System for Chinese Grammatical Error Diagnosis and Correction
Chen Li | Junpei Zhou | Zuyi Bao | Hengyou Liu | Guangwei Xu | Linlin Li

This paper introduces the DM_NLP team’s system for NLPTEA 2018 shared task of Chinese Grammatical Error Diagnosis (CGED), which can be used to detect and correct grammatical errors in texts written by Chinese as a Foreign Language (CFL) learners. This task aims at not only detecting four types of grammatical errors including redundant words (R), missing words (M), bad word selection (S) and disordered words (W), but also recommending corrections for errors of M and S types. We proposed a hybrid system including four models for this task with two stages: the detection stage and the correction stage. In the detection stage, we first used a BiLSTM-CRF model to tag potential errors by sequence labeling, along with some handcraft features. Then we designed three Grammatical Error Correction (GEC) models to generate corrections, which could help to tune the detection result. In the correction stage, candidates were generated by the three GEC models and then merged to output the final corrections for M and S types. Our system reached the highest precision in the correction subtask, which was the most challenging part of this shared task, and got top 3 on F1 scores for position detection of errors.

pdf bib
Ling@CASS Solution to the NLP-TEA CGED Shared Task 2018
Qinan Hu | Yongwei Zhang | Fang Liu | Yueguo Gu

In this study, we employ the sequence to sequence learning to model the task of grammar error correction. The system takes potentially erroneous sentences as inputs, and outputs correct sentences. To breakthrough the bottlenecks of very limited size of manually labeled data, we adopt a semi-supervised approach. Specifically, we adapt correct sentences written by native Chinese speakers to generate pseudo grammatical errors made by learners of Chinese as a second language. We use the pseudo data to pre-train the model, and the CGED data to fine-tune it. Being aware of the significance of precision in a grammar error correction system in real scenarios, we use ensembles to boost precision. When using inputs as simple as Chinese characters, the ensembled system achieves a precision at 86.56% in the detection of erroneous sentences, and a precision at 51.53% in the correction of errors of Selection and Missing types.

pdf bib
Chinese Grammatical Error Diagnosis Based on Policy Gradient LSTM Model
Changliang Li | Ji Qi

Chinese Grammatical Error Diagnosis (CGED) is a natural language processing task for the NLPTEA2018 workshop held during ACL2018. The goal of this task is to diagnose Chinese sentences containing four kinds of grammatical errors through the model and find out the sentence errors. Chinese grammatical error diagnosis system is a very important tool, which can help Chinese learners automatically diagnose grammatical errors in many scenarios. However, due to the limitations of the Chinese language’s own characteristics and datasets, the traditional model faces the problem of extreme imbalances in the positive and negative samples and the disappearance of gradients. In this paper, we propose a sequence labeling method based on the Policy Gradient LSTM model and apply it to this task to solve the above problems. The results show that our model can achieve higher precision scores in the case of lower False positive rate (FPR) and it is convenient to optimize the model on-line.

pdf bib
The Importance of Recommender and Feedback Features in a Pronunciation Learning Aid
Dzikri Fudholi | Hanna Suominen

Verbal communication — and pronunciation as its part — is a core skill that can be developed through guided learning. An artificial intelligence system can take a role in these guided learning approaches as an enabler of an application for pronunciation learning with a recommender system to guide language learners through exercises and feedback system to correct their pronunciation. In this paper, we report on a user study on language learners’ perceived usefulness of the application. 16 international students who spoke non-native English and lived in Australia participated. 13 of them said they need to improve their pronunciation skills in English because of their foreign accent. The feedback system with features for pronunciation scoring, speech replay, and giving a pronunciation example was deemed essential by most of the respondents. In contrast, a clear dichotomy between the recommender system perceived as useful or useless existed; the system had features to prompt new common words or old poorly-scored words. These results can be used to target research and development from information retrieval and reinforcement learning for better and better recommendations to speech recognition and speech analytics for accent acquisition.

pdf bib
Selecting NLP Techniques to Evaluate Learning Design Objectives in Collaborative Multi-perspective Elaboration Activities
Aneesha Bakharia

PerspectivesX is a multi-perspective elaboration tool designed to encourage learner submission and curation across a range of collaborative learning activities. In this paper, it is shown that the learning design objectives of collaborative learning activities can be evaluated using NLP techniques, but that careful analysis of learner impact and pedagogical intent are required in order to select appropriate techniques. In particular, this paper focuses on the NLP techniques required to deliver an instructor dashboard, personalized learner feedback and content recommendation within multi-perspective elaboration activities. Key NLP techniques considered for inclusion include summarization, topic modeling, paraphrase detection and diversified content recommendation.

pdf bib
Augmenting Textual Qualitative Features in Deep Convolution Recurrent Neural Network for Automatic Essay Scoring
Tirthankar Dasgupta | Abir Naskar | Lipika Dey | Rupsa Saha

In this paper we present a qualitatively enhanced deep convolution recurrent neural network for computing the quality of a text in an automatic essay scoring task. The novelty of the work lies in the fact that instead of considering only the word and sentence representation of a text, we try to augment the different complex linguistic, cognitive and psycological features associated within a text document along with a hierarchical convolution recurrent neural network framework. Our preliminary investigation shows that incorporation of such qualitative feature vectors along with standard word/sentence embeddings can give us better understanding about improving the overall evaluation of the input essays.

pdf bib
Joint learning of frequency and word embeddings for multilingual readability assessment
Dieu-Thu Le | Cam-Tu Nguyen | Xiaoliang Wang

This paper describes two models that employ word frequency embeddings to deal with the problem of readability assessment in multiple languages. The task is to determine the difficulty level of a given document, i.e., how hard it is for a reader to fully comprehend the text. The proposed models show how frequency information can be integrated to improve the readability assessment. The experimental results testing on both English and Chinese datasets show that the proposed models improve the results notably when comparing to those using only traditional word embeddings.

pdf bib
MULLE: A grammar-based Latin language learning tool to supplement the classroom setting
Herbert Lange | Peter Ljunglöf

MULLE is a tool for language learning that focuses on teaching Latin as a foreign language. It is aimed for easy integration into the traditional classroom setting and syllabus, which makes it distinct from other language learning tools that provide standalone learning experience. It uses grammar-based lessons and embraces methods of gamification to improve the learner motivation. The main type of exercise provided by our application is to practice translation, but it is also possible to shift the focus to vocabulary or morphology training.

pdf bib
Textual Features Indicative of Writing Proficiency in Elementary School Spanish Documents
Gemma Bel-Enguix | Diana Dueñas Chávez | Arturo Curiel Díaz

Childhood acquisition of written language is not straightforward. Writing skills evolve differently depending on external factors, such as the conditions in which children practice their productions and the quality of their instructors’ guidance. This can be challenging in low-income areas, where schools may struggle to ensure ideal acquisition conditions. Developing computational tools to support the learning process may counterweight negative environmental influences; however, few work exists on the use of information technologies to improve childhood literacy. This work centers around the computational study of Spanish word and syllable structure in documents written by 2nd and 3rd year elementary school students. The studied texts were compared against a corpus of short stories aimed at the same age group, so as to observe whether the children tend to produce similar written patterns as the ones they are expected to interpret at their literacy level. The obtained results show some significant differences between the two kinds of texts, pointing towards possible strategies for the implementation of new education software in support of written language acquisition.

pdf bib
Assessment of an Index for Measuring Pronunciation Difficulty
Katsunori Kotani | Takehiko Yoshimi

This study assesses an index for measur-ing the pronunciation difficulty of sen-tences (henceforth, pronounceability) based on the normalized edit distance from a reference sentence to a transcrip-tion of learners’ pronunciation. Pro-nounceability should be examined when language teachers use a computer-assisted language learning system for pronunciation learning to maintain the motivation of learners. However, unlike the evaluation of learners’ pronunciation performance, previous research did not focus on pronounceability not only for English but also for Asian languages. This study found that the normalized edit distance was reliable but not valid. The lack of validity appeared to be because of an English test used for determining the proficiency of learners.

pdf bib
A Short Answer Grading System in Chinese by Support Vector Approach
Shih-Hung Wu | Wen-Feng Shih

In this paper, we report a short answer grading system in Chinese. We build a system based on standard machine learning approaches and test it with translated corpus from two publicly available corpus in English. The experiment results show similar results on two different corpus as in English.

pdf bib
From Fidelity to Fluency: Natural Language Processing for Translator Training
Oi Yee Kwong

This study explores the use of natural language processing techniques to enhance bilingual lexical access beyond simple equivalents, to enable translators to navigate along a wider cross-lingual lexical space and more examples showing different translation strategies, which is essential for them to learn to produce not only faithful but also fluent translations.

pdf bib
Countering Position Bias in Instructor Interventions in MOOC Discussion Forums
Muthu Kumar Chandrasekaran | Min-Yen Kan

We systematically confirm that instructors are strongly influenced by the user interface presentation of Massive Online Open Course (MOOC) discussion forums. In a large scale dataset, we conclusively show that instructor interventions exhibit strong position bias, as measured by the position where the thread appeared on the user interface at the time of intervention. We measure and remove this bias, enabling unbiased statistical modelling and evaluation. We show that our de-biased classifier improves predicting interventions over the state-of-the-art on courses with sufficient number of interventions by 8.2% in F1 and 24.4% in recall on average.

pdf bib
Measuring Beginner Friendliness of Japanese Web Pages explaining Academic Concepts by Integrating Neural Image Feature and Text Features
Hayato Shiokawa | Kota Kawaguchi | Bingcai Han | Takehito Utsuro | Yasuhide Kawada | Masaharu Yoshioka | Noriko Kando

Search engine is an important tool of modern academic study, but the results are lack of measurement of beginner friendliness. In order to improve the efficiency of using search engine for academic study, it is necessary to invent a technique of measuring the beginner friendliness of a Web page explaining academic concepts and to build an automatic measurement system. This paper studies how to integrate heterogeneous features such as a neural image feature generated from the image of the Web page by a variant of CNN (convolutional neural network) as well as text features extracted from the body text of the HTML file of the Web page. Integration is performed through the framework of the SVM classifier learning. Evaluation results show that heterogeneous features perform better than each individual type of features.

pdf bib
Learning to Automatically Generate Fill-In-The-Blank Quizzes
Edison Marrese-Taylor | Ai Nakajima | Yutaka Matsuo | Ono Yuichi

In this paper we formalize the problem automatic fill-in-the-blank question generation using two standard NLP machine learning schemes, proposing concrete deep learning models for each. We present an empirical study based on data obtained from a language learning platform showing that both of our proposed settings offer promising results.

pdf bib
Multilingual Short Text Responses Clustering for Mobile Educational Activities: a Preliminary Exploration
Yuen-Hsien Tseng | Lung-Hao Lee | Yu-Ta Chien | Chun-Yen Chang | Tsung-Yen Li

Text clustering is a powerful technique to detect topics from document corpora, so as to provide information browsing, analysis, and organization. On the other hand, the Instant Response System (IRS) has been widely used in recent years to enhance student engagement in class and thus improve their learning effectiveness. However, the lack of functions to process short text responses from the IRS prevents the further application of IRS in classes. Therefore, this study aims to propose a proper short text clustering module for the IRS, and demonstrate our implemented techniques through real-world examples, so as to provide experiences and insights for further study. In particular, we have compared three clustering methods and the result shows that theoretically better methods need not lead to better results, as there are various factors that may affect the final performance.

pdf bib
Chinese Grammatical Error Diagnosis Based on CRF and LSTM-CRF model
Yujie Zhou | Yinan Shao | Yong Zhou

When learning Chinese as a foreign language, the learners may have some grammatical errors due to negative migration of their native languages. However, few grammar checking applications have been developed to support the learners. The goal of this paper is to develop a tool to automatically diagnose four types of grammatical errors which are redundant words (R), missing words (M), bad word selection (S) and disordered words (W) in Chinese sentences written by those foreign learners. In this paper, a conventional linear CRF model with specific feature engineering and a LSTM-CRF model are used to solve the CGED (Chinese Grammatical Error Diagnosis) task. We make some improvement on both models and the submitted results have better performance on false positive rate and accuracy than the average of all runs from CGED2018 for all three evaluation levels.

pdf bib
Contextualized Character Representation for Chinese Grammatical Error Diagnosis
Jianbo Zhao | Si Li | Zhiqing Lin

Nowadays, more and more people are learning Chinese as their second language. Establishing an automatic diagnosis system for Chinese grammatical error has become an important challenge. In this paper, we propose a Chinese grammatical error diagnosis (CGED) model with contextualized character representation. Compared to the traditional model using LSTM (Long-Short Term Memory), our model have better performance and there is no need to add too many artificial features.

pdf bib
CMMC-BDRC Solution to the NLP-TEA-2018 Chinese Grammatical Error Diagnosis Task
Yongwei Zhang | Qinan Hu | Fang Liu | Yueguo Gu

Chinese grammatical error diagnosis is an important natural language processing (NLP) task, which is also an important application using artificial intelligence technology in language education. This paper introduces a system developed by the Chinese Multilingual & Multimodal Corpus and Big Data Research Center for the NLP-TEA shared task, named Chinese Grammar Error Diagnosis (CGED). This system regards diagnosing errors task as a sequence tagging problem, while takes correction task as a text classification problem. Finally, in the 12 teams, this system gets the highest F1 score in the detection task and the second highest F1 score in mean in the identification task, position task and the correction task.

pdf bib
Detecting Simultaneously Chinese Grammar Errors Based on a BiLSTM-CRF Model
Yajun Liu | Hongying Zan | Mengjie Zhong | Hongchao Ma

In the process of learning and using Chinese, many learners of Chinese as foreign language(CFL) may have grammar errors due to negative migration of their native languages. This paper introduces our system that can simultaneously diagnose four types of grammatical errors including redundant (R), missing (M), selection (S), disorder (W) in NLPTEA-5 shared task. We proposed a Bidirectional LSTM CRF neural network (BiLSTM-CRF) that combines BiLSTM and CRF without hand-craft features for Chinese Grammatical Error Diagnosis (CGED). Evaluation includes three levels, which are detection level, identification level and position level. At the detection level and identification level, our system got the third recall scores, and achieved good F1 values.

pdf bib
A Hybrid Approach Combining Statistical Knowledge with Conditional Random Fields for Chinese Grammatical Error Detection
Yiyi Wang | Chilin Shih

This paper presents a method of combining Conditional Random Fields (CRFs) model with a post-processing layer using Google n-grams statistical information tailored to detect word selection and word order errors made by learners of Chinese as Foreign Language (CFL). We describe the architecture of the model and its performance in the shared task of the ACL 2018 Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA). This hybrid approach yields comparably high false positive rate (FPR = 0.1274) and precision (Pd= 0.7519; Pi= 0.6311), but low recall (Rd = 0.3035; Ri = 0.1696 ) in grammatical error detection and identification tasks. Additional statistical information and linguistic rules can be added to enhance the model performance in the future.

pdf bib
CYUT-III Team Chinese Grammatical Error Diagnosis System Report in NLPTEA-2018 CGED Shared Task
Shih-Hung Wu | Jun-Wei Wang | Liang-Pu Chen | Ping-Che Yang

This paper reports how we build a Chinese Grammatical Error Diagnosis system in the NLPTEA-2018 CGED shared task. In 2018, we sent three runs with three different approaches. The first one is a pattern-based approach by frequent error pattern matching. The second one is a sequential labelling approach by conditional random fields (CRF). The third one is a rewriting approach by sequence to sequence (seq2seq) model. The three approaches have different properties that aim to optimize different performance metrics and the formal run results show the differences as we expected.

pdf bib
Detecting Grammatical Errors in the NTOU CGED System by Identifying Frequent Subsentences
Chuan-Jie Lin | Shao-Heng Chen

The main goal of Chinese grammatical error diagnosis task is to detect word er-rors in the sentences written by Chinese-learning students. Our previous system would generate error-corrected sentences as candidates and their sentence likeli-hood were measured based on a large scale Chinese n-gram dataset. This year we further tried to identify long frequent-ly-seen subsentences and label them as correct in order to avoid propose too many error candidates. Two new methods for suggesting missing and selection er-rors were also tested.

up

pdf (full)
bib (full)
Proceedings of the First Workshop on Linguistic Resources for Natural Language Processing

pdf bib
Proceedings of the First Workshop on Linguistic Resources for Natural Language Processing
Peter Machonis | Anabela Barreiro | Kristina Kocijan | Max Silberztein

pdf bib
Corpus Phonetics: Past, Present, and Future
Mark Liberman

Invited talk

pdf bib
Using Linguistic Resources to Evaluate the Quality of Annotated Corpora
Max Silberztein

Statistical and neural-network-based methods that compute their results by comparing a given text to be analyzed with a reference corpus assume that the reference corpus is complete and reliable enough. In this article, I conduct several experiments on an extract of the Open American National Corpus to verify this assumption.

pdf bib
Rule-based vs. Neural Net Approaches to Semantic Textual Similarity
Linrui Zhang | Dan Moldovan

This paper presents a neural net approach to determine Semantic Textual Similarity (STS) using attention-based bidirectional Long Short-Term Memory Networks (Bi-LSTM). To this date, most of the traditional STS systems were rule-based that built on top of excessive use of linguistic features and resources. In this paper, we present an end-to-end attention-based Bi-LSTM neural network system that solely takes word-level features, without expensive feature engineering work or the usage of external resources. By comparing its performance with traditional rule-based systems against SemEval-2012 benchmark, we make an assessment on the limitations and strengths of neural net systems to rule-based systems on Semantic Textual Similarity.

pdf bib
Linguistic Resources for Phrasal Verb Identification
Peter Machonis

This paper shows how a Lexicon-Grammar dictionary of English phrasal verbs (PV) can be transformed into an electronic dictionary, and with the help of multiple grammars, dictionaries, and filters within the linguistic development environment, NooJ, how to accurately identify PV in large corpora. The NooJ program is an alternative to statistical methods commonly used in NLP: all PV are listed in a dictionary and then located by means of a PV grammar in both continuous and discontinuous format. Results are then refined with a series of dictionaries, disambiguating grammars, and other linguistics recourses. The main advantage of such a program is that all PV can be identified in any corpus. The only drawback is that PV not listed in the dictionary (e.g., archaic forms, recent neologisms) are not identified; however, new PV can easily be added to the electronic dictionary, which is freely available to all.

pdf bib
Designing a Croatian Aspectual Derivatives Dictionary: Preliminary Stages
Kristina Kocijan | Krešimir Šojat | Dario Poljak

The paper focusses on derivationally connected verbs in Croatian, i.e. on verbs that share the same lexical morpheme and are derived from other verbs via prefixation, suffixation and/or stem alternations. As in other Slavic languages with rich derivational morphology, each verb is marked for aspect, either perfective or imperfective. Some verbs, mostly of foreign origin, are marked as bi-aspectual verbs. The main objective of this paper is to detect and to describe major derivational processes and affixes used in the derivation of aspectually connected verbs with NooJ. Annotated chains are exported into a format adequate for web database system and further used to enhance the aspectual and derivational information for each verb.

pdf bib
A Rule-Based System for Disambiguating French Locative Verbs and Their Translation into Arabic
Safa Boudhina | Héla Fehri

This paper presents a rule-based system for disambiguating frensh locative verbs and their translation to Arabic language. The disambiguation phase is based on the use of the French Verb dictionary (LVF) of Dubois and Dubois Charlier as a linguistic resource, from which a base of disambiguation rules is extracted. The extracted rules thus take the form of transducers which will be subsequently applied to texts. The translation phase consists in translating the disambiguated locative verbs returned by the disambiguation phase. The translation takes into account the verb’s tense used as well as the inflected form of the verb. This phase is based on bilingual dictionaries that contain the different French locative verbs and their translation into the Arabic language. The experimentation and the evaluation are done in the linguistic platform NooJ. The obtained results are satisfactory.

pdf bib
A Pedagogical Application of NooJ in Language Teaching: The Adjective in Spanish and Italian
Andrea Rodrigo | Mario Monteleone | Silvia Reyes

In this paper, a pedagogical application of NooJ to the teaching and learning of Spanish as a foreign language is presented, which is directed to a specific addressee: learners whose mother tongue is Italian. The category ‘adjective’ has been chosen on account of its lower frequency of occurrence in texts written in Spanish, and particularly in the Argentine Rioplatense variety, and with the aim of developing strategies to increase its use. In addition, the features that the adjective shares with other grammatical categories render it extremely productive and provide elements that enrich the learners’ proficiency. The reference corpus contains the front pages of the Argentinian newspaper Clarín related to an emblematic historical moment, whose starting point is 24 March 1976, when a military coup began, and covers a thirty year period until 24 March 2006. It can be seen how the term desaparecido emerges with all its cultural and social charge, providing a context which allows an approach to Rioplatense Spanish from a more comprehensive perspective. Finally, a pedagogical proposal accounting for the application of the NooJ platform in language teaching is included.

pdf bib
STYLUS: A Resource for Systematically Derived Language Usage
Bonnie Dorr | Clare Voss

We describe a resource derived through extraction of a set of argument realizations from an existing lexical-conceptual structure (LCS) Verb Database of 500 verb classes (containing a total of 9525 verb entries) to include information about realization of arguments for a range of different verb classes. We demonstrate that our extended resource, called STYLUS (SysTematicallY Derived Language USe), enables systematic derivation of regular patterns of language usage without requiring manual annotation. We posit that both spatially oriented applications such as robot navigation and more general applications such as narrative generation require a layered representation scheme where a set of primitives (often grounded in space/motion such as GO) is coupled with a representation of constraints at the syntax-semantics interface. We demonstrate that the resulting resource covers three cases of lexico-semantic operations applicable to both language understanding and language generation.

pdf bib
Contemporary Amharic Corpus: Automatically Morpho-Syntactically Tagged Amharic Corpus
Andargachew Mekonnen Gezmu | Binyam Ephrem Seyoum | Michael Gasser | Andreas Nürnberger

We introduced the contemporary Amharic corpus, which is automatically tagged for morpho-syntactic information. Texts are collected from 25,199 documents from different domains and about 24 million orthographic words are tokenized. Since it is partly a web corpus, we made some automatic spelling error correction. We have also modified the existing morphological analyzer, HornMorpho, to use it for the automatic tagging.

pdf bib
Gold Corpus for Telegraphic Summarization
Chanakya Malireddy | Srivenkata N M Somisetty | Manish Shrivastava

Most extractive summarization techniques operate by ranking all the source sentences and then select the top ranked sentences as the summary. Such methods are known to produce good summaries, especially when applied to news articles and scientific texts. However, they don’t fare so well when applied to texts such as fictional narratives, which don’t have a single central or recurrent theme. This is because usually the information or plot of the story is spread across several sentences. In this paper, we discuss a different summarization technique called Telegraphic Summarization. Here, we don’t select whole sentences, rather pick short segments of text spread across sentences, as the summary. We have tailored a set of guidelines to create such summaries and, using the same, annotate a gold corpus of 200 English short stories.

pdf bib
Design of a Tigrinya Language Speech Corpus for Speech Recognition
Hafte Abera | Sebsibe H/Mariam

In this paper, we describe the first Tigrinya Languages speech corpora designed and development for speech recognition purposes. Tigrinya, often written as Tigrigna (ትግርኛ) /tɪˈɡrinjə/ belongs to the Semitic branch of the Afro-Asiatic languages where it shows the characteristic features of a Semitic language. It is spoken by ethnic Tigray-Tigrigna people in the Horn of Africa. The paper outlines different corpus designing process analysis of related work on speech corpora creation for different languages. The authors provide also procedures that were used for the creation of Tigrinya speech recognition corpus which is the under-resourced language. One hundred and thirty speakers, native to Tigrinya language, were recorded for training and test dataset set. Each speaker read 100 texts, which consisted of syllabically rich and balanced sentences. Ten thousand sets of sentences were used to prompt sheets. These sentences contained all of the contextual syllables and phones.

pdf bib
Parallel Corpora for bi-Directional Statistical Machine Translation for Seven Ethiopian Language Pairs
Solomon Teferra Abate | Michael Melese | Martha Yifiru Tachbelie | Million Meshesha | Solomon Atinafu | Wondwossen Mulugeta | Yaregal Assabie | Hafte Abera | Binyam Ephrem | Tewodros Abebe | Wondimagegnhue Tsegaye | Amanuel Lemma | Tsegaye Andargie | Seifedin Shifaw

In this paper, we describe the development of parallel corpora for Ethiopian Languages: Amharic, Tigrigna, Afan-Oromo, Wolaytta and Geez. To check the usability of all the corpora we conducted baseline bi-directional statistical machine translation (SMT) experiments for seven language pairs. The performance of the bi-directional SMT systems shows that all the corpora can be used for further investigations. We have also shown that the morphological complexity of the Ethio-Semitic languages has a negative impact on the performance of the SMT especially when they are target languages. Based on the results we obtained, we are currently working towards handling the morphological complexities to improve the performance of statistical machine translation among the Ethiopian languages.

pdf bib
Using Embeddings to Compare FrameNet Frames Across Languages
Jennifer Sikos | Sebastian Padó

Much interest in Frame Semantics is fueled by the substantial extent of its applicability across languages. At the same time, lexicographic studies have found that the applicability of individual frames can be diminished by cross-lingual divergences regarding polysemy, syntactic valency, and lexicalization. Due to the large effort involved in manual investigations, there are so far no broad-coverage resources with “problematic” frames for any language pair. Our study investigates to what extent multilingual vector representations of frames learned from manually annotated corpora can address this need by serving as a wide coverage source for such divergences. We present a case study for the language pair English — German using the FrameNet and SALSA corpora and find that inferences can be made about cross-lingual frame applicability using a vector space model.

pdf bib
Construction of a Multilingual Corpus Annotated with Translation Relations
Yuming Zhai | Aurélien Max | Anne Vilnat

Translation relations, which distinguish literal translation from other translation techniques, constitute an important subject of study for human translators (Chuquet and Paillard, 1989). However, automatic processing techniques based on interlingual relations, such as machine translation or paraphrase generation exploiting translational equivalence, have not exploited these relations explicitly until now. In this work, we present a categorisation of translation relations and annotate them in a parallel multilingual (English, French, Chinese) corpus of oral presentations, the TED Talks. Our long term objective will be to automatically detect these relations in order to integrate them as important characteristics for the search of monolingual segments in relation of equivalence (paraphrases) or of entailment. The annotated corpus resulting from our work will be made available to the community.

pdf bib
Towards an Automatic Classification of Illustrative Examples in a Large Japanese-French Dictionary Obtained by OCR
Christian Boitet | Mathieu Mangeot | Mutsuko Tomokiyo

We work on improving the Cesselin, a large and open source Japanese-French bilingual dictionary digitalized by OCR, available on the web, and contributively improvable online. Labelling its examples (about 226000) would significantly enhance their usefulness for language learners. Examples are proverbs, idiomatic constructions, normal usage examples, and, for nouns, phrases containing a quantifier. Proverbs are easy to spot, but not examples of other types. To find a method for automatically or at least semi-automatically annotating them, we have studied many entries, and hypothesized that the degree of lexical similarity between results of MT into a third language might give good cues. To confirm that hypothesis, we sampled 500 examples and used Google Translate to translate into English their Japanese expressions and their French translations. The hypothesis holds well, in particular for distinguishing examples of normal usage from idiomatic examples. Finally, we propose a detailed annotation procedure and discuss its future automatization.

pdf bib
Contractions: To Align or Not to Align, That Is the Question
Anabela Barreiro | Fernando Batista

This paper performs a detailed analysis on the alignment of Portuguese contractions, based on a previously aligned bilingual corpus. The alignment task was performed manually in a subset of the English-Portuguese CLUE4Translation Alignment Collection. The initial parallel corpus was pre-processed and, a decision was made as to whether the contraction should be maintained or decomposed in the alignment. Decomposition was required in the cases in which the two words that have been concatenated, i.e., the preposition and the determiner or pronoun, go in two separate translation alignment pairs (e.g., [no seio de] [a União Europeia] | [within] [the European Union]). Most contractions required decomposition in contexts where they are positioned at the end of a multiword unit. On the other hand, contractions tend to be maintained when they occur in the beginning or in the middle of the multiword unit, i.e., in the frozen part of the multiword (e.g., [no que diz respeito a] | [with regard to] or [além disso] [in addition]. A correct alignment of multiwords and phrasal units containing contractions is instrumental for machine translation, paraphrasing, and variety adaptation.

pdf bib
Enabling Code-Mixed Translation: Parallel Corpus Creation and MT Augmentation Approach
Mrinal Dhar | Vaibhav Kumar | Manish Shrivastava

Code-mixing, use of two or more languages in a single sentence, is ubiquitous; generated by multi-lingual speakers across the world. The phenomenon presents itself prominently in social media discourse. Consequently, there is a growing need for translating code-mixed hybrid language into standard languages. However, due to the lack of gold parallel data, existing machine translation systems fail to properly translate code-mixed text. In an effort to initiate the task of machine translation of code-mixed content, we present a newly created parallel corpus of code-mixed English-Hindi and English. We selected previously available English-Hindi code-mixed data as a starting point for the creation of our parallel corpus. We then chose 4 human translators, fluent in both English and Hindi, for translating the 6088 code-mixed English-Hindi sentences to English. With the help of the created parallel corpus, we analyzed the structure of English-Hindi code-mixed data and present a technique to augment run-of-the-mill machine translation (MT) approaches that can help achieve superior translations without the need for specially designed translation systems. We present an augmentation pipeline for existing MT approaches, like Phrase Based MT (Moses) and Neural MT, to improve the translation of code-mixed text. The augmentation pipeline is presented as a pre-processing step and can be plugged with any existing MT system, which we demonstrate by improving translations done by systems like Moses, Google Neural Machine Translation System (NMTS) and Bing Translator for English-Hindi code-mixed content.

up

pdf (full)
bib (full)
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2018)

pdf bib
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2018)
Marcos Zampieri | Preslav Nakov | Nikola Ljubešić | Jörg Tiedemann | Shervin Malmasi | Ahmed Ali

pdf bib
Language Identification and Morphosyntactic Tagging: The Second VarDial Evaluation Campaign
Marcos Zampieri | Shervin Malmasi | Preslav Nakov | Ahmed Ali | Suwon Shon | James Glass | Yves Scherrer | Tanja Samardžić | Nikola Ljubešić | Jörg Tiedemann | Chris van der Lee | Stefan Grondelaers | Nelleke Oostdijk | Dirk Speelman | Antal van den Bosch | Ritesh Kumar | Bornini Lahiri | Mayank Jain

We present the results and the findings of the Second VarDial Evaluation Campaign on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects. The campaign was organized as part of the fifth edition of the VarDial workshop, collocated with COLING’2018. This year, the campaign included five shared tasks, including two task re-runs – Arabic Dialect Identification (ADI) and German Dialect Identification (GDI) –, and three new tasks – Morphosyntactic Tagging of Tweets (MTT), Discriminating between Dutch and Flemish in Subtitles (DFS), and Indo-Aryan Language Identification (ILI). A total of 24 teams submitted runs across the five shared tasks, and contributed 22 system description papers, which were included in the VarDial workshop proceedings and are referred to in this report.

pdf bib
Encoder-Decoder Methods for Text Normalization
Massimo Lusetti | Tatyana Ruzsics | Anne Göhring | Tanja Samardžić | Elisabeth Stark

Text normalization is the task of mapping non-canonical language, typical of speech transcription and computer-mediated communication, to a standardized writing. It is an up-stream task necessary to enable the subsequent direct employment of standard natural language processing tools and indispensable for languages such as Swiss German, with strong regional variation and no written standard. Text normalization has been addressed with a variety of methods, most successfully with character-level statistical machine translation (CSMT). In the meantime, machine translation has changed and the new methods, known as neural encoder-decoder (ED) models, resulted in remarkable improvements. Text normalization, however, has not yet followed. A number of neural methods have been tried, but CSMT remains the state-of-the-art. In this work, we normalize Swiss German WhatsApp messages using the ED framework. We exploit the flexibility of this framework, which allows us to learn from the same training data in different ways. In particular, we modify the decoding stage of a plain ED model to include target-side language models operating at different levels of granularity: characters and words. Our systematic comparison shows that our approach results in an improvement over the CSMT state-of-the-art.

pdf bib
A High Coverage Method for Automatic False Friends Detection for Spanish and Portuguese
Santiago Castro | Jairo Bonanata | Aiala Rosá

False friends are words in two languages that look or sound similar, but have different meanings. They are a common source of confusion among language learners. Methods to detect them automatically do exist, however they make use of large aligned bilingual corpora, which are hard to find and expensive to build, or encounter problems dealing with infrequent words. In this work we propose a high coverage method that uses word vector representations to build a false friends classifier for any pair of languages, which we apply to the particular case of Spanish and Portuguese. The required resources are a large corpus for each language and a small bilingual lexicon for the pair.

pdf bib
Sub-label dependencies for Neural Morphological Tagging – The Joint Submission of University of Colorado and University of Helsinki for VarDial 2018
Miikka Silfverberg | Senka Drobac

This paper presents the submission of the UH&CU team (Joint University of Colorado and University of Helsinki team) for the VarDial 2018 shared task on morphosyntactic tagging of Croatian, Slovenian and Serbian tweets. Our system is a bidirectional LSTM tagger which emits tags as character sequences using an LSTM generator in order to be able to handle unknown tags and combinations of several tags for one token which occur in the shared task data sets. To the best of our knowledge, using an LSTM generator is a novel approach. The system delivers sizable improvements of more than 6%-points over a baseline trigram tagger. Overall, the performance of our system is quite even for all three languages.

pdf bib
Part of Speech Tagging in Luyia: A Bantu Macrolanguage
Kenneth Steimel

Luyia is a macrolanguage in central Kenya. The Luyia languages, like other Bantu languages, have a complex morphological system. This system can be leveraged to aid in part of speech tagging. Bag-of-characters taggers trained on a source Luyia language can be applied directly to another Luyia language with some degree of success. In addition, mixing data from the target language with data from the source language does produce more accurate predictive models compared to models trained on just the target language data when the training set size is small. However, for both of these tagging tasks, models involving the more distantly related language, Tiriki, are better at predicting part of speech tags for Wanga data. The models incorporating Bukusu data are not as successful despite the closer relationship between Bukusu and Wanga. Overlapping vocabulary between the Wanga and Tiriki corpora as well as a bias towards open class words help Tiriki outperform Bukusu.

pdf bib
Tübingen-Oslo Team at the VarDial 2018 Evaluation Campaign: An Analysis of N-gram Features in Language Variety Identification
Çağrı Çöltekin | Taraka Rama | Verena Blaschke

This paper describes our systems for the VarDial 2018 evaluation campaign. We participated in all language identification tasks, namely, Arabic dialect identification (ADI), German dialect identification (GDI), discriminating between Dutch and Flemish in Subtitles (DFS), and Indo-Aryan Language Identification (ILI). In all of the tasks, we only used textual transcripts (not using audio features for ADI). We submitted system runs based on support vector machine classifiers (SVMs) with bag of character and word n-grams as features, and gated bidirectional recurrent neural networks (RNNs) using units of characters and words. Our SVM models outperformed our RNN models in all tasks, obtaining the first place on the DFS task, third place on the ADI task, and second place on others according to the official rankings. As well as describing the models we used in the shared task participation, we present an analysis of the n-gram features used by the SVM models in each task, and also report additional results (that were run after the official competition deadline) on the GDI surprise dialect track.

pdf bib
Iterative Language Model Adaptation for Indo-Aryan Language Identification
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén

This paper presents the experiments and results obtained by the SUKI team in the Indo-Aryan Language Identification shared task of the VarDial 2018 Evaluation Campaign. The shared task was an open one, but we did not use any corpora other than what was distributed by the organizers. A total of eight teams provided results for this shared task. Our submission using a HeLI-method based language identifier with iterative language model adaptation obtained the best results in the shared task with a macro F1-score of 0.958.

pdf bib
Language and the Shifting Sands of Domain, Space and Time (Invited Talk)
Timothy Baldwin

In this talk, I will first present recent work on domain debiasing in the context of language identification, then discuss a new line of work on language variety analysis in the form of dialect map generation. Finally, I will reflect on the interplay between time and space on language variation, and speculate on how these can be captured in a single model.

pdf bib
UnibucKernel Reloaded: First Place in Arabic Dialect Identification for the Second Year in a Row
Andrei Butnaru | Radu Tudor Ionescu

We present a machine learning approach that ranked on the first place in the Arabic Dialect Identification (ADI) Closed Shared Tasks of the 2018 VarDial Evaluation Campaign. The proposed approach combines several kernels using multiple kernel learning. While most of our kernels are based on character p-grams (also known as n-grams) extracted from speech or phonetic transcripts, we also use a kernel based on dialectal embeddings generated from audio recordings by the organizers. In the learning stage, we independently employ Kernel Discriminant Analysis (KDA) and Kernel Ridge Regression (KRR). Preliminary experiments indicate that KRR provides better classification results. Our approach is shallow and simple, but the empirical results obtained in the 2018 ADI Closed Shared Task prove that it achieves the best performance. Furthermore, our top macro-F1 score (58.92%) is significantly better than the second best score (57.59%) in the 2018 ADI Shared Task, according to the statistical significance test performed by the organizers. Nevertheless, we obtain even better post-competition results (a macro-F1 score of 62.28%) using the audio embeddings released by the organizers after the competition. With a very similar approach (that did not include phonetic features), we also ranked first in the ADI Closed Shared Tasks of the 2017 VarDial Evaluation Campaign, surpassing the second best method by 4.62%. We therefore conclude that our multiple kernel learning method is the best approach to date for Arabic dialect identification.

pdf bib
Varying image description tasks: spoken versus written descriptions
Emiel van Miltenburg | Ruud Koolen | Emiel Krahmer

Automatic image description systems are commonly trained and evaluated on written image descriptions. At the same time, these systems are often used to provide spoken descriptions (e.g. for visually impaired users) through apps like TapTapSee or Seeing AI. This is not a problem, as long as spoken and written descriptions are very similar. However, linguistic research suggests that spoken language often differs from written language. These differences are not regular, and vary from context to context. Therefore, this paper investigates whether there are differences between written and spoken image descriptions, even if they are elicited through similar tasks. We compare descriptions produced in two languages (English and Dutch), and in both languages observe substantial differences between spoken and written descriptions. Future research should see if users prefer the spoken over the written style and, if so, aim to emulate spoken descriptions.

pdf bib
Transfer Learning for British Sign Language Modelling
Boris Mocialov | Helen Hastie | Graham Turner

Automatic speech recognition and spoken dialogue systems have made great advances through the use of deep machine learning methods. This is partly due to greater computing power but also through the large amount of data available in common languages, such as English. Conversely, research in minority languages, including sign languages, is hampered by the severe lack of data. This has led to work on transfer learning methods, whereby a model developed for one language is reused as the starting point for a model on a second language, which is less resourced. In this paper, we examine two transfer learning techniques of fine-tuning and layer substitution for language modelling of British Sign Language. Our results show improvement in perplexity when using transfer learning with standard stacked LSTM models, trained initially using a large corpus for standard English from the Penn Treebank corpus.

pdf bib
Paraphrastic Variance between European and Brazilian Portuguese
Anabela Barreiro | Cristina Mota

This paper presents a methodology to extract a paraphrase database for the European and Brazilian varieties of Portuguese, and discusses a set of paraphrastic categories of multiwords and phrasal units, such as the compounds “toda a gente” versus “todo o mundo” ‘everybody’ or the gerundive constructions [estar a + V-Inf] versus [ficar + V-Ger] (e.g., “estive a observar” | “fiquei observando” ‘I was observing’), which are extremely relevant to high quality paraphrasing. The variants were manually aligned in the e-PACT corpus, using the CLUE-Aligner tool. The methodology, inspired in the Logos Model, focuses on a semantico-syntactic analysis of each paraphrastic unit and constitutes a subset of the Gold-CLUE-Paraphrases. The construction of a larger dataset of paraphrastic contrasts among the distinct varieties of the Portuguese language is indispensable for variety adaptation, i.e., for dealing with the cultural, linguistic and stylistic differences between them, making it possible to convert texts (semi-)automatically from one variety into another, a key function in paraphrasing systems. This topic represents an interesting new line of research with valuable applications in language learning, language generation, question-answering, summarization, and machine translation, among others. The paraphrastic units are the first resource of its kind for Portuguese to become available to the scientific community for research purposes.

pdf bib
Character Level Convolutional Neural Network for Arabic Dialect Identification
Mohamed Ali

This submission is for the description paper for our system in the ADI shared task.

pdf bib
Neural Network Architectures for Arabic Dialect Identification
Elise Michon | Minh Quang Pham | Josep Crego | Jean Senellart

SYSTRAN competes this year for the first time to the DSL shared task, in the Arabic Dialect Identification subtask. We participate by training several Neural Network models showing that we can obtain competitive results despite the limited amount of training data available for learning. We report our experiments and detail the network architecture and parameters of our 3 runs: our best performing system consists in a Multi-Input CNN that learns separate embeddings for lexical, phonetic and acoustic input features (F1: 0.5289); we also built a CNN-biLSTM network aimed at capturing both spatial and sequential features directly from speech spectrograms (F1: 0.3894 at submission time, F1: 0.4235 with later found parameters); and finally a system relying on binary CNN-biLSTMs (F1: 0.4339).

pdf bib
HeLI-based Experiments in Discriminating Between Dutch and Flemish Subtitles
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén

This paper presents the experiments and results obtained by the SUKI team in the Discriminating between Dutch and Flemish in Subtitles shared task of the VarDial 2018 Evaluation Campaign. Our best submission was ranked 8th, obtaining macro F1-score of 0.61. Our best results were produced by a language identifier implementing the HeLI method without any modifications. We describe, in addition to the best method we used, some of the experiments we did with unsupervised clustering.

pdf bib
Measuring language distance among historical varieties using perplexity. Application to European Portuguese.
Jose Ramom Pichel Campos | Pablo Gamallo | Iñaki Alegria

The objective of this work is to quantify, with a simple and robust measure, the distance between historical varieties of a language. The measure will be inferred from text corpora corresponding to historical periods. Different approaches have been proposed for similar aims: Language Identification, Phylogenetics, Historical Linguistics or Dialectology. In our approach, we used a perplexity-based measure to calculate language distance between all the historical periods of a specific language: European Portuguese. Perplexity has also proven to be a robust metric to calculate distance between languages. However, this measure has not been tested yet to identify diachronic periods within the historical evolution of a specific language. For this purpose, a historical Portuguese corpus has been constructed from different open sources containing texts with close original spelling. The results of our experiments show that Portuguese keeps an important degree of homogeneity over time. We anticipate this metric to be a starting point to be applied to other languages.

pdf bib
Comparing CRF and LSTM performance on the task of morphosyntactic tagging of non-standard varieties of South Slavic languages
Nikola Ljubešić

This paper presents two systems taking part in the Morphosyntactic Tagging of Tweets shared task on Slovene, Croatian and Serbian data, organized inside the VarDial Evaluation Campaign. While one system relies on the traditional method for sequence labeling (conditional random fields), the other relies on its neural alternative (bidirectional long short-term memory). We investigate the similarities and differences of these two approaches, showing that both methods yield very good and quite similar results, with the neural model outperforming the traditional one more as the level of non-standardness of the text increases. Through an error analysis we show that the neural system is better at long-range dependencies, while the traditional system excels and slightly outperforms the neural system at the local ones. We present in the paper new state-of-the-art results in morphosyntactic annotation of non-standard text for Slovene, Croatian and Serbian.

pdf bib
Computationally efficient discrimination between language varieties with large feature vectors and regularized classifiers
Adrien Barbaresi

The present contribution revolves around efficient approaches to language classification which have been field-tested in the Vardial evaluation campaign. The methods used in several language identification tasks comprising different language types are presented and their results are discussed, giving insights on real-world application of regularization, linear classifiers and corresponding linguistic features. The use of a specially adapted Ridge classifier proved useful in 2 tasks out of 3. The overall approach (XAC) has slightly outperformed most of the other systems on the DFS task (Dutch and Flemish) and on the ILI task (Indo-Aryan languages), while its comparative performance was poorer in on the GDI task (Swiss German dialects).

pdf bib
Character Level Convolutional Neural Network for German Dialect Identification
Mohamed Ali

This submission is a description paper for our system in GDI shared task

pdf bib
Discriminating between Indo-Aryan Languages Using SVM Ensembles
Alina Maria Ciobanu | Marcos Zampieri | Shervin Malmasi | Santanu Pal | Liviu P. Dinu

In this paper we present a system based on SVM ensembles trained on characters and words to discriminate between five similar languages of the Indo-Aryan family: Hindi, Braj Bhasha, Awadhi, Bhojpuri, and Magahi. The system competed in the Indo-Aryan Language Identification (ILI) shared task organized within the VarDial Evaluation Campaign 2018. Our best entry in the competition, named ILIdentification, scored 88.95% F1 score and it was ranked 3rd out of 8 teams.

pdf bib
IIT (BHU) System for Indo-Aryan Language Identification (ILI) at VarDial 2018
Divyanshu Gupta | Gourav Dhakad | Jayprakash Gupta | Anil Kumar Singh

Text language Identification is a Natural Language Processing task of identifying and recognizing a given language out of many different languages from a piece of text. This paper describes our submission to the ILI 2018 shared-task, which includes the identification of 5 closely related Indo-Aryan languages. We developed a word-level LSTM(Long Short-term Memory) model, a specific type of Recurrent Neural Network model, for this task. Given a sentence, our model embeds each word of the sentence and convert into its trainable word embedding, feeds them into our LSTM network and finally predict the language. We obtained an F1 macro score of 0.836, ranking 5th in the task.

pdf bib
Exploring Classifier Combinations for Language Variety Identification
Tim Kreutz | Walter Daelemans

This paper describes CLiPS’s submissions for the Discriminating between Dutch and Flemish in Subtitles (DFS) shared task at VarDial 2018. We explore different ways to combine classifiers trained on different feature groups. Our best system uses two Linear SVM classifiers; one trained on lexical features (word n-grams) and one trained on syntactic features (PoS n-grams). The final prediction for a document to be in Flemish Dutch or Netherlandic Dutch is made by the classifier that outputs the highest probability for one of the two labels. This confidence vote approach outperforms a meta-classifier on the development data and on the test data.

pdf bib
Identification of Differences between Dutch Language Varieties with the VarDial2018 Dutch-Flemish Subtitle Data
Hans van Halteren | Nelleke Oostdijk

With the goal of discovering differences between Belgian and Netherlandic Dutch, we participated as Team Taurus in the Dutch-Flemish Subtitles task of VarDial2018. We used a rather simple marker-based method, but a wide range of features, including lexical, lexico-syntactic and syntactic ones, and achieved a second position in the ranking. Inspection of highly distin-guishing features did point towards differences between the two language varieties, but because of the nature of the experimental data, we have to treat our observations as very tentative and in need of further investigation.

pdf bib
Birzeit Arabic Dialect Identification System for the 2018 VarDial Challenge
Rabee Naser | Abualsoud Hanani

This paper describes our Automatic Dialect Recognition (ADI) system for the VarDial 2018 challenge, with the goal of distinguishing four major Arabic dialects, as well as Modern Standard Arabic (MSA). The training and development ADI VarDial 2018 data consists of 16,157 utterances, their words transcription, their phonetic transcriptions obtained with four non-Arabic phoneme recognizers and acoustic embedding data. Our overall system is a combination of four different systems. One system uses the words transcriptions and tries to recognize the speaker dialect by modeling the sequence of words for each dialect. Another system tries to recognize the dialect by modeling the phones sequence produced by non-Arabic phone recognizers, whereas, the other two systems use GMM trained on the acoustic features for recognizing the dialect. The best performance was achieved by the fused system which combines four systems together, with F1 micro of 68.77%.

pdf bib
Twist Bytes - German Dialect Identification with Data Mining Optimization
Fernando Benites | Ralf Grubenmann | Pius von Däniken | Dirk von Grünigen | Jan Deriu | Mark Cieliebak

We describe our approaches used in the German Dialect Identification (GDI) task at the VarDial Evaluation Campaign 2018. The goal was to identify to which out of four dialects spoken in German speaking part of Switzerland a sentence belonged to. We adopted two different meta classifier approaches and used some data mining insights to improve the preprocessing and the meta classifier parameters. Especially, we focused on using different feature extraction methods and how to combine them, since they influenced very differently the performance of the system. Our system achieved second place out of 8 teams, with a macro averaged F-1 of 64.6%.

pdf bib
STEVENDU2018’s system in VarDial 2018: Discriminating between Dutch and Flemish in Subtitles
Steven Du | Yuan Yuan Wang

This paper introduces the submitted system for team STEVENDU2018 during VarDial 2018 Discriminating between Dutch and Flemish in Subtitles(DFS). Post evaluation analyses are also presented, the results obtained indicate that it is a challenging task to discriminate Dutch and Flemish.

pdf bib
Using Neural Transfer Learning for Morpho-syntactic Tagging of South-Slavic Languages Tweets
Sara Meftah | Nasredine Semmar | Fatiha Sadat | Stephan Raaijmakers

In this paper, we describe a morpho-syntactic tagger of tweets, an important component of the CEA List DeepLIMA tool which is a multilingual text analysis platform based on deep learning. This tagger is built for the Morpho-syntactic Tagging of Tweets (MTT) Shared task of the 2018 VarDial Evaluation Campaign. The MTT task focuses on morpho-syntactic annotation of non-canonical Twitter varieties of three South-Slavic languages: Slovene, Croatian and Serbian. We propose to use a neural network model trained in an end-to-end manner for the three languages without any need for task or domain specific features engineering. The proposed approach combines both character and word level representations. Considering the lack of annotated data in the social media domain for South-Slavic languages, we have also implemented a cross-domain Transfer Learning (TL) approach to exploit any available related out-of-domain annotated data.

pdf bib
When Simple n-gram Models Outperform Syntactic Approaches: Discriminating between Dutch and Flemish
Martin Kroon | Masha Medvedeva | Barbara Plank

In this paper we present the results of our participation in the Discriminating between Dutch and Flemish in Subtitles VarDial 2018 shared task. We try techniques proven to work well for discriminating between language varieties as well as explore the potential of using syntactic features, i.e. hierarchical syntactic subtrees. We experiment with different combinations of features. Discriminating between these two languages turned out to be a very hard task, not only for a machine: human performance is only around 0.51 F1 score; our best system is still a simple Naive Bayes model with word unigrams and bigrams. The system achieved an F1 score (macro) of 0.62, which ranked us 4th in the shared task.

pdf bib
HeLI-based Experiments in Swiss German Dialect Identification
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén

In this paper we present the experiments and results by the SUKI team in the German Dialect Identification shared task of the VarDial 2018 Evaluation Campaign. Our submission using HeLI with adaptive language models obtained the best results in the shared task with a macro F1-score of 0.686, which is clearly higher than the other submitted results. Without some form of unsupervised adaptation on the test set, it might not be possible to reach as high an F1-score with the level of domain difference between the datasets of the shared task. We describe the methods used in detail, as well as some additional experiments carried out during the shared task.

pdf bib
Deep Models for Arabic Dialect Identification on Benchmarked Data
Mohamed Elaraby | Muhammad Abdul-Mageed

The Arabic Online Commentary (AOC) (Zaidan and Callison-Burch, 2011) is a large-scale repos-itory of Arabic dialects with manual labels for4varieties of the language. Existing dialect iden-tification models exploiting the dataset pre-date the recent boost deep learning brought to NLPand hence the data are not benchmarked for use with deep learning, nor is it clear how much neural networks can help tease the categories in the data apart. We treat these two limitations:We (1) benchmark the data, and (2) empirically test6different deep learning methods on thetask, comparing peformance to several classical machine learning models under different condi-tions (i.e., both binary and multi-way classification). Our experimental results show that variantsof (attention-based) bidirectional recurrent neural networks achieve best accuracy (acc) on thetask, significantly outperforming all competitive baselines. On blind test data, our models reach87.65%acc on the binary task (MSA vs. dialects),87.4%acc on the 3-way dialect task (Egyptianvs. Gulf vs. Levantine), and82.45%acc on the 4-way variants task (MSA vs. Egyptian vs. Gulfvs. Levantine). We release our benchmark for future work on the dataset

pdf bib
A Neural Approach to Language Variety Translation
Marta R. Costa-jussà | Marcos Zampieri | Santanu Pal

In this paper we present the first neural-based machine translation system trained to translate between standard national varieties of the same language. We take the pair Brazilian - European Portuguese as an example and compare the performance of this method to a phrase-based statistical machine translation system. We report a performance improvement of 0.9 BLEU points in translating from European to Brazilian Portuguese and 0.2 BLEU points when translating in the opposite direction. We also carried out a human evaluation experiment with native speakers of Brazilian Portuguese which indicates that humans prefer the output produced by the neural-based system in comparison to the statistical system.

pdf bib
Character Level Convolutional Neural Network for Indo-Aryan Language Identification
Mohamed Ali

This submission is a description paper for our system in ILI shared task

pdf bib
German Dialect Identification Using Classifier Ensembles
Alina Maria Ciobanu | Shervin Malmasi | Liviu P. Dinu

In this paper we present the GDI classification entry to the second German Dialect Identification (GDI) shared task organized within the scope of the VarDial Evaluation Campaign 2018. We present a system based on SVM classifier ensembles trained on characters and words. The system was trained on a collection of speech transcripts of five Swiss-German dialects provided by the organizers. The transcripts included in the dataset contained speakers from Basel, Bern, Lucerne, and Zurich. Our entry in the challenge reached 62.03% F1 score and was ranked third out of eight teams.

up

pdf (full)
bib (full)
Proceedings of the Third Workshop on Semantic Deep Learning

pdf bib
Proceedings of the Third Workshop on Semantic Deep Learning
Luis Espinosa Anke | Dagmar Gromann | Thierry Declerck

pdf bib
Replicated Siamese LSTM in Ticketing System for Similarity Learning and Retrieval in Asymmetric Texts
Pankaj Gupta | Bernt Andrassy | Hinrich Schütze

The goal of our industrial ticketing system is to retrieve a relevant solution for an input query, by matching with historical tickets stored in knowledge base. A query is comprised of subject and description, while a historical ticket consists of subject, description and solution. To retrieve a relevant solution, we use textual similarity paradigm to learn similarity in the query and historical tickets. The task is challenging due to significant term mismatch in the query and ticket pairs of asymmetric lengths, where subject is a short text but description and solution are multi-sentence texts. We present a novel Replicated Siamese LSTM model to learn similarity in asymmetric text pairs, that gives 22% and 7% gain (Accuracy@10) for retrieval task, respectively over unsupervised and supervised baselines. We also show that the topic and distributed semantic features for short and long texts improved both similarity learning and retrieval.

pdf bib
Word-Embedding based Content Features for Automated Oral Proficiency Scoring
Su-Youn Yoon | Anastassia Loukina | Chong Min Lee | Matthew Mulholland | Xinhao Wang | Ikkyu Choi

In this study, we develop content features for an automated scoring system of non-native English speakers’ spontaneous speech. The features calculate the lexical similarity between the question text and the ASR word hypothesis of the spoken response, based on traditional word vector models or word embeddings. The proposed features do not require any sample training responses for each question, and this is a strong advantage since collecting question-specific data is an expensive task, and sometimes even impossible due to concerns about question exposure. We explore the impact of these new features on the automated scoring of two different question types: (a) providing opinions on familiar topics and (b) answering a question about a stimulus material. The proposed features showed statistically significant correlations with the oral proficiency scores, and the combination of new features with the speech-driven features achieved a small but significant further improvement for the latter question type. Further analyses suggested that the new features were effective in assigning more accurate scores for responses with serious content issues.

pdf bib
Automatically Linking Lexical Resources with Word Sense Embedding Models
Luis Nieto-Piña | Richard Johansson

Automatically learnt word sense embeddings are developed as an attempt to refine the capabilities of coarse word embeddings. The word sense representations obtained this way are, however, sensitive to underlying corpora and parameterizations, and they might be difficult to relate to formally defined word senses. We propose to tackle this problem by devising a mechanism to establish links between word sense embeddings and lexical resources created by experts. We evaluate the applicability of these links in a task to retrieve instances of word sense unlisted in the lexicon.

pdf bib
Transferred Embeddings for Igbo Similarity, Analogy, and Diacritic Restoration Tasks
Ignatius Ezeani | Ikechukwu Onyenwe | Mark Hepple

Existing NLP models are mostly trained with data from well-resourced languages. Most minority languages face the challenge of lack of resources - data and technologies - for NLP research. Building these resources from scratch for each minority language will be very expensive, time-consuming and amount largely to unnecessarily re-inventing the wheel. In this paper, we applied transfer learning techniques to create Igbo word embeddings from a variety of existing English trained embeddings. Transfer learning methods were also used to build standard datasets for Igbo word similarity and analogy tasks for intrinsic evaluation of embeddings. These projected embeddings were also applied to diacritic restoration task. Our results indicate that the projected models not only outperform the trained ones on the semantic-based tasks of analogy, word-similarity, and odd-word identifying, but they also achieve enhanced performance on the diacritic restoration with learned diacritic embeddings.

pdf bib
Towards Enhancing Lexical Resource and Using Sense-annotations of OntoSenseNet for Sentiment Analysis
Sreekavitha Parupalli | Vijjini Anvesh Rao | Radhika Mamidi

This paper illustrates the interface of the tool we developed for crowd sourcing and we explain the annotation procedure in detail. Our tool is named as ‘పారుపల్లి పదజాలం’ (Parupalli Padajaalam) which means web of words by Parupalli. The aim of this tool is to populate the OntoSenseNet, sentiment polarity annotated Telugu resource. Recent works have shown the importance of word-level annotations on sentiment analysis. With this as basis, we aim to analyze the importance of sense-annotations obtained from OntoSenseNet in performing the task of sentiment analysis. We explain the features extracted from OntoSenseNet (Telugu). Furthermore we compute and explain the adverbial class distribution of verbs in OntoSenseNet. This task is known to aid in disambiguating word-senses which helps in enhancing the performance of word-sense disambiguation (WSD) task(s).

pdf bib
Knowledge Representation with Conceptual Spaces
Steven Schockaert

Entity embeddings are vector space representations of a given domain of interest. They are typically learned from text corpora (possibly in combination with any available structured knowledge), based on the intuition that similar entities should be represented by similar vectors. The usefulness of such entity embeddings largely stems from the fact that they implicitly encode a rich amount of knowledge about the considered domain, beyond mere similarity. In an embedding of movies, for instance, we may expect all movies from a given genre to be located in some low-dimensional manifold. This is particularly useful in supervised learning settings, where it may e.g. allow neural movie recommenders to base predictions on the genre of a movie, without that genre having to be specified explicitly for each movie, or without even the need to specify that the genre of a movie is a property that may have predictive value for the considered task. In unsupervised settings, however, such implicitly encoded knowledge cannot be leveraged. Conceptual spaces, as proposed by Grdenfors, are similar to entity embeddings, but provide more structure. In conceptual spaces, among others, dimensions are interpretable and grouped into facets, and properties and concepts are explicitly modelled as (vague) regions. Thanks to this additional structure, conceptual spaces can be used as a knowledge representation framework, which can also be effectively exploited in unsupervised settings. Given a conceptual space of movies, for instance, we are able to answer queries that ask about similarity w.r.t. a particular facet (e.g. movies which are cinematographically similar to Jurassic Park), that refer to a given feature (e.g. movies which are scarier than Jurassic Park but otherwise similar), or that refer to particular properties or concepts (e.g. thriller from the 1990s with a dinosaur theme). Compared to standard entity embeddings, however, conceptual spaces are more challenging to learn in a purely data-driven fashion. In this talk, I will give an overview of some approaches for learning such representations that have recently been developed within the context of the FLEXILOG project.

pdf bib
Knowledge Representation and Extraction at Scale
Christos Christodoulopoulos

These days, most general knowledge question-answering systems rely on large-scale knowledge bases comprising billions of facts about millions of entities. Having a structured source of semantic knowledge means that we can answer questions involving single static facts (e.g. “Who was the 8th president of the US?”) or dynamically generated ones (e.g. “How old is Donald Trump?”). More importantly, we can answer questions involving multiple inference steps (“Is the queen older than the president of the US?”). In this talk, I’m going to be discussing some of the unique challenges that are involved with building and maintaining a consistent knowledge base for Alexa, extending it with new facts and using it to serve answers in multiple languages. I will focus on three recent projects from our group. First, a way of measuring the completeness of a knowledge base, that is based on usage patterns. The definition of the usage of the KB is done in terms of the relation distribution of entities seen in question-answer logs. Instead of directly estimating the relation distribution of individual entities, it is generalized to the “class signature” of each entity. For example, users ask for baseball players’ height, age, and batting average, so a knowledge base is complete (with respect to baseball players) if every entity has facts for those three relations. Second, an investigation into fact extraction from unstructured text. I will present a method for creating distant (weak) supervision labels for training a large-scale relation extraction system. I will also discuss the effectiveness of neural network approaches by decoupling the model architecture from the feature design of a state-of-the-a