SEQ3: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for Unsupervised Abstractive Sentence Compression

Christos Baziotis, Ion Androutsopoulos, Ioannis Konstas, Alexandros Potamianos

NAACL-HLT 2019, Minneapolis, USA
Introduction

Machine Translation

the big black cat ...

η μεγάλη μαύρη γάτα...

Dialogue

A: What do you want to do tonight?

B: Let's go for a movie!

Text to Code

sort a list of numbers

for i in range(len(A)):
 min_idx = i
 for j in range(i+1, len(A)):
 if A[min_idx] > A[j]:
 min_idx = j

Sentence Compression

Text to Tree

the big black cat ...

SEQ³ Autoencoder
Introduction

Machine Translation
- The big black cat ...
- η μεγάλη μαύρη γάτα...

Text to Tree
- The big black cat ...

Dialogue
- A: What do you want to do tonight?
- B: Let's go for a movie!

Text to Code
- Sort a list of numbers
  ```python
  for i in range(len(A)):
      min_idx = i
      for j in range(i+1, len(A)):
          if A[min_idx] > A[j]:
              min_idx = j
  ```

Sentence Compression

SEQ³: Sequence-to-Sequence-to-Sequence Autoencoder

Input Sentence
- ── ── ── ── ──
- ── ── ── ── ──

Compression
- ── ── ── ── ──

Reconstruction
- ── ── ── ── ──
Unsupervised Models for Language

Vanilla Autoencoders

\[x_1, x_2, \ldots, x_N \rightarrow \hat{x}_1, \hat{x}_2, \ldots, \hat{x}_N \]
Unsupervised Models for Language

Vanilla Autoencoders

$\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N \rightarrow \mathbf{\hat{x}}_1, \mathbf{\hat{x}}_2, \ldots, \mathbf{\hat{x}}_N$

Discrete Latent Variable Autoencoders

$\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N \rightarrow \mathbf{\hat{x}}_1, \mathbf{\hat{x}}_2, \ldots, \mathbf{\hat{x}}_N$

+ Model the **discreteness** of language
 - Sampling is **not differentiable**
 - REINFORCE: sample **inefficient** and **unstable**
 Contributions

<table>
<thead>
<tr>
<th>Model</th>
<th>Supervision</th>
<th>Abstractive</th>
<th>Differentiable</th>
<th>Latent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miao & Blunsom (2016)</td>
<td>semi</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Wang & Lee (2018)</td>
<td>weak</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Fevry & Phang (2018)</td>
<td>none</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SEQ³</td>
<td>none</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

SEQ³ Features (+ contributions)

- Fully **unsupervised** and **abstractive**
- Fully **differentiable** (continuous approximations)
- **Topic**-grounded compressions
 - **Human-readable** compressions via **LM prior**
 - **User-defined** flexible compression ratio

SOTA in unsupervised sentence compression
Reconstruction loss: distill input into the latent sequence
LM Prior loss: human-readable compressions
Topic loss: similar topic as input
Length constraints: user-defined shorter

Compressor
Encoder Decoder
\(e_1^s\) \(e_2^s\) \(...\) \(e_N^s\)
\(x_1\) \(x_2\) \(x_N\)
Overview

Reconstruction loss: distill input into the latent sequence

LM Prior loss: human-readable compressions

Topic loss: similar topic as input

Length constraints: user-defined shorter

Compressor

Encoder

Decoder

\[e \]

\[\text{BOS} \]

\[x_1 \]

\[x_2 \]

\[x_N \]

\[e_1^s \]

\[e_2^s \]

\[\ldots \]

\[e_N^s \]
Overview

Reconstruction loss: distill input into the latent sequence

LM Prior loss: human-readable compressions

Topic loss: similar topic as input

Length constraints: user-defined shorter length

\[e_{\text{BOS}} \]

\[x_1 \rightarrow x_2 \rightarrow x_N \]

Compressor
Encoder
Decoder

\[e_{\text{BOS}} \]

\[e_1 \rightarrow e_2 \rightarrow \ldots \rightarrow e_N \]
Overview

Reconstruction loss: distill input into the latent sequence

LM Prior loss: human-readable compressions

Topic loss: similar topic as input

Length constraints: user-defined shorter length

Compressor

Encoder

Decoder

\[e^c_1 \]

\[y_1 \]

\[x_1 \]

\[x_2 \]

\[x_N \]

\[e^s_1 \]

\[e^s_2 \]

\[\ldots \]

\[e^s_N \]

\[e_{BOS} \]
Overview

- **Reconstruction loss:** distill input into the latent sequence
- **LM Prior loss:** human-readable compressions
- **Topic loss:** similar topic as input
- **Length constraints:** user-defined shorter

SEQ^3 Autoencoder

Baziotis et al.
SEQ³ Overview

Reconstruction loss:
- distill input into the latent sequence

LM Prior loss:
- human-readable compressions

Topic loss:
- similar topic as input

Length constraints: user-defined shorter

\[e_{BOS} \]

\[x_1 \]

\[x_2 \]

\[x_N \]

\[e_1^s \]

\[e_2^s \]

\[\ldots \]

\[e_N^s \]

\[e_{BOS} \]

\[e_1^c \]

\[e_2^c \]

\[\ldots \]

\[e_N^c \]

\[y_1 \]

Compressor

Encoder

Decoder

Baziotis et al.
Overview

Reconstruction loss: distill input into the latent sequence

LM Prior loss: human-readable compressions

Topic loss: similar topic as input

Length constraints: user-defined, shorter

SEQ3 Autoencoder
Overview

Reconstruction loss: distill input into the latent sequence

LM Prior loss: human-readable compressions

Topic loss: similar topic as input

Length constraints: user-defined shorter

\[e_{BOS} x_1 x_2 \]

\[e_{1} \]

\[e_{2} \]

\[e_{N} \]

\[y_{1} \]

\[y_{2} \]

Compressor

Encoder

Decoder

\[x_{1} \]

\[x_{2} \]

\[x_{N} \]
SEQ3 Overview

Reconstruction loss: distill input into the latent sequence

LM Prior loss: human-readable compressions

Topic loss: similar topic as input

Length constraints: user-defined shorter

![Diagram](image)
Overview

SEQ³ Reconstruction loss: distill input into the latent sequence

LM Prior loss: human-readable compressions

Topic loss: similar topic as input

Length constraints: user-defined shorter

\[
x_1 \rightarrow \epsilon_{BOS} \rightarrow x_2 \rightarrow \ldots \rightarrow x_N \rightarrow e_1^c \rightarrow \epsilon_{M-1} \rightarrow \ldots \rightarrow \epsilon_M \rightarrow y_1 \rightarrow \ldots \rightarrow y_M \rightarrow e_{EOS} \rightarrow e_1^s \rightarrow \ldots \rightarrow e_N^s \rightarrow \epsilon_1^s \rightarrow \epsilon_2^s \rightarrow \ldots \rightarrow \epsilon_M^s
\]

Baziotis et al.
SEQ³ Overview

Reconstruction loss: distill input into the latent sequence

LM Prior loss: human-readable compressions

Topic loss: similar topic as input

Length constraints: user-defined shorter

Compressor

Reconstructor

Encoder

Decoder

Encoder

Decoder

Baziotis et al.
Overview

Reconstruction loss: distill input into the latent sequence

LM Prior loss: human-readable compressions

Topic loss: similar topic as input

Length constraints: user-defined, shorter

\[e_{BOS} \]
\[e_1 \]
\[e_{M-1} \]

\[y_1 \]
\[y_2 \]
\[y_M \]

Compressor

Reconstructor

Encoder
Decoder

Encoder
Decoder

Encoder
Decoder

Encoder
Decoder

\[x_1 \]
\[x_2 \]
\[x_N \]

\[\hat{x}_1 \]
\[\hat{x}_2 \]
\[\hat{x}_N \]
Overview

- **Reconstruction loss**: distill input into the latent sequence

Reconstruction Loss

Minimize input reconstruction error:

\[L_R(x, \hat{x}) = -\sum_{i=1}^{N} \log p_R(\hat{x}_i = x_i) \]
- **Reconstruction** loss: distill input into the latent sequence
- **LM Prior** loss: human-readable compressions
Overview

- **Reconstruction loss**: distill input into the latent sequence
- **LM Prior loss**: human-readable compressions

LM Prior Loss

Minimize D_{KL} between Compressor and LM:

$$L_P = \frac{1}{M} \sum_{t=1}^{M} D_{KL}(p_C(y_t|y_{<t}, x) \parallel p_{LM}(y_t|y_{<t}, x))$$

SEQ³ Autoencoder

Baziotis et al.
Overview

- **Reconstruction** loss: **distill** input into the latent sequence
- **LM Prior** loss: **human-readable** compressions

LM Prior Loss

Minimize D_{KL} between Compressor and LM:

$$L_P = \frac{1}{M} \sum_{t=1}^{M} D_{KL}(p_C(y_t|y_{<t}, x) \parallel p_{LM}(y_t|y_{<t}))$$
Overview

- **Reconstruction loss**: distill input into the latent sequence
- **LM Prior loss**: human-readable compressions
- **Topic loss**: similar topic as input

Topic Loss

\[\mathbf{v}^x: \text{IDF-weighted average of } e_i^s \]
Overview

- **Reconstruction loss**: distill input into the latent sequence
- **LM Prior loss**: human-readable compressions
- **Topic loss**: similar topic as input

Topic Loss

\[\mathbf{v}^x: \text{IDF-weighted average of } e^s_i \]

\[\mathbf{v}^y: \text{average of } e^c_i \]
Overview

- **Reconstruction** loss: **distill** input into the latent sequence
- **LM Prior** loss: **human-readable** compressions
- **Topic** loss: similar **topic** as input

Topic Loss

\[v^x: \text{IDF-weighted average of } e^s_i \]
\[v^y: \text{average of } e^c_i \]
\[L_T = 1 - \cos(v^x, v^y) \]
SEQ³ Overview

- **Reconstruction** loss: *distill* input into the latent sequence
- **LM Prior** loss: *human-readable* compressions
- **Topic** loss: similar *topic* as input
- **Length** constraints: user-defined *shorter* length

Length Constraints

1. **Length-aware** decoder initialization
2. **Countdown** inputs
3. Explicit *length penalty*

Diagram showing the flow of input compression through the **Compressor**, **Encoder**, **Decoder**, and **Reconstructor**.
Differentiable Sampling

Straight-Through + Gumbel-softmax

(Bengio et al., 2013, Maddison et al., 2017; Jang et al., 2017)

Forward-pass: **Discrete** embedding

\[
\text{argmax}\left(\frac{a_i + \xi_i}{\tau}\right)
\]

Backward-pass: **Mixture** of embeddings

\[
\text{softmax}\left(\frac{a_i + \xi_i}{\tau}\right)
\]
Differentiable Sampling

Straight-Through + Gumbel-softmax
(Bengio et al., 2013; Maddison et al., 2017; Jang et al., 2017)

Forward-pass: **Discrete** embedding

\[
\text{argmax}(\frac{(a_i + \xi_i)/\tau}{e})
\]

Backward-pass: **Mixture** of embeddings

\[
\text{softmax}(\frac{(a_i + \xi_i)/\tau}{\tilde{e}})
\]

\[
\nabla_\theta e \approx \nabla_\theta \tilde{e}
\]
Differentiable Sampling

Straight-Through + Gumbel-softmax
(Bengio et al., 2013, Maddison et al., 2017; Jang et al., 2017)

Forward-pass: **Discrete** embedding

\[
\text{argmax}\left(\frac{(a_i + \xi_i)}{\tau}\right)
\]

Backward-pass: **Mixture** of embeddings

\[
\text{softmax}\left(\frac{(a_i + \xi_i)}{\tau}\right)
\]
Experimental Setup

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Training</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigaword (English)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>(source sentences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUC-2003</td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>DUC-2004</td>
<td></td>
<td>✔️</td>
</tr>
</tbody>
</table>

Training

- Train LM (LM prior) → Train SEQ^3
- **Never** exposed to target sentences (compressions)
- Vocabulary: 15K most frequent words in source sentences

Metrics

- Average F1 of ROUGE-1, ROUGE-2, ROUGE-L
Results on Gigaword

<table>
<thead>
<tr>
<th>Supervision</th>
<th>Model</th>
<th>R-1</th>
<th>R-2</th>
<th>R-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupervised</td>
<td>Lead-8 (Rush et al., 2015)</td>
<td>21.86</td>
<td>7.66</td>
<td>20.45</td>
</tr>
<tr>
<td></td>
<td>Pretrained Generator (Wang & Lee, 2018)</td>
<td>21.26</td>
<td>5.60</td>
<td>18.89</td>
</tr>
<tr>
<td></td>
<td>SEQ³</td>
<td>25.39</td>
<td>8.21</td>
<td>22.68</td>
</tr>
</tbody>
</table>

Table: Results on (English) Gigaword for sentence compression.
Results on Gigaword

<table>
<thead>
<tr>
<th>Supervision</th>
<th>Model</th>
<th>R-1</th>
<th>R-2</th>
<th>R-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupervised</td>
<td>LEAD-8 (Rush et al., 2015)</td>
<td>21.86</td>
<td>7.66</td>
<td>20.45</td>
</tr>
<tr>
<td></td>
<td>Pretrained Generator (Wang & Lee, 2018)</td>
<td>21.26</td>
<td>5.60</td>
<td>18.89</td>
</tr>
<tr>
<td></td>
<td>SEQ^3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.39</td>
<td>8.21</td>
<td>22.68</td>
</tr>
<tr>
<td>Supervised</td>
<td>ABS (Rush et al., 2015)</td>
<td>29.55</td>
<td>11.32</td>
<td>26.42</td>
</tr>
<tr>
<td></td>
<td>SEASS (Zhou et al., 2017)</td>
<td>36.15</td>
<td>17.54</td>
<td>33.63</td>
</tr>
<tr>
<td></td>
<td>words-lvt5k-1sent (Nallapati et al., 2016)</td>
<td>36.40</td>
<td>17.70</td>
<td>33.71</td>
</tr>
</tbody>
</table>

Table: Results on (English) Gigaword for sentence compression.
Ablation

<table>
<thead>
<tr>
<th>Model</th>
<th>R-1</th>
<th>R-2</th>
<th>R-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ3 (Full)</td>
<td>25.39</td>
<td>8.21</td>
<td>22.68</td>
</tr>
<tr>
<td>SEQ3 w/o LM</td>
<td>24.48 (-0.91)</td>
<td>6.68 (-1.53)</td>
<td>21.79 (-0.89)</td>
</tr>
<tr>
<td>SEQ3 w/o TOPIC</td>
<td>3.89</td>
<td>0.10</td>
<td>3.75</td>
</tr>
</tbody>
</table>

Table: Ablation results on Gigaword.

Both topic and LM losses work in **synergy**

- **LM** prior loss: **how** words should be included
- **Topic** loss: **what** words to include
the central election commission (cec) on monday decided that
taiwan will hold another election of national assembly members
on may #.

GOLD national <unk> election scheduled for may

SEQ³ the central election commission (cec) announced elections __

Dave Bassett resigned as manager of struggling English prem-

GOLD forest manager bassett quits

SEQ³ Dave Bassett resigned as manager of struggling English premier

league side UNK forest on knocked round press
Conclusions and Future Work

Conclusions

- Fully **differentiable** seq2seq2seq (SEQ3) autoencoder
- SOTA in unsupervised abstractive sentence compression
- **Topic** loss is essential for convergence
- **LM prior** improves **readability**

Next Step: unsupervised machine translation
Conclusions and Future Work

Conclusions

- Fully **differentiable** seq2seq2seq (SEQ^3) autoencoder
- SOTA in unsupervised abstractive sentence compression
- **Topic** loss is essential for convergence
- **LM prior** improves **readability**

Next Step: unsupervised machine translation

Machine Translation

- the big black cat ...
- η μεγάλη μαύρη γάτα...

Dialogue

- A: What do you want to do tonight?
- B: Let’s go for a movie!

Text to Code

- sort a list of numbers
 - for i in range(len(A)):
 - min_idx = i
 - for j in range(i+1, len(A)):
 - min_idx = j

Sentence Compression

- Baziotis et al.
Questions?

Source code

👉 https://github.com/cbaziotis/seq3

Contact me

✉️ christos.baziotis@gmail.com

🐦 @cbaziotis
Bonus Slides
Soft-argmax: Weighted sum of embeddings from peaked softmax (Goyal et al., 2017)

- **logits** a_i
- **softmax** (a_i / τ)
- **Embeddings** \bar{e}
Soft-argmax: Weighted sum of embeddings from peaked softmax (Goyal et al., 2017)

\[
\text{logits} \rightarrow \text{Soft-argmax} \approx \text{Gumbel-softmax}
\]

Gumbel-Softmax

Gumbel-max trick:

\[
y \sim \text{softmax}(a_i) \\
= \text{argmax}(a_i + \xi_i), \quad \xi_i \sim \text{Gumbel}
\]

Gumbel-softmax relaxation:

\[
\hat{y} = \text{softmax}(a_i + \xi_i), \quad \xi_i \sim \text{Gumbel}
\]
Soft-argmax: Weighted sum of embeddings from peaked softmax (Goyal et al., 2017)

- **Softmax** function formula: \(\text{softmax}(\frac{a_i}{\tau}) \)
- Logits: \(a_i \)

Gumbel-softmax: Differentiable approximation to sampling (Maddison et al., 2017; Jang et al., 2017)

- Gumbel distribution: \(\xi_i \sim \text{Gumbel} \)
- Gumbel noise addition: \(\frac{a_i + \xi_i}{\tau} \)
Soft-argmax: Weighted sum of embeddings from peaked softmax
(Goyal et al., 2017)

\[
\text{logits } a_i
\]

\[
\text{softmax}\left(\frac{a_i}{\tau}\right)
\]

\[
\bar{e}
\]

Gumbel-softmax: Differentiable approximation to sampling
(Maddison et al., 2017; Jang et al., 2017)

Straight-Through: forward-pass: one-hot, backward-pass: soft
(Bengio et al., 2013)

\[
\text{logits } a_i
\]

\[
\xi_i \sim \text{Gumbel}
\]

\[
\text{argmax}\left(\frac{a_i + \xi_i}{\tau}\right)
\]

\[
e
\]
Out of Vocabulary (OOV) Words

We copy OOV words using the approach of Fevry and Phang (2018). Simpler alternative to pointer networks (See et al., 2017).

1. We use a set of **special OOV tokens**: $OOV_1, OOV_2, \ldots, OOV_N$.
2. We replace the ith unknown word in the input with the OOV_i token.
3. If all the OOV tokens are used, we use the generic UNK token.
4. In inference, we replace the special tokens with the original words.

OOV Handling Example

<table>
<thead>
<tr>
<th>RAW</th>
<th>“John arrived in Rome yesterday. While in Rome, John had fun.”</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>“OOV_1 arrived in OOV_2 yesterday. While in OOV_2, OOV_1 had fun.”</td>
</tr>
<tr>
<td>OOVs</td>
<td>John, Rome</td>
</tr>
</tbody>
</table>
Temperature τ does not affect the forward pass, but it affects gradients.

1. Jang et al. (2017) anneal $\tau \rightarrow 0$.
2. Gulcehre et al. (2017) learn τ:

$$\tau(h^c_t) = \frac{1}{\log(1 + \exp(w^\top \tau h^c_t)) + 1}$$

3. Havrylov & Titov (2017) tune bound τ_0:

$$\tau(h^c_t) = \frac{1}{\log(1 + \exp(w^\top \tau h^c_t)) + \tau_0}$$

In our experiments the learned temperature lead to instability. We fix $\tau = 0.5$ following (Gu et al., 2018).
Implementation Details

Hyper-Parameters
- Encoders: 2-layer bidirectional LSTM with size 300
- Decoders: 2-layer unidirectional LSTM with size 300
- Embedding: initialize with 100d GloVe (Pennington et al., 2014)

Parameter Sharing
- **Tied encoders** of the compressor and reconstructor.
- **Shared embedding** layer for all encoders and decoders.
- **Tied embedding-output** layers of both decoders.
1 **Sample** target length \(M \).
Length Control

1. **Sample** target length M.
2. Decoder’s state **length-aware initialization**.
1 **Sample** target length M.
2 Decoder’s state **length-aware initialization**.
3 **Countdown** input.

Length Control

1. Sample target length M.
2. Decoder’s state **length-aware initialization**.
3. Countdown input.
1 **Sample** target length M.
2 Decoder’s state **length-aware initialization**.
3 **Countdown** input.
4 Explicit length **penalty**.

Diagram:
- **Input sequence**: $x_1, x_2, ..., x_N$.
- **Sample target length**: M.
- **Decoder state**: $y_1, y_{M-1}, y_M, y_{M+1}, y_{M+2}$.
- **Countdown input**: $<\text{EOS}>$.
- **Explicit length penalty**: $f(\cdot)$.
Results on DUC Shared Tasks

<table>
<thead>
<tr>
<th>Model</th>
<th>R-1</th>
<th>R-2</th>
<th>R-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topiary (Zajic et al., 2007)</td>
<td>25.12</td>
<td>6.46</td>
<td>20.12</td>
</tr>
<tr>
<td>(Woodsend et al., 2010)</td>
<td>22.00</td>
<td>6.00</td>
<td>17.00</td>
</tr>
<tr>
<td>ABS (Rush et al., 2015)</td>
<td>28.18</td>
<td>8.49</td>
<td>23.81</td>
</tr>
<tr>
<td>PREFIX</td>
<td>20.91</td>
<td>5.52</td>
<td>18.20</td>
</tr>
<tr>
<td>SEQ³ (Full)</td>
<td>22.13</td>
<td>6.18</td>
<td>19.3</td>
</tr>
</tbody>
</table>

Table: Results on the DUC-2004

<table>
<thead>
<tr>
<th>Model</th>
<th>R-1</th>
<th>R-2</th>
<th>R-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS (Rush et al., 2015)</td>
<td>28.48</td>
<td>8.91</td>
<td>23.97</td>
</tr>
<tr>
<td>PREFIX</td>
<td>21.3</td>
<td>6.38</td>
<td>18.82</td>
</tr>
<tr>
<td>SEQ³ (Full)</td>
<td>20.90</td>
<td>6.08</td>
<td>18.55</td>
</tr>
</tbody>
</table>

Table: Results on the DUC-2003
the american sailors who thwarted somali pirates flew home to the u.s. on wednesday but without their captain, who was still aboard a navy destroyer after being rescued from the hijackers.

us sailors who thwarted pirate hijackers fly home

the american sailors who foiled somali pirates flew home after crew hijacked.