German in Flux:
Detecting Metaphoric Change via Word Entropy

August 4, 2017

Dominik Schlechtweg, Stefanie Eckmann, Enrico Santus, Sabine Schulte im Walde, Daniel Hole

dominik.schlechtweg@gmx.de, stefanie.eckmann@campus.lmu.de, esantus@mit.edu, schulte@ims.uni-stuttgart.de, holedan@gmail.com
Introduction

► Our aim:
 ▶ overall: build a computational model detecting semantic change
 ▶ in this paper: distinguish metaphoric change from semantic stability

► How we do it:
 ▶ exploit the idea of semantic generality from hypernym detection
 ▶ apply entropy to distributional semantic model
 ▶ sample language German
 ▶ introduce the first resource for evaluation of models of metaphoric change
Shortcomings of Related Work

- Previous work includes mainly:
 1. spatial displacement models
 2. word sense induction models
- quantify the degree of **overall change** rather than being able to qualify different **types**
- do not examine metaphoric change
Metaphoric Change

- frequent and important type of semantic change
- source and target concept are related by similarity or a reduced comparison (cf. Koch, 2016, p. 47)

earlier: ... muß ich mich vmbweltzen / vnd kan keinen schlaff in meine augen bringen
 ‘... I have to turn around and cannot bring sleep into my eyes.’

later: Kinadon wollte den Staat umwälzen ...
 ‘Kinadon wanted to revolutionize the state ...’

(i) creates **polysemy**

(ii) often results in more abstract or **general** meanings

→ assumption: (i) and (ii) imply extension and dispersion in the range of linguistic contexts
Corpus

- *Deutsches Textarchiv (erweitert) (DTA)*
- **large**: provides more than 2447 lemmatized and POS-tagged texts (with more than 140M tokens)
- **covers long time period**: late 15th to the early 20th century
- **balanced**: includes literary and scientific texts as well as functional writings
Word Entropy

- corresponds to **entropy of word vector**
- is assumed to reflect **semantic generality** in hyponym detection
- is given by

\[
H(C) = - \sum_{i=1}^{n} P(c_i \mid w) \log_2 P(c_i \mid w)
\]

where \(P(c_i \mid w) \) is the occurrence probability of context word \(c_i \) given target word \(w \)
- measures the **unpredictability** of \(w \)'s co-occurrences
Evaluation

▶ no standard test set of semantic or metaphorical change
▶ we create a small but first test set via annotation (28 items)
▶ annotators judged 560 context pairs for a metaphorical relation

Workflow:
(i) preselect 14 changing words
(ii) add 14 stable distractors
(iii) identify a date of change
(iv) extract 20 contexts for each target from before and after date of change
(v) for each word combine contexts between time periods randomly
(vi) annotation of context pairs
Annotation

- steps to identify metaphoric relation of C1 to C2:
 1. Does any of these hold?:
 - C1 is less concrete than C2
 - C1 is less human-oriented than C2
 - C1 is not related to bodily action in contrast to C2
 - C1 is less precise than C2
 2. if yes: does C1 contrast with C2 but can be understood in comparison with it?
 - agreement: \(\kappa \) (Fleiss’ Kappa) between .40 and .46
 - result is gold ranking of targets for strength of metaphoric change
Annotation Results

<table>
<thead>
<tr>
<th>target</th>
<th>POS</th>
<th>type</th>
<th>date</th>
<th>meaning</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donnerwetter</td>
<td>N</td>
<td>met</td>
<td>1805</td>
<td>thunderstorm > thunderstorm, blowup</td>
<td>0.78</td>
</tr>
<tr>
<td>Unhöflichkeit</td>
<td>N</td>
<td>sta</td>
<td>1605</td>
<td>discourtesy</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 1: Sample of test set items ordered by their annotated degree of metaphoric change.
Results

<table>
<thead>
<tr>
<th></th>
<th>1700-1800</th>
<th>1800-1900</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>entropy</td>
<td>.64***</td>
<td>.10</td>
<td>.39*</td>
</tr>
<tr>
<td>frequency</td>
<td>.29</td>
<td>-.07</td>
<td>.26</td>
</tr>
</tbody>
</table>

Table 2: Correlation (\(\rho\)) between predicted and gold ranks. Significance is determined with a t-test.
Result Analysis

- **ausstechen**
 1605: *Von einem Bawren / welcher einem Kalbskopff die Augen außstach.*
 ‘About a Farmer / who cut out the eyes of a calf’s head.’
 1869: *Sie wollen ihre Aufgabe nicht nur lösen, sondern auch elegant, d. h. rasch lösen, um Nebenbuhler auszustechen.*
 ‘They not only wanted to solve their task, but also elegantly, i.e., solve it fast, in order to excel rivals.’
 ▶ gold rank: 12/28, entropy: 13, frequency: 17

- **Donnerwetter**
 1631: *Die Lufft ist heiß / vnd gibt viel Blitzen vnd Donnerwetter ...*
 ‘The air is hot / and there are many lightnings and thunderstorms ...’
 1893: *Potz Donnerwetter!*
 ‘Man alive!’
 ▶ gold rank: 1/28, entropy: 27, frequency: 15
Conclusions

- you *can* annotate semantic change in a corpus (so do it)
- entropy correlates strongly and significantly with degree of metaphoric change
- frequency correlates moderately, but non-significantly on small data set
- annotation and model are **generalizable** to different types of semantic change

https://github.com/Garrafao/MetaphoricChange