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Abstract

This paper presents some details for neu-
ral segmental hypergraphs(SH) (Wang and
Lu, 2018). The first section focuses on the
construction of SH, detailed proof of the
structural ambiguity free theorem and the
inference algorithms of SH. The second
section gives some details of our experi-
ments including the full statistics of our
datasets, handcrafted features used in SH(-
NN), the choices of hyperparameters and
some complete experiment results.

1 Segmental Hypergraph

1.1 Representation
We illustrate how our segmental hypergraph en-
codes the structures of overlapping mentions by a
concrete example.

First, we introduce the construction of the com-
plete segmental hypergraph which is used to en-
code all the combinations of mentions in a sen-
tence. The intuition is that at each word, the seg-
mental hypergraph compactly represents all seg-
ments starting from this word. To jointly model
the labels of these segments(mentions), multiple
paths are created with each corresponding to a
mention type. Hence, there exist three kinds of
combinations in the hypergraph. First, the men-
tions of the same type k and the same left bound-
ary are compactly encoded hyperedges from I
and X nodes. Second, we combine the men-
tions of different types by the hyperedge {E →
(T1, . . . ,Tm))}. Finally, we combine the men-
tions from different positions by the hyperedge be-
tween A and E nodes.

In Figure 1, we show the complete expansion
of the first word and expansions at other positions
can be figured out analogously. If we make a re-
striction on the maximal length, say 6, then the

restricted segmental hypergraph shrinks to Figure
2. Under this setting, the longest possible mention
starting from the first word should only be “Israeli
UN Ambassador, Yehuda Lancry”.

An instance of mention combinations corre-
sponds to a hyperpath in the segmental hyper-
graph. Specifically, from the root node, A1, we
should make a decision of choosing which hyper-
edge to take recursively. Figure 3 gives the partial
hyperpath encoding the three mentions from the
first word. Using this example, we present how
the hyperpath is constructed. First, the mention
“Israeli UN Ambassador” and “Israeli UN Ambas-
sador, Yehuda Lancry” belong to the same men-
tion type PER. They are compactly represented by
a path from node T2

1. This path has two leaf nodes
X with each corresponding with a mention. Anal-
ogously, “Israeli” (GPE) can be encoded with the
path from T1

1. Note that we don’t use a NULL la-
bel to indicate a span without any type. Instead, in
this example, the hyperedge between T3

1 and the
leaf node X indicates that there is no ORG men-
tions starting from the first word. Next, we com-
bine the mentions of different types by the hyper-
edge {E1 → (T1

1,T
2
1,T

3
1))}. Finally, we combine

the mentions from the next position recursively by
the hyperedge {A1 → (A1,E1)}.

1.2 Proof of Structural Ambiguity Free
Theorem 1.1. (Structural Ambiguity Free) For
any sentence, there exists a segmental hypergraph
Gc = (Vc, Ec) such that any combination of men-
tions in the sentence corresponds to exactly one
hyperpath G = (V, E) within the complete seg-
mental hypergraph, and each hyperpath corre-
sponds to exactly one combination of mentions in
a sentence.
Proof We first prove that each mention combina-
tion can be encoded with a unique hyperpath. As-
sume we are given a combination of mentions in
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Figure 1: Partial segmental hypergraph that shows the expansions from the first word. We use three
mentions types for illustration: GPE(Geo-Political Entity), PER(Person), ORG(Organization).
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Figure 2: Partial segmental hypergraph with the restriction of maximal mention length (c = 6). From
the first word, as shown, it can only explore to the sixth word at most.

a sentence, we can construct a hyperpath by vis-
iting nodes as we defined in the paper. We note
that the first two types of hyperedges (from A
and E nodes) are always present in any hyperpath.
We just need to specify the remaining hyperedges.
The hyperedges can be selected based on the posi-
tion of the mentions. For example, if there exists a

mention of type k that starts at a position i, we se-
lect the hyperedge that connects Tk

i and Ii,i. Oth-
erwise, we select the hyperedge between Tk

i and
X. Similarly for the other hyperedges. This pro-
cess forms a unique hyperpath encoding a specific
kind of mention combination.

Next, we show why the converse of the above
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Figure 3: A partial hyperpath for encoding three mentions from the first word: “Israeli”(GPE), “Israeli
UN Ambassador”(PER) and “Israeli UN Ambassador, Yehuda Lancry”(PER).

is also true. For a given hyperpath. Consider any
hyperedge in the hyperpath that contains both Iki,j
and X, it corresponds to a mention of type k that
spans all words from position i to j inclusive. The
resulting combination of mentions is unique.

1.3 Inference

Our inference algorithm aims at solving two prob-
lems: computing the partition function and search-
ing for the most probable hyperpath. It can
be viewed as a generalized inside-outside style
message-passing algorithm.

Specifically, to compute the following partition
function, we need to sum over all the possible hy-
perpath.

Z =
∑
y′

exp f(x,y′) =
∑
y′

exp[
∑
e∈Gy′

ψ(e,x)]

(1)

The summation can be decomposed into prop-
agation from leaf nodes X to the root node A1

recursively. Let us show an example of a simple
segmental hypergraph in Figure 4 to see how the
algorithm works.

In this complete segmental hypergraph, there
exist 8 kinds of hyperpath, each corresponds to a
mention combination. We list the scores for each
combination as follows.
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Figure 4: A complete segmental graph for a two-
word sentence with one possible mention type.

• G1: mention M, N, MN

f(x,G1) =
ψ({A1 → (A2,E1)},x) + ψ({A2 → E2},x)
+ ψ({E1 → T1

1},x) + ψ({E2 → T1
2},x)

+ ψ({T1
1 → I11,1},x) + ψ({I11,1 → (I11,2,X)},x)

+ ψ({I11,2 → X},x) + ψ({T1
2 → I12,2},x)

+ ψ({I12,2 → X},x)
(2)



• G2: mention MN, N

f(x,G2) =
ψ({A1 → (A2,E1)},x) + ψ({A2 → E2},x)
+ ψ({E1 → T1

1},x) + ψ({E2 → T1
2},x)

+ ψ({T1
1 → I11,1},x) + ψ({I11,1 → I11,2},x)

+ ψ({I11,2 → X},x) + ψ({T1
2 → I12,2},x)

+ ψ({I12,2 → X},x)
(3)

• G3: mention M, N

f(x,G3) =
ψ({A1 → (A2,E1)},x) + ψ({A2 → E2},x)
+ ψ({E1 → T1

1},x) + ψ({E2 → T1
2},x)

+ ψ({T1
1 → I11,1},x) + ψ({I11,1 → X},x)

+ ψ({T1
2 → I12,2},x) + ψ({I12,2 → X},x)

(4)

• G4: mention N

f(x,G4) =
ψ({A1 → (A2,E1)},x) + ψ({A2 → E2},x)
+ ψ({E1 → T1

1},x) + ψ({E2 → T1
2},x)

+ ψ({T1
1 → X},x) + ψ({T1

2 → I12,2},x)
+ ψ({I12,2 → X},x)

(5)

• G5: mention M, MN

f(x,G5) =
ψ({A1 → (A2,E1)},x) + ψ({A2 → E2},x)
+ ψ({E1 → T1

1},x) + ψ({E2 → T1
2},x)

+ ψ({T1
1 → I11,1},x)

+ ψ({I11,1 → (I11,2,X)},x)
+ ψ({I11,2 → X},x) + ψ({T1

2 → X},x)
(6)

• G6: mention MN

f(x,G6) =
ψ({A1 → (A2,E1)},x) + ψ({A2 → E2},x)
+ ψ({E1 → T1

1},x) + ψ({E2 → T1
2},x)

+ ψ({T1
1 → I11,1},x) + ψ({I11,1 → I11,2},x)

+ ψ({I11,2 → X},x) + ψ({T1
2 → X},x)

(7)

• G7: mention M

f(x,G7) =
ψ({A1 → (A2,E1)},x) + ψ({A2 → E2},x)
+ ψ({E1 → T1

1},x) + ψ({E2 → T1
2},x)

+ ψ({T1
1 → I11,1},x) + ψ({I11,1 → X},x)

+ ψ({T1
2 → X},x)

(8)

• G8: no mention

f(x,G8) =
ψ({A1 → (A2,E1)},x) + ψ({A2 → E2},x)
+ ψ({E1 → T1

1},x) + ψ({E2 → T1
2},x)

+ ψ({T1
1 → X},x) + ψ({T1

2 → X},x)
(9)

The partition function of this example can be
written as follows:

Z =

8∑
i=1

exp f(x,Gi) =
8∑

i=1

exp[
∑
e∈Gi

ψ(e,x)]

(10)
Though the number of hyperpath is exponential

in the number of words, the summation over them
can be optimized through dynamic programming
based on the observation that hyperpaths share
common sub-structures. For example, G1, G2 and
G3 only differs with the sub-structure from I11,1 to
leaf nodes. So the sum of them can be written as:

exp
(
f(x,G1) + f(x,G2) + f(x,G3)

)
=

exp
(
ψ({A1 → (A2,E1)},x) + ψ({A2 → E2},x)

+ ψ({E1 → T1
1},x) + ψ({E2 → T1

2},x)
+ ψ({T1

1 → I11,1},x)
)
·(

exp
(
ψ({I11,1 → (I11,2,X)},x) + ψ({I11,2 → X},x)

+ ψ({T1
2 → I12,2},x) + ψ({I12,2 → X},x)

)
+

exp
(
ψ({I11,1 → I11,2},x) + ψ({I11,2 → X},x)

+ ψ({T1
2 → I12,2},x) + ψ({I12,2 → X},x)

)
+

exp
(
ψ({I11,1 → X},x) + ψ({T1

2 → I12,2},x)

+ ψ({I12,2 → X},x)
))

(11)
The second term can be reused when we need to

compute exp
(
f(x,G5)+f(x,G6)+f(x,G7)

)
. In



ACE-2004 ACE-2005 GENIA
Train (%) Dev (%) Test (%) Train (%) Dev (%) Test (%) Train (%) Dev (%) Test (%)

# sentences 6,799 (00) 829 (00) 879 (00) 7,336 (00) 958 (00) 1,047 (00) 14,836 (00) 1,855 (00) 1,855 (00)
with o.l. 2,683 (39) 293 (35) 272 (42) 2,683 (37) 340 (35) 330 (32) 3,199 (22) 366 (20) 448 (24)

# mentions 22,207 (00) 2,511 (00) 3,031 (00) 24,687 (00) 3,217 (00) 3,027 (00) 46,473 (00) 5,014 (00) 5,600 (00)
o.l. 10,170 (46) 1,091 (43) 1,418 (47) 9,937 (40) 1,192 (37) 1,184 (39) 8,337 (18) 915 (18) 1,217 (22)

o.l. (same type) 5,431 (24) 624 (25) 780 (26) 5,044 (20) 600 (19) 638 (21) 4,613 (10) 479 (10) 634 (11)
o.l. (same type & lb) 2,188 (10) 204 (08) 307 (10) 1,973 (08) 243 (08) 253 (08) 2,133 (05) 202 (04) 287 (05)

lengh > 6 1,439 (06) 179 (07) 199 (07) 1,343 (05) 148 (05) 160 (06) 2,449 (05) 302 (06) 301 (05)
max lengh 57 (00) 35 (00) 43 (00) 49 (00) 30 (00) 27 (00) 28 (00) 28 (00) 19 (00)

Table 1: Statistics for ACE-2004, ACE-2005 and GENIA. o.l.: overlapping mentions, lb: left boundary.

the case that the sentence length is greater than 2,
the second term can also be reused for computa-
tion that involves previous I nodes.

Based on this intuition, we define a message
function µ[p] for each node p, which can be
viewed as the summation of sub-structures from p
to leaf nodes. Let’s set the message value for leaf
nodes to be 0. Then our algorithm passes mes-
sages from leaf node to the root node A1 based on
the following recursive computation.

µ[p]← log
(∑
e:h(e)≡p

exp
(
ψ(e,x) +

∑
c∈T (e)

µ[c]
))

(12)

where h(e) is the head of the hyperedge e, and
T (e) is the collection of nodes that form the tail
of e – they are the child nodes of h(e) given e.

For example,

µ[I11,2]← log
(
exp

(
ψ({I11,2 → X},x) +µ[X]

))
(13)

µ[I11,1]← log
(
exp

(
ψ({I11,1 → I11,2},x) + µ[I11,2]

)
+exp

(
ψ({I11,1 → X},x) + µ[X]

)
+exp

(
ψ({I11,1 → {I11,2},X}},x) + µ[X] + µ[I11,2]

))
(14)

Ultimately, the value of partition function Z is
equal to the message value of the root node which
is µ[A1].

For MAP inference, we need to search for the
hyperpath with the most scores. We only need to
replace the sum operation in (12) to max opera-
tion.

µ[p]← max
e:h(e)≡p

(
φ(e,x) +

∑
c∈T (e)

µ[c]
)

(15)

The µ[p] can be understood as the maximal
scores for all sub-structures from p to leaf nodes.
Analogously, µ[A1] stores the score for the best
hyperpath, which can be retrieved using back-
tracking.

2 Experiments

This section provides the complete statistics for
ACE and GENIA datasets, experiment on length
restriction, the handcrafted features used for base-
line models, a list of hyperparameters used for
training, some complete results of experiments in
the paper.

2.1 Statistics

Table 1 shows the complete statistics for ACE
datasets and GENIA.

2.2 Handcrafted Features

The non-neural baselines methods all use the same
set of features excluding the results reported from
(Finkel and Manning, 2009) who design their
own handcrafted features. These features include
word-level features such as surrounding words
(and POS tags), word n-grams, bag-of-words and
word patterns 1. For span-level features, we use
capitalization patterns inside a span and indicators
for bigrams and trigrams in a span, as well as cap-
italization patterns in 3-word windows before and
after the span, inspired by (Sarawagi and Cohen,
2005). In GENIA dataset, we also include Brown
cluster features learned on PubMed abstracts, fol-
lowing (Finkel and Manning, 2009).

For the neural model of FOFE, it was trained us-
ing the same embeddings as our neural segmental
hypergraph.

2.3 Hyperparameters

Table 3 lists the hyperparameters that were used
for training our neural segmental hypergraph in
ACE and GENIA datasets.

2.4 Effect of Length Restriction

We enumerate the possible lengths between [4, 20]
to see how it affect the performance. Experiments
are conducted in ACE04 and GENIA. As shown in

1Full descriptions of features can be found in their original
paper (Lu and Roth, 2015)



ACE-2004 (TEST) ACE-2005 (TEST)
Overlapping Non-Overlapping

w/s
Overlapping Non-Overlapping

w/s
P R F1 P R F1 P R F1 P R F1

Lu and Roth (2015) 72.5 52.4 60.8 72.5 65.0 68.6 460 68.1 52.6 59.4 64.1 65.1 64.6 503
Muis and Lu (2017) 72.1 55.3 62.6 74.1 65.5 69.5 251 70.4 55.0 61.8 67.2 63.4 65.2 253
SH (c=6) 78.2 65.6 71.3 80.0 68.0 73.5 263 80.2 68.3 73.8 74.8 70.0 72.3 248
SH (c=n) 77.3 72.2 74.7 77.1 70.9 73.8 171 80.6 73.6 76.9 75.5 71.5 73.4 157

Table 2: Detailed results on ACE04 and ACE05, w/s: number of words decoded per second.

Hyperparameter ACE2004 ACE2005 GENIA
word embedding dim 100 100 100
pos embeddings dim 32 32 32
LSTM(word) hidden size 128 128 256
LSTM(span) hidden size 128 128 256
dropout 0.5 0.5 0.6
softmax margin β 2.5 2.5 3
l2 0.0001 0.0001 0.0001

Table 3: Hyperparameters of training neural seg-
mental hypergraph. dim: dimension

Figure 5: Effect of length restrictions

Figure 5, the performance improves consistently
as we increase the maximal length allowed for a
mention. Moreover, the effect becomes less signif-
icant as the length grows larger since the number
of long mentions that are additionally recalled also
decreases. Note that larger length could also intro-
duce more false positives, but our system can elim-
inate such negative effect, revealing the robustness
of our model.

2.5 Handling Overlapping Mentions

Table 2 shows the complete results of handling
overlapping mentions in both ACE04 and ACE05
datasets. Our neural segmental hypergraph yields
similar performance in these two datasets.

2.6 Detailed Results on CoNLL 2003

We made two sets of comparisons. The results can
be found in Table 4. First, we compare our models

Model F1

CRF (LINEAR) 83.8
CRF (CASCADED) 84.3
Semi-CRF (c=6) 85.3
Semi-CRF (c=n) 84.9
Lu and Roth (2015) 83.5
Muis and Lu (2017) 84.3
SH (HAND-CRAFTED, c=6) 85.2
SH (HAND-CRAFTED, c=n) 84.6
SH (HAND-CRAFTED, SM, c=6) 85.3
SH (HAND-CRAFTED, SM, c=n) 84.8
SH (c=6) 89.6
SH (c=n) 89.2
SH (c=6) + char 90.5
SH (c=n) + char 90.2
Collobert et al. (2011) 88.7
Collobert et al. (2011) ∗ 89.6
Huang et al. (2015) ∗ 90.1
Chiu and Nichols (2016) 90.9
Chiu and Nichols (2016) ∗ 91.6
Lample et al. (2016) 90.9
Ma and Hovy (2016) 91.2
Xu et al. (2017) 90.7
Strubell et al. (2017) 90.5

Table 4: CoNLL-2003 NER results on English
portion. Models with ∗ indicates that they’re
learned with external features excluding pre-
trained embeddings.

with previous baselines with the same handcrafted
features. We find that our segmental hypergraph
achieves similar performance compared to the best
model semi-CRF. The length restriction is benefi-
cial in this dataset (unlike ACE and GENIA) since
most mentions are very short.

In the second set, we compared our model with
recent neural network based models. We also in-
clude some neural models that take advantage of
external features in the list. Our neural segmental
hypergraph achieves competitive results compared
with other approaches and it could potentially be
improved if external features are considered.
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