A Case Study on Neural Headline Generation for Editing Support

Kazuma Murao*,1, Ken Kobayashi*,1, Hayato Kobayashi1,2, Taichi Yatsuka1, Takeshi Masuyama1, Tatsuru Higurashi1, Yoshimune Tabuchi1

1Yahoo Japan Corporation 2RIKEN AIP (*Equal contribution)
Summary

• Our work
 • Address “short title” generation for a news aggregation service, where editors create short titles to introduce important articles

• Contributions
 • Show a practical use case of neural headline generation
 • Most news articles basically already have headlines
 • Propose an encoder-decoder model with multiple encoders
 • Deploy our model to an editing support tool and show the results of comparing the editors’ behavior
Yahoo! News

- Biggest news portal in Japan
- PV/month: 15,000,000,000+
- Editors’ choice feature -

1. Pick up important news articles
2. Put a new shorter headline, called short title

Pros:
- Quick understandability
- Saving display space
Short title generation as editing support

- **Purpose**: To generate short title candidates to help editors
- **Task**: Translation from (headline, lead) to short title
 - Lead is a short version (summary) of the article

Selected news article

Headline
2016年「生理学・医学賞」は誰の手に？
日本科学未来館がノーベル賞予想

Lead
2016年のノーベル賞発表まで一週間を切りました。10月3日の生理学・医学賞を皮切りに、4日には物理学賞、5日には化学賞、6日には生物学賞、7日には化学賞を発表します。

Short title
ノーベル賞 今年は誰の手に？

List of news articles

4人死傷 容疑者は元千葉市議
富士フイルム 賠償請求も検討

4/19

Copyright © 2019 Yahoo Japan Corporation. All Rights Reserved.
Example of (short title, headline, lead)

<table>
<thead>
<tr>
<th>Japanese</th>
<th>English translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>首相「忖度ないと言い切れず」</td>
<td>The prime minister cannot say that there is no surmise.</td>
</tr>
<tr>
<td>村田ら「忖度なかったと言い切ることはできない＝加計問題で安倍首相」</td>
<td>It cannot be said that there is no “sontaku” with absolute certainty. The prime minister Abe said about the problem of “Kake Gakuen (Kake school)”</td>
</tr>
</tbody>
</table>

Prime Minister Shinzo Abe said, in an intensive deliberation with the House of Councilors Budget Committee held on the afternoon of the 14th, as an answer to a question about whether bureaucrats surmised to the prime minister regarding the Kake suspicion, “It is difficult to understand whether there is a sontaku (surmise)” . He said “It cannot be said that there was nothing wrong,” while explaining that “I do not need to be obsequious”. An answer to Ichiro Tsukada (LDP).

Short title generation task is not so easy

Lengths are different

Phrase order is changed
Encoder-decoder model with attention

- Conditional language model consisting of two RNNs
- Described by three components (encoder, attention, decoder)

Attention calculates a context c_t from the encoder’s states h_s.

$$c_t = \sum_{s=1}^{S} a_t(s) h_s$$

$$p(y_{t+1} \mid y_{\leq t}, x) = g_{\text{dec}}(\hat{h}_t, c_t)$$
Proposed method: GateFusion

- Combine headline and lead contexts w/ gating mechanism

Headline Enc. → Atten. \(d_t\) → Gate \(\bar{c}_t\) → Decoder

Lead Enc. → Atten. \(d'_t\)

- Existing work (Hori+ 2017) used an attention mechanism
 \[\bar{c}_t = \alpha d_t + \beta d'_t \]

- Gating mechanism:
 \[w_t = \sigma(W[d_t; d'_t; \hat{h}_t]), \]
 \[w'_t = \sigma(W'[d_t; d'_t; \hat{h}_t]), \]
 \[\bar{c}_t = w_t \odot d_t + w'_t \odot d'_t, \]

- Fusion based on scalar weights

- Fusion based on vector weights
Baselines with multiple encoders

- Multi-modal method (Hori+ 2017)
 - Headline Enc. → Atten. → d_t → Atten. → \tilde{c}_t → Decoder
 - Lead Enc. → Atten. → d_t' → Atten. → \tilde{c}_t → Decoder

- Query-based method (Nema+ 2017)
 - Lead Enc. → Atten. → d_t' (query) → Atten. → \tilde{c}_t → Decoder
 - (main source) Headline Enc. → Atten. → Adjust weights → \tilde{c}_t → Decoder

Fusion based on scalar weights
Fusion based on cascade connection
Adjust weights
Training dataset

• 263K triples of (headline, lead, short title) in Yahoo! News
 • Training (90%), validation (5%), testing (5%)

• Statistics:

<table>
<thead>
<tr>
<th></th>
<th>Headline</th>
<th>Lead</th>
<th>Short title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average length</td>
<td>24.87</td>
<td>128.49</td>
<td>13.05</td>
</tr>
<tr>
<td>Character type</td>
<td>3618</td>
<td>4226</td>
<td>3156</td>
</tr>
</tbody>
</table>

• Extractively solvable instances: 20%
 • Characters in each short title are completely covered by the headline
• Edit distance of headlines and short titles: 23.74
 • Short titles cannot be easily created only from headlines
Model and training settings

- Implemented on OpenNMT
- Headline encoder: BiLSTM
- Lead encoder: CNN (Kim, 2014)
 - To reduce the computational time
- Ensemble of 10 models
- Hyper-parameter settings are listed in the right table

<table>
<thead>
<tr>
<th>Hyper-parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># of layers (RNN, CNN)</td>
<td>3</td>
</tr>
<tr>
<td># of units (embedding)</td>
<td>200</td>
</tr>
<tr>
<td># of units (RNN, CNN)</td>
<td>400</td>
</tr>
<tr>
<td># of units (context)</td>
<td>400</td>
</tr>
<tr>
<td>Window width of CNN</td>
<td>7</td>
</tr>
<tr>
<td>Dropout rate</td>
<td>0.3</td>
</tr>
<tr>
<td>Learning rate</td>
<td>0.05</td>
</tr>
<tr>
<td>Momentum rate</td>
<td>0.8</td>
</tr>
<tr>
<td>Learning decay rate</td>
<td>0.85</td>
</tr>
<tr>
<td># of epochs</td>
<td>20</td>
</tr>
<tr>
<td>Batch size</td>
<td>64</td>
</tr>
<tr>
<td>Beam width</td>
<td>5</td>
</tr>
</tbody>
</table>
Human evaluation by crowdsourcing

- Two crowdsourcing tasks for readability and usefulness
 - Average score of 10 workers for each of 1,000 outputs

- Readability (four-point scale)
 - How readable a short title was

- Usefulness (four-point scale)
 - How useful a short title was compared to the headline
Evaluation results (1/2)

- Our model performed well for the usefulness measure

<table>
<thead>
<tr>
<th></th>
<th>Readability</th>
<th>Usefulness</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor</td>
<td>3.62</td>
<td>3.18</td>
<td>3.40</td>
</tr>
<tr>
<td>Prefix</td>
<td>2.72</td>
<td>2.38</td>
<td>2.55</td>
</tr>
<tr>
<td>OpenNMT</td>
<td>3.53</td>
<td>3.16</td>
<td>3.35</td>
</tr>
<tr>
<td>MultiModal</td>
<td>3.51</td>
<td>3.12</td>
<td>3.32</td>
</tr>
<tr>
<td>QueryBased</td>
<td>3.52</td>
<td>3.11</td>
<td>3.32</td>
</tr>
<tr>
<td>GateFusion</td>
<td>3.50</td>
<td>3.22</td>
<td>3.36</td>
</tr>
</tbody>
</table>

\[\text{Average} = \frac{\text{Readability} + \text{Usefulness}}{2} \]

- Complicated expressions
- Aggressively copy characters
Evaluation results (2/2)

- Our model performed well for the usefulness measure

<table>
<thead>
<tr>
<th></th>
<th>Readability</th>
<th>Usefulness</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor</td>
<td>3.62</td>
<td>3.18</td>
<td>3.40</td>
</tr>
<tr>
<td>Prefix</td>
<td>2.72</td>
<td>2.38</td>
<td>2.55</td>
</tr>
<tr>
<td>OpenNMT</td>
<td>3.53</td>
<td>3.16</td>
<td>3.35</td>
</tr>
<tr>
<td>MultiModal</td>
<td>3.51</td>
<td>3.12</td>
<td>3.32</td>
</tr>
<tr>
<td>QueryBased</td>
<td>3.52</td>
<td>3.11</td>
<td>3.32</td>
</tr>
<tr>
<td>GateFusion</td>
<td>3.50</td>
<td>3.22</td>
<td>3.36</td>
</tr>
<tr>
<td>HybridFusion</td>
<td>3.55</td>
<td>3.22</td>
<td>3.39</td>
</tr>
</tbody>
</table>

Correct titles
First 13 chars
Single enc.

Multi enc.
Our models
Gate+Query

Close to Editor
QueryBased helped GateFusion generate headline-style outputs

Close to Editor
Input and generated title (Japanese)	Evolution of Darvish: turning adversity into opportunity.
Headline	Evolution of Darvish, turning adversity into opportunity.
Lead	Yu Darvish (29) in Rangers took a mound for the first time in 1 year and 9 months with Pirates [...]
Editor	Dar sculpted his body better than before surgery.
OpenNMT	Evolution, turning adversity into opportunity.
HybridFusion	Dar turned adversity into opportunity.

Our model worked even in this real-world application.
Editing support tool

• Editors can check candidates when creating short titles

1. Enter a URL
2. Fetch the content
3. Display candidates
4. Copy & edit a candidate
Functionalities in the tool

• Cutoff unpromising candidates
 • If perplexity > x
 • To keep the system quality
• Skipping redundant candidates
 • If edit distance < y
 • To display various outputs
• Highlighting unknown characters
 • If not in the article
 • To encourage fact checking
Effect of the tool release

• Editors’ behavior in three weeks before/after the release
• Rate at which an editor’s title matches the generated one by X%

Editors began to refer to generated outputs after the release

Rate of 100% match titles

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>3.8%</td>
<td>6.1%</td>
</tr>
</tbody>
</table>

Before: 3.8% → After: 6.1% (x1.6)

Rate of 80+% match titles

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>14.0%</td>
<td>18.5%</td>
</tr>
</tbody>
</table>

Before: 14.0% → After: 18.5% (x1.3)
Conclusion

• Short titles were successfully generated for editing support
• Editors began to refer to generated titles of our system

• Future work
 • Verify how much our model can affect click-through rate
 • Need a much safer model to avoid generating fake titles

• Acknowledgements
 • We would like to thank editors and engineers in the news service who continuously supported our experiments
Thank you for your attention!