A Appendices

A.1 Survey of existing vision-Language Datasets and Comparison with VLQA

There are several datasets proposed in recent years to benchmark a variety of vision-language tasks. We provide the list of such datasets and comparison with our dataset in Table 5 based on following attributes;

1. **Dataset** name with corresponding url of dataset website/publication is available.

2. **Modality** states which of the following components each dataset has; I (Images), T (Text as a QA mechanism), T+ (Additional Textual Context), K (Additional Knowledge required). VLQA dataset has all four components, standing out from the rest of the datasets except TQA, which has a different objective of textbook-style learning. This makes VLQA task harder than other existing datasets, which we believe will be a driver for development of more advanced AI models.

3. **Visual Modality Classification** describes the nature of visuals incorporated for a dataset which are categorized in 3 major kinds; Natural (everyday objects and scenes), Synthetic (artificially/program generated or templated figures) or Diagrams (imagery representing complex relationships between multiple interrelated objects or phenomena). Our dataset includes all three kinds of visuals aiming at developing generic vision-language reasoning system. However, we provide this classification as a part of our annotations for researchers interested in advancements specific to a particular kind of visual.

4. **Textual Modality Classification** describes the nature of language component incorporated for a dataset. Most commonly used texts are in the form of Question, Caption, Sentence with exceptions of a Lesson and a Paragraph in TQA and VLQA respectively.

5. **Task** represents the broad categorization defined by the NLP and Computer Vision community for each vision-language problem. Most tasks are in the form of question answering, popularly known as VQA. Additionally, if the task focuses on a particular reasoning skill needed to solve the dataset (e.g. counting, spatial reasoning, understanding text within images) or requires a domain specific knowledge, (charts, science, geometry, commonsense or world knowledge) is mentioned alongside.

6. **Task Types** indicates whether a task can be solved as a Classification, Text generation or a Ranking problem. Classification tasks are commonly formed as a Multiple Choice (MC) or N-class classification. Open Ended (OE) answers (as strings or numeric) and Captions are standard mechanisms to evaluate text generation style tasks. Vision-language task for ShapeWorld is the only one which employs Scoring mechanism to represent confidence level in range [0,1].

A.2 Dataset Creation Pipeline

Figure 6 illustrates the complete dataset creation pipeline. We divide overall process in 3 main stages- Data Collection, Annotation and Quality Control which is explained below;

A.2.1 Data Collection and Post-processing

VLQA task requires <Image, Passage, Question, AnswerChoices> for each item in the corpus. To curate this dataset, we rely on data collection in two ways; One where variety of images are collected through crawling scripts that uses keyword search, existing APIs (flickr, twitter, newspapers, wikipedia, infographic websites etc.), images collected from documents and encyclopedias, which we refer to as primary data source. Then we manually find the relevant textual information in the context of the image and create questions based on it. We also tried generating templated images (like bar chart, pie chart, scatter plot etc.) from the tabular data obtained from CIA ‘world factbook’ and WikiTables dataset. In the secondary data based method, we directly import items from human psychometric tests, exercises from school textbooks/handouts or existing vision-language datasets and then modify it in a way so that it fits the VLQA task. The data collection process included writing crawling/scraping scripts followed by combination of manual and automated search and fix such as,

- replacing given textual/visual data with equivalent visual/textual counterparts respectively
- adding/removing partial information to/from text or visuals so that image and text do not contain identical information
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Modality Classification</th>
<th>Modality</th>
<th>Task Type</th>
<th>Task (Domain)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>T</td>
<td>T+</td>
</tr>
<tr>
<td>Clevr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COCO-BISON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COCO-QA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept.Caption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CountQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAQUAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FigureQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMIQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HowManyQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAFQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memex-QA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSRVTT-QA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLVRv1/v2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenImagesV6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shapes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ShapeWorld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNLI-VE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TallyQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDIUC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TextVQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vis.Genome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vis.Madlibs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vis.7W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vis.Dialogue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VizWiz-Priv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQAv1 Abs./Real</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQAv2/CP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAT2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI2 Geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI2 Mercury</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI2 ScienceQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI2D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBVQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KVQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKVQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKVQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TQA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLQA (Our)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Survey of existing vision-Language Datasets and Comparison with VLQA
• creating factual or hypothetical situations around images

Then we standardize all collected information using above methods as multiple choice question-answers (MCQs) and get the initial version of the dataset. Our dataset includes all three kinds of visuals—Natural (everyday objects and scenes), Synthetic (artificially/program generated or templated figures) or Diagrams (imagery representing complex relationships between objects or phenomena). Each item in the VLQA dataset involves a considerable amount of text in passage, question and answer choices formed of diverse vocabulary of 33259 unique tokens. Also, these texts can involve facts, imaginary scenarios or their combination making it more realistic for real-world scenarios. This is how we compiled a large number of diverse items for the VLQA dataset in order to develop a generic vision-language reasoning system.

A.2.2 Annotation

All data items obtained from primary sources require annotation as questions are created manually. For items obtained through secondary methods, annotation is required only if originally imported modalities were perturbed. Our crowd worker interface was designed using Python-Flask and deployed on a local server. The data entered by annotators is then logged into Comma Separated Value (CSV) files in a structured format. Annotators were clearly instructed (as per figure 7) about the annotation procedure and it was known to them that exactly one answer choice is correct for each item in our dataset. During first round of annotations, annotators were allowed to reject bad samples based on following two things; first, image and passage must not represent identical information and second, a question must not be answerable without looking at image and passage by marking it ambiguous as shown in Figure 8.

A.2.3 Quality Control and Bias Mitigation

Since we focus on the task of joint reasoning, we have to ensure that all our data items must use both image and passage. For the quality control purposes, we want to remove the samples which can be answered correctly by the state-of-the-art models in the absence of one of the modalities due to underlying bias it has learned from the training data. Therefore, we create 3 baselines—question-only (simply takes Q and predicts answer from choices A), passage-only (considers P as a context, takes Q and predicts answer from choices A) and image-only (considers I as a context, takes Q and predicts answer from choices A). We get predictions for whole data using these baselines. We repeat this experiment for 3 times by shuffling answer choices with a fixed seed. If a question can

5https://flask.palletsprojects.com/en/1.1.x/
Figure 7: 3-fold instructions for annotators Generic Instructions, Annotation Instructions and Verification Instructions.

Figure 8: Annotation View is used for first time labelling of dataset items. <I, P, Q, A> will be rendered in the UI after initial dataset formation. User has to determine the correct choice, categorize item based on knowledge type, rate for hardness and report ambiguity (if any).
Figure 9: Verification View is used as a mechanism for inter-annotator agreement about the ground-truth label. \(<I, P, Q, A, L>\) will be rendered in the UI post image-only and text-only baseline filtering. User checks for the correctness of label, rate for hardness and report ambiguity (if any).

be answered correctly by any baseline in all trials. We remove such samples. Performance for these baselines is reported in Table 3. The poor performance of these baselines indicate that the VLQA dataset requires models to jointly understand both image and text modalities.

Finally, we perform another round of manual quality check. We instruct workers to first try to answer a question just based on images and then try to answer a question based on only using text passage. If a question can be answered using a single modality, we suggest annotators to mark the checkbox as shown in Figure 9. Finally, we look over all bad samples and either provide a fix or remove, on a case-by-case basis.

We initially curated \(\sim 12000\) image-passage-qa pairs. During the annotation process, \(\sim 700\) were reported ambiguous, out of which we removed \(\sim 500\) and remaining \(\sim 200\) were modified and added back. By quality check process through baselines, we removed another \(\sim 1900\) samples. In the verification stage, we further removed \(\sim 350\) samples, and ended up with a dataset of 9267 samples eventually. Two rejected examples can be seen in Figure 10, with explanation of reason for removal.

Figure 10: Example of 2 rejected VLQA samples with explanation for rejection.
A.3 Format of Annotations provided for VLQA Dataset and explanation of each field

```json
{
    "qid": 1,
    "images": [1.png, 2.png, ...],
    "multiple_images": True/False,
    "passage": "This is a sample text passage."
    "question": "Is this a sample question?",
    "answer_choices": ["choice0", "choice1", "choice2", "choice3"],
    "answer": 0/1/2/3,
    "image_type": "Natural"/"Templated"/"Freeform",
    "image_subtype": "Bar"/"Pie"/..,
    "answer_type": "4way_text",
    "multistep_inference": True/False,
    "reasoning_type": ["Deductive", "Math"],
    "ext_knowledge": True/False,
    "ext_knowledge_type": "Commonsense",
    "ext_knowledge_text": "This is external knowledge required."
    "ocrtokens": ["text", "tokens", "inside", "image"],
    "image_source": "http://www.image/obtained/from/url/xyz",
    "passage_source": "wikipedia",
    "difficulty_level": "hard"/"easy"/"moderate",
    "split": "train"/"test"/"val"
}
```

- **qid**: Unique identifier for the item from 1 to 9267
- **images**: Visual modality for the dataset item as a list of image file names, which will be assigned unique identifiers [0],[1],[2],... and composed as a single file by merging (in order left to right)
- **multiple_images**: Boolean field suggesting whether or not an item has multiple images
- **passage**: Textual modality for the dataset item, typically consisting of 1-5 sentences.
- **question**: Question in natural language aiming to assess joint reasoning capability of a person/model
- **answer_choices**: Answer choices for a multiple choice question (MCQ) which can be short phrases, numeric, sentence, boolean or image (referred as a detection tag [0],[1],[2],..)
- **answer**: Integer 0-3 corresponding to answer choices suggesting the ground-truth label for a question
- **image_type**: Categorization of images based on whether they are “Natural”, “Templated” (structured) or “Freeform” (unstructured and not natural)
- **image_subtype**: “Templated” images are further classified in 20 subtypes listed as follows;
- **answer_type**: Classification of item based on 5 answer types listed as follows;
 1. **4-way text (4wT)**: [“text0”, “text1”, “text2”, “text3”]
 One need to select the correct alpha-numeric choice among 4 choices based on the scenario described in question, passage and image
 Consider 4 steps (I-IV) in a process which is represented as a combination of image and text, and jumbled up. One has to select the correct order of events from given choices.

3. **4-way image (4wI):** \[\text{“[1]”, “[2]”, “[0]”, “[3]”}\] where [x] are image detection tags
 One needs to select the correct image among 4 choices based on the scenario described in question and passage. Images are referred through detection tags [0],[1],[2],[3].

4. **2-way image (2wI):** \[\text{“[1]”, “[0]”}\] where [x] are image detection tags
 One needs to select the correct image among 2 choices based on the scenario described in question and passage. Images are referred through detection tags [0],[1].

5. **Binary Classification (Bin):** \[\text{“True”, “False”} \text{ or } \text{“No”, “Yes”}\]
 One needs to determine whether or not the text in question is true or false with respect to the given visuo-linguistic context.

- **multistep inference:** Boolean field suggesting whether or not the question requires multiple inference steps to correctly answer the question

- **reasoning type:** A list of reasoning skills required to solve given question, most frequently observed types are listed as follows;
 1. “InfoLookup” (look for a specific information or conditional retrieval)
 2. “Temporal” (reasoning with respect to time)
 3. “Spatial” (reasoning with respect to space)
 4. “Deductive” (given a generic principle, deduce a conclusion for a specific case and vice-versa)
 5. “Abductive” (finding most plausible explanation with respect to given set of observations)
 6. “Mathematical” (arithmetic, trends, minimum/maximum, counting, comparison, complement, fractions, percentages etc.)
 7. “Logical” (conjunction, disjunction, logical negation, existential quantifiers etc.)
 8. “Causality” (cause-effect relationship)
 9. “Analogy” (comparison for the purpose of explanation or clarification, different from numerical comparison)
 10. “Verbal” (synonym/antonym, subclass/superclass, vocabulary, verbal negation etc.)

- **ext knowledge:** Boolean field suggesting whether or not the question requires any external knowledge beyond what is provided in visuo-linguistic context

- **ext knowledge type:** Classification of required external knowledge as follows;
 1. Commonsense: Facts about the everyday world, which most people know.
 2. Domain Specific knowledge: Knowledge acquired through formal study (we limit our domain specific knowledge to middle-school level)

- **ext knowledge text:** Manually written justification of required external knowledge

- **ocertokens:** List of OCR extracted tokens from images and manually corrected if erroneous, just in case some systems would like incorporate OCR based features

- **image source:** Source/Weblink from which image is retrieved (original image might be altered in some cases before using it for this dataset)

- **passage source:** Source/Weblink of passage (if retrieved from some source), empty if passage written manually

- **difficulty level:** Difficulty level of question, decided by majority annotator opinion classified as "Hard", "Easy" or "Moderate"

- **split:** ”Train”, ”Test” or ”Val” partition, whichever the sample belongs to
A.4 Additional Dataset Samples

We provide more examples from the VLQA dataset to visualize the diversity offered by the corpus and importance of joint reasoning to derive conclusions for real-world scenarios.

Text Passage (P)

One can see the candle through [0] but not through [1].

Question (Q)

Which scientific phenomena best supports the passage?

a. Cardboard box absorbs light rays before it reaches the candle
b. Light always travels in straight line
c. Light rays can bend
d. Cardboard box reflects light rays before it reaches the candle

d. Cardboard box reflects light rays before it reaches the candle.

Answer Choices (A)

Which of the following is not correct about Exhalation?

a. Ribs move inside.
b. Diaphragm moves up.
c. Air is drawn out.
d. Ribs move outside.

a. Yes

Image (s) (I)

![Image](image1.png)

Figure [0] demonstrates the flow of air in inhalation process when we breathe. Inhalation and Exhalation are complementary processes in breathing.

Text Passage (P)

Figure [0] shows the changing levels of Lake Chad in Saharan North Africa. Today, its level is about the same as it was in AD 1000.

Question (Q)

What is the depth of Lake Chad today?

a. About 2m
b. About 15m
c. About 50m
d. It disappeared completely

Answer Choices (A)

Which subway station Julio, Maria and Don could meet based on the provided information in the passage?

a. Park
b. Unity
c. Market
d. Emerald

Image (s) (I)

![Image](image2.png)

Figure [0] represents the abstract map of a city, where circles represent the subway stations and the edge connecting them represents the average travel time between two stations. Julio, Maria and Don plans to meet-up at one of the subway stations today and they live in Silver, Lincoln and Nobel respectively. However, no one wants to travel for more than 15 minutes.

Text Passage (P)

Alice and Bob are playing a game where turn-by-turn a person removes a block from the table. Starting from configuration in [0], Bob takes the first turn and removes the Purple block.

Question (Q)

Answer Choices (A)

Additional Dataset Samples - Continued

Image(s) (I)

Text Passage (P)
Rescue Helicopters use the concept of Balanced forces to stabilize on water as shown in [0]. Forces in opposite directions can be Balanced out.

Question (Q)
Which of the following is a correct pair of balanced forces for a rescue helicopter?

Answer Choices (A)
- a. Lift and thrust
- b. Drag and gravity
- c. Lift and gravity
- d. Friction and gravity

Image(s) (I)

Text Passage (P)
Objects and liquids float on liquids of higher density and sink through liquids of lower density.

Question (Q)
Based on [0], which of the following is true for density of water d(W) and density of Lego brick d(B)?

Answer Choices (A)
- a. d(W) > d(B)
- b. d(W) < d(B)
- c. d(W) = d(B)
- d. Cannot be answered from [0]

Image(s) (I)

Text Passage (P)
In the recent report, World Wildlife Fund (WWF) declared Chinstrap Penguin as an endangered animal and predicted that it might extinct in near future.

Question (Q)
Which species in the aquatic food web shown in [0] most likely to be affected by outcome of this report?

Answer Choices (A)
- a. Kill
- b. Phytoplanktons
- c. Seal
- d. None

Image(s) (I)

Text Passage (P)
Figure [0] represents the electric vehicle sales share of different companies. A blog published on Tesla’s website confirm that Tesla has officially acquired VW.

Question (Q)
How much share of the electric vehicles market will be dominated by Tesla after this acquisition?

Answer Choices (A)
- a. 40%
- b. 55%
- c. 45%
- d. 50%

Image(s) (I)

Text Passage (P)
[0] contains information about the railway network in various cities. Tokyo and Kyoto are Asian cities. London and Paris are in Europe. Los Angeles and Washington DC are popular American cities.

Question (Q)
Which continent has the smallest total railway route?

Answer Choices (A)
- a. Asia
- b. Africa
- c. North America
- d. Europe

Image(s) (I)

Text Passage (P)
Consider two cars carrying large magnets on top of them as per [0] and [1]. Red indicates north pole whereas blue indicates south pole. When you place the north pole of one magnet near the south pole of another magnet, they are attracted to one another. When you place like poles of two magnets near each other, they repel.

Question (Q)
Choose the correct statement about [0] and [1] based on the above information.

Answer Choices (A)
- a. [0] will repel, [1] will attract
- b. [0] will attract, [1] will repel
- c. both [0] and [1] will attract
- d. both [0] and [1] will repel
B Supplemental Material

Computing Infrastructure All experiments are done over Tesla V100-PCIE-16GB GPU.

B.1 Converting Visual COPA dataset into Image-Image Entailment Task

VCOPA dataset contains visual questions with three images- one labelled as premise (P) image, and other two as alternatives (H1 & H2). The task is to identify plausible alternative image related to the premise. We convert VCOPA item into Image-Image entailment task as 2-way classification as below;

Given VCOPA sample:

\(<P, H1, H2>\mid label: H1 (i.e. plausible choice)\)

Converted Image-Image Entailment samples:

\(<P, H1> \mid label: Entailment\)

\(<P, H2> \mid label: Contradiction\)

Then a custom 3-layer network is trained to maximize the above classification.

B.2 Converting Visual COPA dataset into Text-Image Entailment Task

Similar to above, we convert VCOPA item into Text-Image entailment with additional Image Captioning module.

Given VCOPA sample:

\(<P, H1, H2> \mid label: H1 (i.e. plausible choice)\)

Using the Image Captioning module, get a caption for P i.e. \(C_P\), while keeping H1 and H2 in the image format itself. Converted Text-Image Entailment samples:

\(<C_P, H1> \mid label: Entailment\)

\(<C_P, H2> \mid label: Contradiction\)

Then a custom 3-layer network is trained to maximize the above classification.

B.3 Model Parameters

Detailed summary of various components implemented for this paper - Brief description, Reference Code Link and Parameters provided in Table 6.
<table>
<thead>
<tr>
<th>Usage</th>
<th>Ref. Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Check</td>
<td></td>
</tr>
<tr>
<td>Q-only: RoBERTA</td>
<td>RoBERTa large + RACE Ft. + ARC Ft. - Predict on VLQA <Q,A> <Link> LR=1e-5, BS=16, WD=0.1, LRD=Linear, EP=4, WR=0.06 Further ft. on ARC with BS=8, EP=4, LR=1e-5</td>
</tr>
<tr>
<td>P-only: ALBERT</td>
<td>ALBERT-xxl + RACE Ft. - Predict on VLQA <P,Q,A> <Link> ALBERT-xxl (v2) ft. on RACE with LR=1e-5, BS=32, DR=0</td>
</tr>
<tr>
<td>I-only: LXMERT</td>
<td>LXMERT + VQA Ft. - Predict on VLQA <I,Q,A> <Link> LXMERT ft. on VQA with BS=32, LR=5e-5, EP=4</td>
</tr>
<tr>
<td>Pre-trained VL</td>
<td></td>
</tr>
<tr>
<td>VL-BERT</td>
<td>VL-BERT + VQA Ft. + VLQA Ft. <I,P+Q,A> <Link> VL-BERT ft. on VQA with EP=20, BS=256, LR=1e-4, WD=1e-4 Ft. on VLQA with BS=16, LR=2e-5, EP=15</td>
</tr>
<tr>
<td>ViLBERT</td>
<td>ViLBERT + VQA Ft. + VLQA Ft. <I,P+Q,A> <Link> ViLBERT ft. on VQA with BS=32, LR=1e-5, EP=20, WR=0.1 Ft. on VLQA with BS=32, LR=1e-5, EP=10</td>
</tr>
<tr>
<td>LXMERT</td>
<td>LXMERT + VQA Ft. + VLQA Ft. <I,P+Q,A> <Link> LXMERT ft. on VQA with BS=32, LR=5e-5, EP=4 Ft. on VLQA with BS=16, LR=5e-5, EP=8</td>
</tr>
<tr>
<td>Proposed HOLE</td>
<td></td>
</tr>
<tr>
<td>Text Entailment</td>
<td>RoBERTa large + MNLI Ft. <Link> RoBERTa Large ft. on MNLI with LR=1e-5, BS=16, WD=0.1, LRD=Linear, EP=10, WR=0.06</td>
</tr>
<tr>
<td>I-T Entailment</td>
<td>Bilateral Multi-Perspective Matching (BiMPM) on SNLI VCOPA dataset converted into Image-Image Entailment Trained custom 3-layer network for 2-class classification <Link> –</td>
</tr>
<tr>
<td>I-I Entailment</td>
<td>VCOPA dataset converted into Text-Image Entailment + Captioning Trained custom 3-layer network for 2-class classification <Link> LR=1e-5, BS=16, OP=Adam, WD=0.1, EP=10</td>
</tr>
<tr>
<td>T-I Entailment</td>
<td>LXMERT + VQA Ft. + VLQA Ft. ALBERT-xxl + RACE Ft. - Predict on VLQA <P,Q> to get A’ Generate Q’ as “Where is A’?” and substitute A’ with above string LXMERT + VQA Ft. - Predict on VLQA <I,Q’,A¿> <Link> ALBERT-xxl (v2) ft. on RACE with LR=1e-5, BS=32, DR=0 Link LXMERT ft. on VQA with BS=32, LR=5e-5, EP=4</td>
</tr>
</tbody>
</table>

Table 6: Links to the reference code used for the paper and relevant parameters