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NLP / ML models are getting smarter: VQA
What type of road sign is shown?

> STOP.
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Visual7A [Zhu et al 2016]



NLP / ML models are getting smarter: MC 
(SQuAD)

The biggest city on the river Rhine is 
Cologne, Germany with a population 
of more than 1,050,000 people. 
It is the second-longest river in 
Central and Western Europe (after 
the Danube), at about 1,230 km (760 
mi)

How long is the Rhine?

1230km

Question: are they prone to oversensitivity?
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BiDAF [Seo et al 2017]



Oversensitivity in images

Adversaries are indistinguishable to humans…But unlikely in the real world (except for attacks)

“panda” 
57.7% confidence

“gibbon” 
99.3% confidence
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Adversarial examples

Find closest example with different prediction
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What about text?
What type of road sign is shown?

> STOP.

What type of road sign is  
shown?

Perceptible by humans, unlikely in real world

What    type of road sign is  
sho  wn?
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What about text?
What type of road sign is shown?

> STOP.

What type of road sign is  
shown?

A single word changes too much!
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Semantics matter
What type of road sign is shown?

> Do not Enter.

> STOP.

What type of road sign is shown?

Bug, and likely in the real world
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Semantics matter

The biggest city on the river Rhine is 
Cologne, Germany with a population 
of more than 1,050,000 people. 
It is the second-longest river in 
Central and Western Europe (after 
the Danube), at about 1,230 km (760 
mi)

How long is the Rhine?

> More than 1,050,000

> 1230km

How long is the Rhine?

Not all changes are the same: semantics matter
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Adversarial Rules

Find rule that generates many adversaries 
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Generalizing adversaries
What type of road sign is shown?

> Do not Enter.

> STOP.

What type of road sign is shown?

- flips 3.9% of examplesRule   What NOUN      Which NOUN
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Semantics matter
What color is the sky?

> Gray.

> Blue.

What color is the sky?

- flips 3.9% of examplesRule   What NOUN      Which NOUN
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Semantics matter

The biggest city on the river Rhine is 
Cologne, Germany with a population 
of more than 1,050,000 people. 
It is the second-longest river in 
Central and Western Europe (after 
the Danube), at about 1,230 km (760 
mi)

How long is the Rhine?

> More than 1,050,000

> 1230km

How long is the Rhine?

- flips 3% of examplesRule   ?      ??
 13



Semantics matter

Detailed investigation of chum 
salmon, Oncorhynchus keta, showed 
that these fish digest ctenophores 20 
times as fast as an equal weight of 
shrimps.

What is the oncorhynchus also called?

> Oncorhynchus keta

What is the oncorhynchus also called?

- flips 3% of examplesRule   ?      ??

> chum salmon
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Adversarial Rules

Rules are global and actionable, 
 more interesting than individual adversaries
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Semantically Equivalent 
Adversary (SEA)
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Ingredients

Semantic score function

A black box model

Semantically 
Equivalent

Different 
prediction
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Revisiting adversaries

Find closest example with different prediction
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Sentence X

en - pt

en - fr

Portuguese  
Translation

French  
Translation

fr - en

pt - en

Semantic Similarity: Paraphrasing

Good movie!

Bom filme!

Bon film!

Translators Back translators

Score

Good movie 
Good film 

Great movie 
  … 

Movie good 
0.35 
0.34 
0.1 
… 

0.001

Language 
model  

comes for free
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[Mallinson et al, 2017]



Finding an adversary
What color is the tray? Pink

What colour is the tray?  Green
Which color is the tray?  Green
What color is it?  Green
What color is  tray?  
PinkHow color is the tray? Green
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Semantically Equivalent 
Adversarial Rules (SEARs)
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From SEAs to Rules

Find SEAs
Propose 

Candidate Rules

Select  
Small  

Rule Set
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Proposing Candidate Rules

(What → Which) 

(What NOUN → Which NOUN) 
(WP type → Which type) 
(WP NOUN → Which NOUN) 

… 

(What type → Which type)

What type of road  
sign is shown?

What type of road  
sign is shown?

Candidate 
Rules: Exact Match

Context

POS Tags
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What Which type of road sign is shown? 
What Which is the person looking at? 
What Which was I thinking? 

Must not change semantics



From SEAs to Rules

Find SEAs
Propose 

Candidate Rules

Select  
Small  

Rule Set
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Semantically Equivalent Adversarial Rules (SEARS)

Induces many flipped predictionsFlips different predictions

High Adversary Count
Non-Redundancy

What NOUN → Which NOUN

What type → Which type 
color → colour

Selected Rules
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Examples: VQA
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Visual7a-Telling [Zhu et al 2016]



Examples: Machine Comprehension
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BiDAF [Seo et al 2017]



Examples: Movie Review Sentiment 
Analysis
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FastText [Joulin et al 2016]



Experiments
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1. SEAs vs Humans
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Set up
Humans Top scored SEA SEA (top 5) + Human

Evaluate adversaries for 
semantic equivalence
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How often can SEAs be produced?
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2625.3

Human SEA Human + SEA

Visual Question Answering Sentiment Analysis

SEAs find equivalent adversaries as often as HumansSEAs + Humans better than Humans
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Humans produce different adversaries:

 33

Humans did not produce these:

But they did produce these:

They are so easy to love… What kind of meat is on the boy’s plate?

How many suitcases? Also great directing and photography



2. SEARs vs Experts
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Part 1: experts come up with rules

 35
Objective: maximize mistakes with good rules



Part 2: experts evaluate our SEARs

Experts only accept good rules
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Results
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3. Fixing bugs
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Closing the loop

(color → colour) 
(WP VBZ → WP’s) 

… 

Filter out bad rules

Augment training

Retrain model

Data
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Results
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Conclusion
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Semantics matter

SEA
SEARS

Models are prone to these bugs

SEAs and SEARs help find and fix 
them
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 43

Semantic scoring is still a research 
problem…

Also: inaccurate for long texts



Problem: not comparable across instances
Good movie 
Good film 

Great movie 
  … 

0.35 
0.34 
0.1 
…

good 
great 

excellent 
  … 

0.7 
0.2 
0.05 

…

1 
0.97 
0.29 
…

1 
0.29 
0.07 
…

good movie good
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Examples: VQA
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Examples: Movie Review Sentiment 
Analysis
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FastText [Joulin et al 2016]
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