Semantically-Aligned Equation Generation for Solving and Reasoning Math Word Problems

Ting-Rui Chiang and Yun-Nung (Vivian) Chen

https://github.com/MiuLab/E2EMathSolver
Each notebook takes $0.5 and each pen takes $1. Tom has $10. How many notebooks can he buy after buying 5 pens?

\[x = 10 - 1 \times 5 \div 0.5 \]
Prior Work

Non-neural approaches

- Template-based
 (Kushman et al., Upadhyay and Chang)

 \[x = (\, ? + \, ?) \times \, ? - \, ? \]

 fill

 \[x = (1 + 2) \times 3 - 4 \]

 Rely on hand-crafted features!

Deep learning

- Seq2Seq
 (Wang et al., Ling et al.)

 Problem

 \[x = (1+2) \times 3 - 4 \]

 generate

 Does not use the structure of math expression.

Our model is **end-to-end and structural!**
Overview of the Proposed Model

Each notebook takes $0.5 and each pen takes $1. Tom has $10. How many notebooks can he buy after buying 5 pens?

\[x = 10 - 1 \times 5 \div 0.5 \]
Look Again at the Problem

Each notebook takes $0.5 and each pen takes $1. Tom has $10. How many notebooks can he buy after buying 5 pens?
Each notebook takes $0.5 and each pen takes $1. Tom has $10. How many notebooks can he buy after buying 5 pens?

\[x = \left(10 - 1 \times 5 \right) \div 0.5 \]
Idea: Bridging Symbolic and Semantic Worlds

Symbolic World

\[\frac{2}{3} + \frac{3}{\infty} \]
\[0.999... = 1 \]
\[\pi \approx 3.14 \]
\[\sqrt{2} \]
\[1 + 2 \cdot 3 \]
\[(1 - 2) + 3 \]
\[\frac{5(2 + 2)}{101_2} = 5_{10} \]

Semantic World

MEANING
Each notebook takes 0.5 and each pen takes 1. Tom has 10. How many notebooks can he buy after buying 5 pens?
Each notebook takes $0.5 and each pen takes $1. Tom has $10. How many notebooks can he buy after buying 5 pens?
Each notebook takes 0.5 and ...
Semantic Generation for Unknown x

* This part is actually done when decoding, but is present at this place for illustration. Check our paper for more information.

Each notebook takes 0.5 and ...
Each notebook takes $0.5 and each pen takes $1. Tom has $10. How many notebooks can he buy after buying 5 pens?
Intuition of Using Semantics

Each notebook takes $0.5 and each pen takes $1. Tom has $10. How many notebooks can he buy after buying 5 pens?

$$x = (10 - \text{Price of a pen} - 5)$$

Number of pens bought.

Price of a pen.
Each notebook takes $0.5 and each pen takes $1. Tom has $10. How many notebooks can he buy after buying 5 pens?
Equation Generation by Stack Actions

- Stack is used
- The decoder generates stack actions.
- An equation is generated with actions on stack.

\[x = 10 - 1 \times 5 \div 0.5 \]
Action Selection in Each Step

Encoder

Decoder

stack action
\{+, -, \times, \div, =, Push\}

classifier
Equation Generation by Stack Actions

Target Equation: $x = 10 - 1 \times 5 \div 0.5$

Generated Actions:

Action: push
Equation Generation by Stack Actions

Target Equation: $x = 10 - 1 \times 5 \div 0.5$

Generated Actions: $x \ 10 \ 1 \ 5$

Action: push
Equation Generation by Stack Actions

Target Equation: \(x = 10 - 1 \times 5 \div 0.5 \)

Generated Actions: \(x \ 10 \ 1 \ 5 \)

Action: \(\times \)
Equation Generation by Stack Actions

Target Equation: \(x = 10 - 1 \times 5 \div 0.5 \)

Generated Actions: \(x\ 10\ 1\ 5\ \times\ 0.5\ \div\ = \)

After many steps...

\[x = (10 - 1 \times 5) \div 0.5 \]
Each notebook takes $0.5 and each pen takes $1. Tom has $10. How many notebooks can he buy after buying 5 pens?
Experiments

- Dataset: Math23k
- In Chinese
- 23000 math word problems.
- Operators: +, -, ×, ÷
Results

<table>
<thead>
<tr>
<th>Acc.</th>
<th>Retrieval</th>
<th>Template</th>
<th>Generation</th>
<th>Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Retrieval</td>
<td>BLSTM</td>
<td>Seq2Seq w/SNI</td>
<td>Proposed</td>
</tr>
<tr>
<td>60</td>
<td>Self-Attention</td>
<td></td>
<td></td>
<td>Hybrid</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ablation Test

Acc.

Char-Based: 66
Word-Based: 66
Word-Based - Semantic: 64
≈ 3%
Word-Based - Gate: 63
Word-Based - Gate - Attention: 62
≈ 2.5%
Word-Based - Gate - Attention - Stack: 60
Self-Attention for Qualitative Analysis

Each notebook takes $0.5 and ...
Self-Attention for Qualitative Analysis

Each notebook takes 0.5 and ...
The attention focuses on:

- Informative verbs:
 - “gain”, “get”, “fill”, etc.

- Quantifier-related words:
 - “every”, “how many”, etc.
Conclusion

Three main contributions

- **Approach:** equation generation with stack
- **Originality:** automatic extraction of operand semantics
- **Performance:** a SOTA end-to-end neural model on Math23k
Code Available @
https://github.com/MiuLab/E2EMathSolver