A Vocabulary Prediction Model

In Section 3.2, we used a residual block \(r(X) = \text{Res}(v(X)) \in \mathbb{R}^{d_v} \) inspired by He et al. (2016) to transform the input vector \(v(X) \in \mathbb{R}^{d_v} \):

\[
\begin{align*}
 r_1 &= \text{BN}_r_1(v(X)), \quad r_2 = \tanh(r_1), \\
 r_3 &= W_r_3 r_2 + b_r_3, \quad r_4 = \text{BN}_r_4(r_3), \\
 r_5 &= \tanh(r_4), \quad r_6 = W_r_6 r_5 + b_r_6, \\
 r(X) &= r_6 + v(X),
\end{align*}
\]

where \(\text{BN}_r_1(\cdot) \) and \(\text{BN}_r_4(\cdot) \) correspond to batch normalization (Ioffe and Szegedy, 2015), \(W_{r_3} \in \mathbb{R}^{d_v \times d_v} \) and \(W_{r_6} \in \mathbb{R}^{d_v \times d_v} \) are weight matrices, and \(b_{r_3} \in \mathbb{R}^{d_v} \) and \(b_{r_6} \in \mathbb{R}^{d_v} \) are bias vectors. We apply dropout (Hinton et al., 2012) to \(r_5 \) with a dropout rate of 0.4.

Label smoothing In Section 3.2, we applied label smoothing (Szegedy et al., 2016) to the loss function in Equation (10). More concretely, we modify the gold label \(t_i \) for the \(i \)-th target word as follows:

\[
t_i \leftarrow (1.0 - \varepsilon)t_i + \varepsilon p(i),
\]

where \(\varepsilon \) is a hyperparameter, and \(p(i) \) is a prior probability that the \(i \)-th word appears in a target sentence. \(p(i) \) is computed for each dataset:

\[
p(i) = \frac{\sum_{j=1}^{[T]} t_{ij}}{[T]},
\]

where \([T] \) is the size of the training dataset, and \(t_{ij} \) is the gold label for the \(i \)-th target word in the \(j \)-th training example. Therefore, \(p(i) \) roughly reflects the unigram frequency. We have empirically found that the recommended value \(\varepsilon = 0.1 \) consistently improves the recall of the predictor.

B Detailed Experimental Settings

Word segmentation The sentences in the En-Vi, MS COCO, and Flickr8K datasets were pre-tokenized. We used the Kytea toolkit for Japanese and the Stanford Core NLP toolkit for Chinese. In the other cases, we used the Moses word tokenizer. We lowercased all the English sentences. The En-Ja (2M, SW) dataset was obtained by the SentencePiece toolkit so that the vocabulary size becomes around 32,000.

Vocabulary construction We built the target language vocabularies with words appearing at least five times for the En-De dataset, seven times for the En-Ja (2M) dataset, three times for the Ch-Ja dataset, and twice for the other datasets.

Optimization We initialized all the weight and embedding matrices with uniform random values in \([-0.1, +0.1]\), and all the bias vectors with zeros, except for the LSTM forget-gate biases which were initialized with ones (Jozefowicz et al., 2015). For all the models, we used gradient-norm clipping (Pascanu et al., 2013) with a clipping value of 1.0. We applied dropout to Equation (3), (4), and (5) with a dropout rate of 0.2, and we further used dropout in the vertical connections of the two-layer LSTMs (Zaremba et al., 2014) for the En-Ja (2M) and (2M, SW) datasets. As regularization, we also used weight decay with a coefficient of \(10^{-6} \). When training the vocabulary predictor and the sentence generation models, we checked the corresponding evaluation scores at every half epoch, and halved the learning rate if the evaluation scores were not improved. We stabilized the training of the sentence generation models by not decreasing the learning rate in the first six epochs. These training settings were tuned for the En-Ja (100K) dataset, but we empirically found that the same settings lead to the consistent results for all
the datasets.

Baseline Estimator We used the Adam optimizer with a learning rate of 10^{-3} and the other default settings, to optimize the baseline estimator in Section 2.2. We have found that our results are not sensitive to the training settings of the baseline estimator.

Beam search For the results in Table 3 and 4, we tried two beam search methods in Hashimoto and Tsuruoka (2017) and Oda et al. (2017), and selected better scores for each setting. In general, these length normalization methods lead to the best BLEU scores with a beam size of 10 to 20.

C Test Time Efficiency

By the fact that our method works efficiently with reinforcement learning, we expect that our method also works well at test time. Table 6 shows the average decoding time [milliseconds] to generate a Japanese sentence given an English sentence for the En-Ja development split. For reference, the vocabulary size and the model size are also shown for each setting. We note that the decoding time of our method includes the time for constructing an input-specific vocabulary for each source input.

We can see that our method runs faster than “Full softmax”; in particular, the speedup is significant on CPUs, and the decoding time by our method is less sensitive to changing $|V|$ than that of “Full softmax”. This is because our method handles the full vocabulary only once for each source input, whereas “Full softmax” needs to handle the full vocabulary every time the model predicts a target word.

Table 6: Average time [milliseconds] to obtain a translation for each sentence in the En-Ja development split.

| Data size | $|V|$ | Model size | CPU | GPU |
|-----------|-------|------------|------|------|
| | | | Small softmax | Full softmax | Small softmax | Full softmax |
| 100K | 23,536| 1-L, 256-D | 54.4 | 113.8 | 71.9 | 78.4 |
| 2M | 70,668| 2-L, 512-D | 156.2| 503.2 | 80.5 | 105.7|
| 2M, SW | 37,905| 2-L, 512-D | 161.0| 369.2 | 84.8 | 99.2 |

References