
Supplementary Materials

Srinivasan Iyer†, Alvin Cheung§ and Luke Zettlemoyer†‡
†Paul G. Allen School of Computer Science and Engineering, Univ. of Washington, Seattle, WA

{sviyer, lsz}@cs.washington.edu
§Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA

akcheung@cs.berkeley.edu
‡ Facebook AI Research, Seattle

lsz@fb.com

1 Iyer-Simp for CONCODE

Iyer-Simp is similar to the best performing
encoder-decoder model of Iyer et al. (2018) on
the CONCODE dataset, with three major modi-
fications in their encoder, which yields improve-
ments in speed and accuracy. First, in addition
to camel-case splitting of identifier tokens, we use
byte-pair encoding (BPE) (Sennrich et al., 2016)
on all NL tokens, identifier names and types and
embed these BPE tokens using a single embedding
matrix. Next, we replace their RNN that contextu-
alizes the subtokens of identifiers and types with
an average of the subtoken embeddings instead.
Finally, we consolidate their three separate RNNs
for contextualizing NL, variable names with types,
and method names with types, into a single shared
RNN, which greatly cuts down model parameters.
We present the full model here for convenience.
Since the decoder is unmodified, large portions of
this section are borrowed from Iyer et al. (2018).

Formally, let {qi} represent the set of BPE to-
kens of the NL, and {tij}, {vij}, {rij} and {mij}
represent the jth BPE token of the ith variable
type, variable name, method return type, and
method name respectively.

Encoder The encoder computes contextual rep-
resentations of the NL and each component in the
context. First, all the elements defined above are
embedded using a BPE token embedding matrixB
to give us qi, tij, vij, rij and mij. Using Bi-LSTM
f , the encoder then computes:

h1, · · · , hz = f(q1, . . . ,qz) (1)

vi = Avg(vi1, . . . ,vij) (2)

Similarly, compute mi, ti, ri (3)

t̂i, v̂i = f(ti,vi) (4)

r̂i, m̂i = f(ri,mi) (5)

Then, h1, . . . , hz , and t̂i, v̂i, r̂i, m̂i are passed to
the attention mechanism in the decoder.

Decoder The decoder is a sequential LSTM
based model that produces a sequence of gram-
mar rules (at at step t), which can later be put
together to form a source code snippet. At each
time step t, the decoder expands a non-terminal
that was produced earlier, by choosing a valid
right hand side rule for that non-terminal. The
first non-terminal (at step 1) is MemberDeclara-
tion and subsequently, every non-terminal is ex-
panded in a depth first left to right fashion, similar
to Yin and Neubig (2017). The probability of a
source code snippet is decomposed as a product of
the conditional probability of generating each step
in the sequence of rules conditioned on the previ-
ously generated rules.

More specifically, the decoder is an LSTM-
based RNN with hidden dimension size H , that
produces a context vector ct at each time step,
which is used to compute a distribution over next
actions.

p(at|a<t) ∝ exp(Wntct) (6)

Here, Wnt is a |nt| ×H matrix, where |nt| is the
total number of unique grammar rules that nt can
be expanded to. The context vector ct is computed
using the hidden state st of an n-layer decoder
LSTM cell and attention vectors over the NL and
the context (zt and et), as described below.

Decoder LSTM The decoder uses an n-layer
LSTM whose hidden state st is computed based
on the current non-terminal nt to be expanded, the
previous production rule at−1, the parent produc-
tion rule, par(nt), that produced nt, the previous
decoder LSTM state st−1, and the decoder state of
the LSTM cell that produced nt, denoted as snt .

st = LSTM(nt, at−1, par(nt), st−1, snt) (7)

We use an embedding matrix N to embed nt and
matrix A to embed at−1 and par(nt). If at−1 is a
rule that generates a terminal node that represents
an identifier or literal, it is represented using a spe-
cial rule IdentifierOrLiteral to collapse all these
rules into a single previous rule.

Two-step Attention At time step t, the decoder
first attends to every token in the NL represen-
tation, hi, using the current decoder state, st, to
compute a set of attention weights αt, which are
used to combine hi into an NL context vector
zt. We use a general attention mechanism (Luong
et al., 2015), extended to perform multiple steps.

αt,i =
exp(sT

tFhi)∑
i exp(sT

tFhi)

zt =
∑
i

αt,ihi

The context vector zt is used to attend over ev-
ery type (return type) and variable (method) name
in the environment, to produce attention weights
βt that are used to combine the entire context
x = [t : v : r : m] into an environment context
vector et.1

βt,j =
exp(zT

t Gxj)∑
j exp(zT

t Gxj)

et =
∑
j

βt,jxj

Finally, ct is computed using the decoder state and
both context vectors zt and et:

ct = tanh(Ŵ [st : zt : et])

Supervised Copy Mechanism Since the class
environment at test time can belong to previously
unseen new domains, our model needs to learn to
copy variables and methods into the output. We
use the copying technique of Gu et al. (2016) to
compute a copy probability at every time step t
using learned vector b of dimensionality H .

copy(t) = σ(bT ct)

Since we only require named identifiers or user
defined types to be copied, both of which are
produced by production rules with nt as Identi-
fierNT, we make use of this copy mechanism only
in this case. Identifiers can be generated by di-
rectly generating derivation rules (see equation 6),

1“:” denotes concatenation.

or by copying from the environment. The proba-
bility of copying an environment token xj , is set
to be the attention weights βt,j computed earlier,
which attends exactly on the environment types
and names which we wish to be able to copy. The
copying process is supervised by preprocessing
the grammar rules to recognize identifiers that can
be copied from the environment, and both the gen-
eration and the copy probabilities are weighted by
1− copy(t) and copy(t) respectively.

Hyperparameters and Inference We use an
embedding size H of 1024 for identifiers and
types. All LSTM cells use 2-layers and a hidden
dimensionality of 1024 (512 on each direction for
BiLSTMs). We use an embedding size of 512 for
encoding non-terminals and rules in the decoder.
We use dropout with p = 0.5 in between LSTM
layers and at the output of the decoder over ct. We
train our model for 30 epochs using mini-batch
gradient descent with a batch size of 40, and we
use Adam (Kingma and Ba, 2015) with an initial
learning rate of 0.001 for optimization. We decay
our learning rate by 80% based on performance
on the development set after every epoch. We use
beam search with a beam size of 5 for decoding
the sequence of grammar rules at test time.

2 Seq2Prod for ATIS-SQL

Our Seq2Prod is similar to the Seq2Prod model of
Iyer et al. (2018), with a modification in the in-
puts to the decoder LSTM. We describe the entire
model here for convenience. Large portions of this
section are borrowed from Iyer et al. (2018).

Encoder The encoder of Seq2Prod computes
contextual representations of the NL query. Note
that unlike the previous model for CONCODE,
this model does not need to encode context. If qi
represents each lemmatized token of the NL, they
are first embedded using a token embedding ma-
trix B to give us qi. Using Bi-LSTM f , the en-
coder then computes:

h1, · · · , hz = f(q1, . . . ,qz) (8)

Then, h1, . . . , hz are passed to the attention mech-
anism in the decoder.

Decoder Similar to the Iyer-Simp model de-
scribed above, the decoder is a sequential LSTM
based model that produces a sequence of grammar
rules (at at step t), which can later be put together

to form a source code snippet. More specifically,
the decoder is an LSTM-based RNN with hidden
dimension size H , that produces a context vector
ct at each time step, which is used to compute a
distribution over next actions.

p(at|a<t) ∝ exp(Wntct) (9)

Here, Wnt is a |nt| ×H matrix, where |nt| is the
total number of unique grammar rules that nt can
be expanded to. The context vector ct is computed
using the hidden state st of an n-layer decoder
LSTM cell and attention vectors over the NL zt,
as described below.

Decoder LSTM The decoder uses an n-layer
LSTM (LSTMf) whose hidden state at time t, st,
is computed based on an embedding of the current
non-terminal nt to be expanded, a contextuatized
embedding of the previous production rule at−1,
a contextualized embedding of the parent produc-
tion rule, par(nt), that produced nt, and the pre-
vious decoder LSTM state st−1. Note that unlike
the previous Iyer-Simp model, we do not use the
parent LSTM state as it does not provide any im-
proved performance.

We use an embedding matrix N to embed nt.
To compute the contextualized embeddings of
at−1 and par(nt) in LSTMf , we use another single
layer Bi-LSTM (LSTMg) across the left and right
sides of the rule (using separator symbol SEP) and
use the final hidden state as inputs to LSTMf in-
stead. More concretely, if a grammar rule is repre-
sented as A→ B1 . . . Bn, then:

Emb(A→ B1 . . . Bn) =

LSTMg({A, SEP, B1, . . . , Bn}) (10)

st = LSTMf (nt,Emb(at−1),Emb(par(nt)),

st−1) (11)

The contextualization of these rule embeddings
is the primary difference between our model and
Iyer et al. (2018). This modification can help the
LSTMf cell locate the position of nt within rules
at−1 and par(nt), especially, for lengthy idiomatic
rules.
st is then used for attention and finally, pro-

duces a distribution over grammar rules.

Single-Step Attention At time step t, the de-
coder attends to every token in the NL represen-
tation, hi, using the current decoder state, st, to

compute a set of attention weights αt, which are
used to combine hi into an NL context vector zt.
We use the general attention mechanism of Luong
et al. (2015).

αt,i =
exp(sT

tFhi)∑
i exp(sT

tFhi)

zt =
∑
i

αt,ihi

Finally, ct is computed using the decoder state
and context vector zt:

ct = tanh(Ŵ [st : zt])

Supervised Copy Mechanism The supervised
copy mechanism is exactly the same as described
for the previous model (Iyer-Simp), using context
vector ct.

Hyperparameters We use an embedding size
H of 1024 for NL query tokens. Both the encoder
and decoder LSTM cells use 2-layers and a hidden
dimensionality of 1024 (512 on each direction for
BiLSTMs). We use an embedding size of 512 for
encoding non-terminals and a hidden size of 256
for the contextualized rules (for LSTMg) in the de-
coder. We use dropout with p = 0.5 in between
LSTM layers and at the output of the decoder over
ct. We train our model for 60 epochs using mini-
batch gradient descent with a batch size of 40, and
we use Adam (Kingma and Ba, 2015) with an ini-
tial learning rate of 0.001 for optimization. We
decay our learning rate by 80% based on perfor-
mance on the development set after every epoch.
We use beam search with a beam size of 5 for de-
coding the sequence of grammar rules at test time.

References
Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.

Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1643–1652. Associa-
tion for Computational Linguistics.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

http://www.aclweb.org/anthology/P16-1154
http://www.aclweb.org/anthology/P16-1154
http://aclweb.org/anthology/D18-1192
http://aclweb.org/anthology/D18-1192

Thang Luong, Hieu Pham, and D. Christopher Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421. Associa-
tion for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
http://www.aclweb.org/anthology/P16-1162
http://www.aclweb.org/anthology/P16-1162
http://aclweb.org/anthology/P17-1041
http://aclweb.org/anthology/P17-1041

