Multiple Word Alignment with Profile Hidden Markov Models

Aditya Bhargava and Grzegorz Kondrak
Department of Computing Science
University of Alberta
{abhargava,kondrak}@cs.ualberta.ca
Multiple word alignment

• Given multiple words, align them all to each other
• Our approach: Profile HMMs, used in biological sequence analysis
• Use match, insert, and delete states to model changes
• Evaluate on cognate set matching
 ▫ Beat baselines of average and minimum edit distance
What you can expect

- Introduction: word alignment
- Profile hidden Markov models
 - For bioinformatics
 - For words?
- Experiments
- Conclusions & future work
Introduction

• Multiple word alignment:
 ▫ Take a set of words
 ▫ Generate some alignment of these words
 ▫ Similar and equivalent characters should be aligned together

• Pairwise alignment gets us:
 ▫ String similarity and word distances
 ▫ Cognate identification
 ▫ Comparative reconstruction
Introduction

• Extending to multiple words gets us:
 ▫ String similarity with multiple words
 ▫ Better-informed cognate identification
 ▫ Better-informed comparative reconstruction

• We propose Profile HMMs for multiple alignment
 ▫ Test on cognate set matching
Profile hidden Markov models
Profile hidden Markov models

- Match states are “defaults”
- Insert states are used to represent insert symbols
- Delete states are used to represent the absence of symbols
Profile hidden Markov models

In this sample DNA alignment, dashes represent deletes and periods represent skipped inserts.
Profile hidden Markov models

MMIIIM

AG...C
A−AG.C
AG.AA−
−−AAAC
AG...C
Profile hidden Markov models

\[
\text{MMIIIMM} \\
\text{AG...C} \\
\text{A-AG.C} \\
\text{AG.AA-} \\
\text{---AAAC} \\
\text{AG...C}
\]
Profile hidden Markov models

MMIIIM

AG...C
A-AG.C
AG.AA--AAAC
AG...C

![Diagram](Image)
Profile hidden Markov models

\[\text{MMIIIM} \]
\[\text{AG...C} \]
\[\text{A-AG.C} \]
\[\text{AG.AA-} \]
\[\text{---AAAC} \]
\[\text{AG...C} \]
Profile hidden Markov models

\[
\begin{align*}
\text{MMIIIM} & \\
\text{AG...C} & \\
\text{A-AG.C} & \\
\text{AG.AA-} & \\
\text{---AAAC} & \\
\text{AG...C} &
\end{align*}
\]
Profile hidden Markov models

\[\text{MMIIIM} \]
\[\text{AG...C} \]
\[\text{A-AG.C} \]
\[\text{AG.AA--AAAC} \]
\[\text{AG...C} \]
Profile hidden Markov models

\[
\begin{array}{c}
\text{MMIIIM} \\
\text{AG...C} \\
\text{A-AG.C} \\
\text{AG.AA-} \\
\text{--AAAC} \\
\text{AG...C}
\end{array}
\]
Profile hidden Markov models

- To construct a Profile HMM from aligned sequences:
 - Determine which columns are match columns and which are insert columns, then estimate transition and emission probabilities directly from counts

- To construct a Profile HMM from unaligned sequences:
 - Choose a model length, initialize the model, then train it to the sequences using Baum-Welch
Profile hidden Markov models

• Evaluating a sequence for membership in a family
 ▫ Use the forward algorithm to get the probability
 ▫ Use Viterbi to align the sequence

• Multiple alignment of unaligned sequences
 ▫ Construct & train a Profile HMM
 ▫ Use Viterbi to align the sequences
Profile hidden Markov models

- Profile HMMs are generalizations of Pair HMMs
 - Word similarity and cognate identification
- Unlike Pair HMMs, Profile HMMs are position-specific
 - Each model is constructed from a specific family of sequences
 - Pair HMMs are trained over many pairs of words
Profile HMMs for words

- Words are also sequences!
- Similar to their use for biological sequences, we apply Profile HMMs to multiple word alignment
- We also test Profile HMMs on matching words to cognate sets
- We made our own implementation and investigated several parameters
Profile HMMs: parameters

- Favour match states?
- Pseudocount methods
 - Constant-value, background frequency, substitution matrix
- Pseudocount weight
- Pseudocounts added during Baum-Welch
Experiments: Data

• Comparative Indoeuropean Data Corpus
 ▫ Cognition data for words in 95 languages corresponding to 200 meanings
• Each meaning reorganized into disjoint cognate sets
Experiments: Multiple cognate alignment

- Parameters determined from cognate set matching experiments (later)
- Pseudocount weight set to 100 to bias the model using a substitution matrix
- Highly-conserved columns are aligned correctly
- Similar-sounding characters are aligned also correctly, thanks to the substitution matrix method
- Insert columns should not be considered aligned
- Problems with multi-character phonemes
 - An expected problem when using the English alphabet instead of e.g. IPA
Experiments: Cognate set matching

• How can we evaluate the alignments in a principled way? There is no gold standard!
• We emulate the biological sequence analysis task of matching a sequence to a family; we match a word to a cognate set
• The task is to correctly identify the cognate set to which a word belongs given a number of cognate sets having the same meaning as the word; we choose the model yielding the highest score
Experiments: Cognate set matching

• Development set of 10 meanings (~5% of the data)
• Substitution matrix derived from Pair HMM method
• Best parameters:
 ▫ Favour match states
 ▫ Use substitution matrix pseudocount
 ▫ Use 0.5 for pseudocount weight
 ▫ Add pseudocounts during Baum-Welch
Experiments: Cognate set matching

Average Edit Distance: 77.0%
Minimum Edit Distance: 91.0%
Profile HMM: 93.2%
Experiments: Cognate set matching

- Accuracy better than both average and minimum edit distance
- Why so close to MED?
 - Many sets had duplicate words (same orthographic representation for different languages)
Conclusions

- Profile HMMs can work for word-related tasks
- Multiple alignments are reasonable
- Cognate set matching performance exceeds minimum and average edit distance
- If multiple words need to be considered, Profile HMMs present a viable method
Future work

- Better model construction from aligned sequences
- Better initial models for unaligned sequences
- Better pseudocount methods
- N-gram output symbols