Characterizing the impact of geometric properties of word embeddings on task performance

Brendan Whitaker, Denis Newman-Griffis, Aparajita Haldar
Hakan Ferhatosmanoglu, Eric Fosler-Lussier

Ohio State University
University of Warwick

June 4, 2019
Objective

Question

What geometric properties of an embedding space are important for performance on a given task?
Objective

Question

What geometric properties of an embedding space are important for performance on a given task?

- Understand utility of embeddings as input features.
- Provide direction for future work in training and tuning embeddings.
In NLP, the term **embedding** is often used to denote both a map and (an element of) its image.

Definition

We define an **embedding space** as a set of word vectors in \mathbb{R}^d.
We consider the following attributes of word embedding geometry:

- position relative to the origin;
- distribution of feature values in \mathbb{R}^d;
- global pairwise distances;
- local pairwise distances.
Our approach

Ablation Study

We transform the embedding space such that we expose only a subset of the stated properties to downstream models.

- position relative to the origin;
- distribution of feature values in \mathbb{R}^d;
- global pairwise distances;
- local pairwise distances.
Affine

- Translation
- Reflection
- Rotation
- Dilation
- Homothety

- Pos. relative to the origin
- Distribution of features
- Global distances
- Local distances
Cosine distance embedding (CDE)

Specs:
- Activation function: ReLU;
- Epochs: 50;
- \(d\) = embedding dimension (300);
- \(|V|\) = distance vector dimension (10^4 most frequent words).

\[|V| \star \]

Nearest neighbor embedding (NNE)

UNWEIGHTED
(2nn)

WEIGHTED
(2nn)

THRESHOLDED
(2nn, >=0.7)

Note: NN edges only drawn for colored nodes.
Hierarchy of transformations

- Ordering is with respect to number of properties ablated.
- We include a random baseline of meaningless vectors.
- Arrow length does not mean anything.
- Transformations are applied independently to the original embeddings.
Embeddings and Tasks

Standard benchmark embeddings:
- Word2Vec on Google news;
- GloVe on common crawl;
- FastText on WikiNews.

Testing:
- 10 standard intrinsic tasks.
- 5 extrinsic tasks (embeddings plugged into a downstream machine learning model).
Intrinsic Tasks
- Word Similarity and Relatedness via cosine distance
 - WordSim353
 - SimLex-999
 - RareWords
 - RG65
 - MEN
 - MTURK
- Word Categorization
 - AP
 - BLESS
 - Battig
 - ESSLLI

Extrinsic Tasks
- Relation classif. on SemEval-2010 Task 8
- Sentence-level sentiment polarity classif. on MR movie reviews
- Sentiment classif. on IMDB reviews
- Subj./Obj. classif. on Rotten Tomatoes snippets
- SNLI
Results - intrinsic tasks

We see the lowest performance on thresholded-NNE.

Largest drop in performance at CDE (written as \textit{distAE} on the graph).

Rotations, dilations, and reflections are innocuous.

Displacing the origin has a nontrivial effect.

NNE causes a significant drop in performance as well.
Results - extrinsic tasks

- CDE is still the largest drop.
- NNE recover most of the losses, and are on par with affines.
- Extrinsic tasks are more robust to translations, but not homotheties.
Drop due to CDE likely associated with the importance of locality in embedding learning.

With thresholded-NNE, high out-degree words are rare words, introducing noise during node2vec’s random walk.
Takeaways

- We find that in general, both intrinsic and extrinsic models rely heavily on local similarity, as opposed to global distance information.
- We also find that intrinsic models are more sensitive to absolute position than extrinsic ones.
- Methods for tuning and training should focus on local geometric structure in \mathbb{R}^d.
Questions?

github.com/OSU-slatelab/geometric-embedding-properties