
Miss Tools and Mr Fruit: Emergent communication in agents learning
about object affordances: Supplementary material

Diane Bouchacourt1 and Marco Baroni1,2

1Facebook A.I. Research
2ICREA

{dianeb,mbaroni}@fb.com

1 Data and utility computation

This section provides additional details on the
dataset we use and the utility function we employ
to compute the utilities between fruits and tools.
Note that we refer to fruits for conciseness, but
some vegetables, such as carrot and potato, are
included.

There are 11 fruits features: is crunchy, has
skin, has peel, is small, has rough skin, has a
pit, has milk, has a shell, has hair, is prickly, has
seeds and 15 tools features: has a handle, is sharp,
has a blade, has a head, is small, has a sheath,
has prongs, is loud, is serrated, has handles, has
blades, has a round end, is adorned with feathers,
is heavy, has jaws. Note that, when we sample in-
stances of each category as explained in Section 2
of the main paper, features are sampled indepen-
dently. We filter out, however, nonsensical com-
binations. For example, the features has prongs,
has a blade and has blades are treated as pairwise
mutually exclusive.

In order to compute the utility for a pair (tool,
fruit), we use three mapping matrices. The map-
ping matrix MT ∈ R15×6 (Table A1) maps from
the space of tool features to a space of more gen-
eral functional features: (cut, spear, lift, break,
peel, pit remover), and similarly MF ∈ R11×6

(Table A2) maps from the space of fruits fea-
tures to a space of functional features: (hard, pit,
shell, pick, peel, empty inside). Finally, the ma-
trix M ∈ R6×6 (Table A3) maps the two ab-
stract functional spaces of features together. For
example, if an axe sample is described by the vec-
tor ta ∈ R1×15 and a nectarine sample is the
vector fn ∈ R1×11, the utility is computed as
U(ta, fn) = (fnMF )M

′(taMT )
′ where ′ denotes

transpose. We always add a value of 0.01 to avoid
zero utilities. Therefore we can compute the util-
ity of any combination of (possibly new) fruits and

tools, as long as it can be described in the corre-
sponding functional representational space. Note
that in our case we have the same number of ab-
stract functional features for fruits and tools (6),
but they need not be the same. In other words, M
need not be a square matrix.

Given the values in the mapping matrices, 5 of
the tools features have no impact on the utility
computation since they do not affect the scores of
the functional tool features (they have only zeros
in the mapping matrix MT ). These are: has a han-
dle, is sharp, has a sheath, is loud, has handles, is
adorned with feathers. Such features only repre-
sent realistic aspects of objects and act as noise.

2 Implementation details

2.1 Training and architecture
hyperparameters

We update the parameters with RMSProp (Tiele-
man and Hinton, 2012) with a learning rate of
0.001 and the rest of the parameters left to their
Pytorch default value. We use a scalar reward
baseline b to reduce variance, learned with Mean
Square Error such that 1 + b matches the aver-
age reward. We clip all gradients at 0.1. For the
Message encoder and decoder modules, we em-
bed input and output symbols with dimensionality
50 and then use a RNN with 100 hidden dimen-
sions. The Fruit embedder linear transformation
is of output size 100, the Tool embedder is of size
50. The Body module is of size 100. We train the
agents with batches of 128 games for a total of 1
million batches. We validate on 12 batches of 100
games, for a total of 1200 validation games, and
similarly for testing.

2.2 Test procedure details

The computation of the ME values involves ran-
dom sampling in steps 1 and 2 of Algorithm 1 so



Tools Feature Cut Spear Lift Break Peel Pit Remover

has a handle 0 0 0 0 0 0
is sharp 0 0 0 0 0 0

has a blade 1 0.5 0 0 1 0
has a head 0 0 0 1 0 0

is small 0 0 0 0 0 0.25
has a sheath 0 0 0 0 0 0
has prongs 0.5 1 0.25 0 0.25 0

is loud 0 0 0 0 0 0
is serrated 0.5 0 0 0 0 0

has handles 0 0 0 0 0 0
has blades 1 0.5 0 0 0.5 0

has a round end 0.25 0 1 0 0 1
is adorned with feathers 0 0 0 0 0 0

is heavy 0 0 0 0.5 0 0
has jaws 0 0 1 0 0 0.5

Table A1: MT . Rows are dataset tool features, columns are functional tool features.

Fruits Feature Hard Pit Shell Pick Peel Empty inside

is crunchy 1 0 0 0 0 0
has skin 0 0 0 0 1 0
has peel 0 0 0 0 1 0
is small 0 0 0 1 0 0

has rough skin 0 0 0.5 0 0 0
has a pit 0 1 0 0 0 0
has milk 0 0 0 0 0 1

has a shell 0 0 1 0 0 0
has hair 0 0 0 0 0.5 0

is prickly 0 0 0 0 0.5 0
has seeds 0 0 0 0 0 1

Table A2: MF . Rows are dataset fruit features, columns are functional fruit features.

Hard Pit Shell Pick Peel Empty inside

Cut 1 0 0.5 0 0.5 0
Spear 0 0 0 1 0 0
Lift 0 0 0 0.5 0 1

Break 0.5 0 1 0 0 0
Peel 0 0 0 0 1 0

Pit Remover 0 1 0 0 0 0

Table A3: M . Rows are functional tool features, columns are functional fruit features.



we test using 20 testing seeds. For each successful
training seeds, we compute the average ME over
the test seeds, and report the mean and standard
error of the mean (SEM) of the average ME. Given
two trained agents A and B, there are C = 4 pos-
sibles configurations at test time:

1. A is Fruit Player/position 1 and B is Tool
Player/position 2

2. A is Fruit Player/position 2 and B is Tool
Player/position 1

3. A is Tool Player/position 1 and B is Fruit
Player/position 2

4. A is Tool Player/position 2 and B is Fruit
Player/position 1

We balance the number of test games in each
configuration: we use 3 batches of 100 test games
in each configuration, resulting in 12 batches for
a total of 1200 test games. The ME value in each
configuration c is the average ME over the number
of batches in this configuration (3 in our case). We
then average the ME in each configuration over the
four possible configurations to obtain ME1→2,
MEF→T and their reverse.

3 Message effect metric

3.1 Causal graph and assumptions
Figure A1 shows the causal graph we consider
when computing MEA→B

t . We write all variables
that should be considered at this turn t. Condi-
tioning on cAt , s

B
t−1, i

B blocks any backdoor paths
when we compute the causal influence of mA

t on
cBt+1,m

B
t+1 (Pearl et al., 2016). Moreover, the path

between mA
t and cBt+1,m

B
t+1 through iA is blocked

at the collider node sAt+2. Therefore, we ensure
there is no confounder when we compute the in-
fluence of mA

t on cBt+1,m
B
t+1. As in Jaques et al.

(2018), we have knowledge of the inputs to the
model and the distributions of the variables we
consider. Therefore we do not need to perform ab-
duction to update probabilities of unobserved ex-
ogenous variables that may alter the causal rela-
tions in our model (Pearl et al., 2016).

We denote agent B’s choice and message pair
at turn t + 1 as zBt+1 = (cBt+1,m

B
t+1). We ex-

plain in Section 3 of the main paper that we com-
pare (i) the conditional distribution p(zBt+1|mA

t )
and (ii) the marginal distribution p(zBt+1) which
does not take mA

t into account. We intervene on

sBt−1

mB
t−1 cBt−1

sAt

mA
t cAt

iA

sAt−2 iB

sBt+1

mB
t+1 cBt+1

sAt+2

Figure A1: Causal graph considered when we compute
MEA→B

t . The orange node mA
t is the variable we in-

tervene on. Shaded nodes represent the variables we
condition on.

mA
t , and draw counterfactual messages not from

agent A but from another distribution over mA
t , the

intervention distribution. We define p̃(zBt+1), the
marginal computed with counterfactual messages
m′At , as:

p̃(zBt+1) =
∑
mA

t

p(zBt+1|m′At )p̃(m′At ). (1)

where p̃(m′At ) is the intervention distribution.
In our experiments we take a uniform interven-
tion distribution. Importantly, p̃(m′At ) is differ-
ent from the observational distribution distribu-
tion p(mA

t |sAt ) that agent A actually defines over
the messages. Contrarily to Bottou et al. (2013)
by feeding the counterfactuals messages to agent
B, we access p(zBt+1|m′At ) and need not estimate it
from empirical data.

3.2 Difference with Mutual Information
Jaques et al. (2018) train agents to have impact on



other agents by maximizing the causal influence
of their actions. They show their definition of in-
fluence to relate to the Mutual Information (MI)
between influencing and influenced agents. Lowe
et al. (2019) also define a causal influence met-
ric based on MI. MI computation requires coun-
terfactuals drawn from the influencing agent dis-
tribution, and not from an intervention one. In our
setting, this means drawing counterfactuals from
agent A’s distribution p(mA

t |sAt ), and not p̃(m′At ),
in step 2 of Algorithm 1 (main paper).

There is an issue with employing MI and draw-
ing counterfactuals from the influencing agent’s
distribution, e.g., p(mA

t |sAt ), that is particularly
pressing if message distributions are very skewed
(as it is the case with our agents below). Consider
a simple setting where agents A and B utter a mes-
sage that has two possible values u and v. A is the
influencing agent and B is the influencee. Suppose
that the dynamics are such that A almost always
says u, and B always replies with the message it
received. Most of the exchanges we would sam-
ple would be: “A says u, B replies u”. The MI
estimate would then be very low, and one might
erroneously conclude that B is not influenced by
A. Indeed when distributions are very peaky as in
this example, it would require very large samples
to witness rare events, such as “‘A says v, B replies
v”. Lowe et al. (2019) ensure that all possible mes-
sages from the influencing agent are considered.
This is computationally expensive when the mes-
sage space is large. Moreover, the resulting MI
can still be small as each message’s contribution
is weighted by its probability under the influenc-
ing agent. By using a uniform intervention distri-
bution, we ensure that B in the current example
would receive v and therefore reply v in half the
exchanges, easily detecting the influence of A on
B.

4 Additional results: performance and
pragmatics

Table A4 reports a more detailed view of the ME
in Table 1 of the main paper. 1T/2F denotes
games where the Tool Player is in first position and
the Fruit Player is in second position, and 1F/2T
denotes games where the Fruit Player in first posi-
tion and Tool Player in second. This table shows
that in the no-memory, with-communication set-
ting (top right quadrant), the difference between
the influence of the Fruit Player on the Tool player

and its reverse is greater when the Fruit Player
is in position 2. On in-domain data, the Fruit
Player has a stronger influence on the Tool Player
only when in position 2. This explains the ef-
fect ME2→1 > ME1→2 we mention in Section 4.1
in the main paper. We also observe that in the
no-memory, no-communication setting (top left
quadrant), when the Tool Player is in position 1,
ME1→2 1T/2F ≈ 0. This relates to the artifact
we describe in the main paper: in that case the
Tool Player stops the game at t = 0, leaving no
room for the Fruit Player to be influenced.

5 Details on the semantics classifier

5.1 Classifier training and hyperparameters

Our classifier consists of an Embedding table of
size 50 which maps the agents’ discrete utterances
to a continuous space, then uses a RNN with a hid-
den size of 100 to map the entire embedded con-
versation into a hidden state. The hidden state is
then fed to a linear classifier that predicts a score
for each class, and the number of classes depends
on the prediction task (e.g. 31 classes when the
task is to predict the fruit). We consider the set-
ting with communication and with memory. From
successful test in-domain conversations, we cre-
ate train/validation/test partitions for the classi-
fier. We ensure that each fruit is in the train set,
and each tool in either of the two positions. We
use 20 different seeds for initializing the classi-
fier dataset partitioning into train/validation/test.
For each successful training seed, we compute the
average accuracy over these 20 test initialization
seeds, and report the classifier accuracy mean and
standard error of the mean (SEM) over the suc-
cessful training seeds.

The agents were trained with symmetrical roles
and random starting agent, but we generate con-
versations with fixed roles and positions, so that all
conversations follow the same pattern (for exam-
ple: agent A always starts and agent A is always
the Fruit Player).

5.2 Inverted-roles experiment

Table A5 shows the results of the inverted-roles
experiment: e.g., we train the classifier on con-
versations where A is Fruit Player and B is Tool
Player, and test on conversations about the same
inputs, but where the roles are inverted, that is, B
is Fruit Player and A is Tool Player. The perfor-
mance drops compared to testing on conversations



No communication With communication
Metric In Transfer In Transfer

N
o

m
em

or
y

Av. perf. (%) 84.83± 0.09 84.0± 0.11 96.9± 0.32 94.5± 0.37
MEF→T 0.133∗ ± 0.01 0.14∗ ± 0.01 5.0∗ ± 0.39 5.0∗ ± 0.36
MET→F 0.05± 0.02 0.030± 0.01 3.9± 0.38 3.3± 0.30
ME1→2 0.066± 0.00 0.067± 0.01 3.9± 0.29 3.7± 0.26
ME2→1 0.12∗ ± 0.02 0.10∗ ± 0.01 5.0∗ ± 0.38 4.7∗ ± 0.33

ME1→2 1T/2F 0.000001± 0.00 0.000001± 0.00 3.7± 0.46 3.0± 0.34
ME2→1 1T/2F 0.13∗ ± 0.01 0.15∗ ± 0.01 5.8∗ ± 0.50 5.7∗ ± 0.47
ME1→2 1F/2T 0.133± 0.01 0.13∗ ± 0.01 4.2± 0.34 4.4∗ ± 0.34
ME2→1 1F/2T 0.10± 0.03 0.06± 0.02 4.2± 0.39 3.6± 0.29

W
ith

m
em

or
y

Av. perf. (%) 88.5± 0.11 87.7± 0.16 97.4± 0.12 95.3± 0.16
MEF→T 0.11∗ ± 0.01 0.13∗ ± 0.01 3.0∗ ± 0.29 2.8∗ ± 0.24
MET→F 0.064± 0.01 0.071± 0.01 1.8± 0.22 1.8± 0.21
ME1→2 0.085± 0.01 0.10± 0.01 2.4± 0.29 2.3± 0.22
ME2→1 0.093± 0.01 0.103± 0.01 2.4± 0.22 2.4± 0.21

ME1→2 1T/2F 0.063± 0.01 0.064± 0.01 1.8± 0.24 1.8± 0.23
ME2→1 1T/2F 0.12∗ ± 0.02 0.13∗ ± 0.02 2.9∗ ± 0.25 2.9∗ ± 0.25
ME1→2 1F/2T 0.106∗ ± 0.01 0.13∗ ± 0.02 3.1∗ ± 0.35 2.8∗ ± 0.25
ME2→1 1F/2T 0.065± 0.01 0.077± 0.01 1.8± 0.21 1.9± 0.20

Table A4: Detailed ME values (compare to Table 1 in main paper). 1T/2F denotes games where the Tool Player
is in first position and the Fruit Player is in second position, and 1F/2T denotes games where the Fruit Player in
first position and Tool Player in second.

Utterances Fruit Tool 1 Tool 2
Both, A is F 42± 2.21 32± 2.04 27± 1.33
Both, B is F 44± 2.00 28± 1.58 28± 1.69

Both, Train A is F / Test B is F 6.8± 0.61 11± 1.16 8.8± 0.68
Both, Train B is F / Test A is F 5.9± 0.53 10± 1.05 8.8± 0.62

Stats A is F 6.4± 0.27 8.9± 0.42 8.2± 0.38
Stats B is F 6.4± 0.15 9.1± 0.61 9.0± 0.75

Table A5: Semantic classifier % accuracy in inverted-roles setup

where the roles are not inverted. For this experi-
ment, we consider only the conversations that have
at least one utterance from each agent (conversa-
tion length ≥ 2) in order to remove the potential
confounding effect of conversation length.

References
Léon Bottou, Jonas Peters, Joaquin Quiñonero-

Candela, Denis X. Charles, D. Max Chickering,
Elon Portugaly, Dipankar Ray, Patrice Simard, and
Ed Snelson. 2013. Counterfactual reasoning and
learning systems: The example of computational ad-
vertising. Journal of Machine Learning Research,
14:3207–3260.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes,
Çaglar Gülçehre, Pedro A. Ortega, DJ Strouse,

Joel Z. Leibo, and Nando de Freitas. 2018. Intrinsic
social motivation via causal influence in multi-agent
RL. CoRR, abs/1810.08647.

Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle
Pineau, and Yann Dauphin. 2019. Measuring emer-
gent communication is tricky. In Proceedings of AA-
MAS, Montreal, Canada. In press.

Judea Pearl, Madelyn Glymour, and Nicholas Jewell.
2016. Causal Inference in Statistics: A Primer.
John Wiley & Sons.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5—rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural
Networks for Machine Learning.

http://arxiv.org/abs/1810.08647
http://arxiv.org/abs/1810.08647
http://arxiv.org/abs/1810.08647

