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A Read-Write Memory Losses

A.1 Memory Ranking Loss JMR

We want the model to learn to make efficient
matches with the memory keys in order to facil-
itate look up on past data. To do this, we find
a positive and negative neighbor after computing
the k nearest neighbors (n1, ..., nk) by finding the
smallest index p such that V [p] = P and n such
that V [n] 6= P respectively. We define the mem-
ory ranking loss as:

JMR = max(0, s(z,K[n])− s(z,K[p]) + αMR) (1)

where αMR is a learnable margin parameter and
s(·, ·) denotes the similarity between persona
embeddings (z), key representations of positive
(K[p]) and negative (K[n]) neighbors. The above
equation is consistent with the memory loss de-
fined in the original work (Kaiser and Nachum,
2017).

A.2 Memory Classification Loss JMCE

The Read-Write memory returns ẑM and values
vM = V [ni] ∀i ∈ {n1, .., nk}. The probability of
the given input dialogues belonging to a particular
persona category P is computed using values vM
returned from the memory via:

qM = softmax(fPM (vM )) (2)

where fPM
: IRk 7→ IRNP is a fully-connected

layer. We replace the qj with qMj in Equation 12
and calculate the categorical cross entropy to get
JMCE .

B Experimental details

The vocabulary size was set to 20000. We used a
GRU hidden size of 200, a word embedding size of
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300, and the word embedding lookup was initial-
ized with GLoVe (Pennington et al., 2014). For the
Read-Write memory module, we used k=8 when
calculating the nearest neighbors and a memory
size of 150. Our models were trained using Adam
(Kingma and Ba, 2014).
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