SemEval 2019 Task 1: Cross-lingual Semantic Parsing with UCCA

Daniel Hershcovitch, Leshem Choshen, Elior Sulem, Zohar Aizenbud, Ari Rappoport and Omri Abend

June 6, 2019
Universal Conceptual Cognitive Annotation (UCCA)

Universal Conceptual Cognitive Annotation (UCCA)

Universal Conceptual Cognitive Annotation (UCCA)

Applications

- Semantics-based evaluation of
 - Machine translation (Birch et al., 2016)
 - Text simplification (Sulem et al., 2018a)
 - Grammatical error correction (Choshen and Abend, 2018)
- Sentence splitting for text simplification (Sulem et al., 2018b).
Universal Conceptual Cognitive Annotation (UCCA)

Intuitive annotation interface and guidelines (Abend et al., 2017).
ucca-demo.cs.huji.ac.il
Universal Conceptual Cognitive Annotation (UCCA)

The Task: UCCA parsing in English, German and French in different domains.
Graph Structure

Labeled directed acyclic graphs (DAGs). Complex units are non-terminal nodes.
Graph Structure

Labeled directed acyclic graphs (DAGs). Complex units are non-terminal nodes. Phrases may be discontinuous.
Graph Structure

Labeled directed acyclic graphs (DAGs). Complex units are non-terminal nodes. Phrases may be discontinuous. Remote edges enable reentrancy.

- Primary edge
- Remote edge

They thought about taking a short break.

A: Participant
C: Center
D: Adverbial
E: Elaborator
F: Function
G: Ground
H: Parallel scene
L: Linker
P: Process
R: Relator
S: State
U: Punctuation
Baseline

TUPA, a transition-based UCCA parser (Hershcovich et al., 2017).
bit.ly/tupademo
Data

- English Wikipedia articles (Wiki).
- English-French-German parallel corpus from *Twenty Thousand Leagues Under the Sea* (20K).

<table>
<thead>
<tr>
<th></th>
<th>sentences</th>
<th>tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>English-Wiki</td>
<td>5,142</td>
<td>158,573</td>
</tr>
<tr>
<td>English-20K</td>
<td>492</td>
<td>12,574</td>
</tr>
<tr>
<td>French-20K</td>
<td>492</td>
<td>12,954</td>
</tr>
<tr>
<td>German-20K</td>
<td>6,514</td>
<td>144,531</td>
</tr>
</tbody>
</table>
Tracks

- English \{in-domain/out-of-domain\} × \{open/closed\}
- German in-domain \{open/closed\}
- French *low-resource* (only 15 training sentences)
After graduation, John moved to Paris.
1. Match primary edges by terminal yield + label.
2. Calculate precision, recall and F1 scores.
3. Repeat for remote edges.
Evaluation

1. Match primary edges by terminal yield + label.
2. Calculate precision, recall and F1 scores.
3. Repeat for remote edges.

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>$\frac{6}{9} = 67%$</td>
<td>$\frac{6}{10} = 60%$</td>
<td>64%</td>
</tr>
<tr>
<td>Remote</td>
<td>$\frac{1}{2} = 50%$</td>
<td>$\frac{1}{1} = 100%$</td>
<td>67%</td>
</tr>
</tbody>
</table>
Participating Systems

8 groups in total:

- **MaskParse@Deskiñ** Orange Labs, Aix-Marseille University
- **HLT@SUDA** Soochow University
- **TüPa** University of Tübingen
- **UC Davis** University of California, Davis
- **GCN-Sem** University of Wolverhampton
- **CUNY-PekingU** City University of New York, Peking University
- **DANGNT@UIT.VNU-HCM** University of Information Technology VNU-HCM
- **XLangMo** Zhejiang University
Leaderboard

<table>
<thead>
<tr>
<th>Track</th>
<th>1st place</th>
<th>2nd place</th>
<th>3rd place</th>
<th>baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>English-Wiki closed</td>
<td>HLT@SUDA 0.774</td>
<td>baseline 0.728</td>
<td>Davis 0.722</td>
<td>0.728</td>
</tr>
<tr>
<td>English-Wiki open</td>
<td>HLT@SUDA 0.805</td>
<td>CUNY-PekingU 0.800</td>
<td>TüPa 0.735</td>
<td>0.735</td>
</tr>
<tr>
<td>English-20K closed</td>
<td>HLT@SUDA 0.727</td>
<td>baseline 0.672</td>
<td>CUNY-PekingU 0.669</td>
<td>0.672</td>
</tr>
<tr>
<td>English-20K open</td>
<td>HLT@SUDA 0.767</td>
<td>CUNY-PekingU 0.739</td>
<td>TüPa 0.709</td>
<td>0.684</td>
</tr>
<tr>
<td>German-20K closed</td>
<td>HLT@SUDA 0.832</td>
<td>CUNY-PekingU 0.797</td>
<td>baseline 0.731</td>
<td>0.731</td>
</tr>
<tr>
<td>German-20K open</td>
<td>HLT@SUDA 0.849</td>
<td>CUNY-PekingU 0.841</td>
<td>baseline 0.791</td>
<td>0.791</td>
</tr>
<tr>
<td>French-20K open</td>
<td>CUNY-PekingU 0.796</td>
<td>HLT@SUDA 0.752</td>
<td>XLangMo 0.656</td>
<td>0.487</td>
</tr>
</tbody>
</table>
Main Findings

- HLT@SUDA won 6/7 tracks:
 Neural constituency parser + multi-task + BERT
 French: trained on all languages, with language embedding

- Surprisingly, results in French were close to English and German

- Demonstrates viability of cross-lingual UCCA parsing

- Is this because of UCCA's stability in translation?
Main Findings

- HLT@SUDA won 6/7 tracks:
 Neural constituency parser + multi-task + BERT
 French: trained on all languages, with language embedding

- CUNY-PekingU won the French (open) track:
 TUPA ensemble + synthetic data by machine translation

Surprisingly, results in French were close to English and German

Is this because of UCCA's stability in translation?
Main Findings

- HLT@SUDA won 6/7 tracks: Neural constituency parser + multi-task + BERT French: trained on all languages, with language embedding
- CUNY-PekingU won the French (open) track: TUPA ensemble + synthetic data by machine translation

Surprisingly, results in French were close to English and German
 - Demonstrates viability of cross-lingual UCCA parsing
 - Is this because of UCCA’s stability in translation?
Conclusion

- Substantial improvements to UCCA parsing
- High variety of methods
- Successful cross-lingual transfer
Conclusion

- Substantial improvements to UCCA parsing
- High variety of methods
- Successful cross-lingual transfer

Thanks!

Daniel Hershcovich, Leshem Choshen, Elior Sulem, Zohar Aizenbud, Ari Rappoport and Omri Abend
Conclusion

- Substantial improvements to UCCA parsing
- High variety of methods
- Successful cross-lingual transfer

Thanks!

Daniel Hershcovich, Leshem Choshen, Elior Sulem, Zohar Aizenbud, Ari Rappoport and Omri Abend

Please participate in the CoNLL 2019 Shared Task:
Cross-Framework Meaning Representation Parsing
SDP, EDS, AMR and UCCA

Evaluation Period: July 8–22, 2019

mrp.nlpl.eu
References I

Universal Conceptual Cognitive Annotation (UCCA).
In *Proc. of ACL*, pages 228–238.

UCCApp: Web-application for syntactic and semantic phrase-based annotation.

Reference-less measure of faithfulness for grammatical error correction.
In *Proc. of NAACL (Short papers)*, pages 124–129.

A transition-based directed acyclic graph parser for UCCA.
In *Proc. of ACL*, pages 1127–1138.

Conceptual annotations preserve structure across translations: A French-English case study.
In *Proc. of S2MT*, pages 11–22.

Semantic structural annotation for text simplification.

Simple and effective text simplification using semantic and neural methods.