
A Doubly Stochastic Gradient

To derive doubly stochastic gradient for equation
(5), we first denote (5) as J(Θ) with Θ = {P,Q}
and resolve the expectation form as:

J(θ) = Ezik∼π(·|C̄t)[log L̄(zjl | zik)]

=
∑
k

π(zik | C̄t) log L̄(zjl|zik).

Denote Θ = {P,Q} as the parameter set for pol-
icy π. The gradient with respect to Θ should be:
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Accordingly, if we conduct typical stochastic gra-
dient ascent training on J(Θ) with respect to Θ
from samples zik with a learning rate η, the up-
date formula will be:

Θ = Θ + η log L̄(zjl | zik)
∂ log π(zik | C̄t)

∂Θ
.

However, the collocation log likelihood should al-
ways be non-positive: log L̄(zjl | zik) ≤ 0.
Therefore, as long as the collocation log likelihood
log L̄(zjl | zik) is negative, the update formula is
to minimize the likelihood of choosing zik, despite
the fact that zik may be good choices. On the other
hand, if the log likelihood reaches 0, according to
(4), it indicates:

log L̄(zjl | zik) = 0⇒ L̄(zjl | zik) = 1

⇒ UTzikVzjl →∞, UTzikVzuv →∞, ∀zuv,

which leads to computational overflow from an in-
finity value.


