Short Introduction

1 Requirements

o GNU/Linux (Ubuntu 18.04 is recommended)

o Python 3.6 or newer

o CMake 2.8 or newer

e Modern C++ compiler that supports C++14

o Extra C++ Libraries (Optional). These libraries are placed in directory third-party/ .

— C+4+ Boost Library 1.65 or newer
— pybind11
— Google sparsehash-c11

Run following command in project root to install python packages

virtualenv --python $(which python3) venv
source venv/bin/activate

pip install -r requirements.txt

In this version of the hrg parser, it uses a simple weighted model (similar to PCFG) to
find the derivation in the forest with highest score. The neural version of the decoder
part will be released soon.

2 Induce Grammars
Run following command in project root to induce grammars from the sample data.

1| rules/extract_rules

Two grammars will be generated in directory output/ .

All grammars are of the form output/<name>.<date>.<graph>.<type> .

e name is the name of the grammar (grammars named ‘std’ are used in our paper)
e type can be ‘construction’ or ‘lexicalized’

<grammar-dir>/train.mapping.txt* are grammar files. <grammar-dir>/train.graphs.txt
are eds graphs in the format which can be read by our C++ parser.
We also provide the grammars induced from the whole DeepBank1.1 training set.

e data/construction.shrg.anonym is constructional grammars.

o data/lexicalized.shrg.anonym is lexicalized grammars.



A W N =

a b~ W N

g b~ W N R

3 Build HRG Parser

Run following command in project root to build HRG parser:

bash build_parser

# Or run following script to build parser with python interface.
# <Python.h> i1s required in the host system.

bash build_parser_with_python # optional

Two files will be generated in directory build .

build/shrg_parser : the main entry of parser

build/pyshrg.*.so : the compiled python library file. (optional)

The python library file provides many APIs for manipulating the derivation forest.
See parser/src/python/interface.cpp for more information.

4 Run Examples

Available parser types:

tree_vi/best, tree_vi/naive, tree_vi/terminal_first
tree_index_vi/best, tree_index_vil/naive, tree_index_v1/terminal_first
tree_v2/best, tree_v2/naive, tree_v2/terminal_first
tree_index_v2/best, tree_index_v2/naive, tree_index_v2/terminal_first

linear .

vl means to keep duplicated active items during parsing.

v2 means to reject duplicated active items during parsing. But the parser will expand all

active items in the derivation forest after parsing.
index means to use our indexing method.

best means to use tree decomposition with minimum width.
naive means to use naive tree decomposition.

terminal_first means to use a path decomposition described in our paper.
Run following command in project root:

If the python interface is compiled, we can use following command to run parser on standard

# shrg_parser <paser_type> <grammar_path> <graph_path>
build/shrg_parser \

tree_index_v2/best \
data/construction.shrg.anonym \
data/wsj.cpp.graphs

EDS format. (Remeber to copy build/pyshrg.*.so to rules/)

# Two new files ‘wsj.trees’ and ‘wsj.output™ will be generated
python3 rules/shrg_parser.py \

data/construction.shrg.anonym \
-P tree_index_v2/best \
-1 data/wsj.graphs \



-C data/grammar.config \
-0 Wsj

5 Note

Our implementation uses following two assumptions

1. The input graph contains at most 256 edges.
We use an explicit set of edges to represent subgraph instead of the boundary representa-
tion. More precisely, we use std::bitset<256> to reprenset a subgraph, which is efficient
enough for graphs in DeepBank1.1.

Note that different representations of subgraphs only affect the parsing time. The number
of successful/total item integrations should not be changed.

2. Any RHS of the productions of the input grammar contains at most 16 nodes.
As a result, the number of external nodes of any partially recognized subgraphs is at most
16 during parsing. We use std::array<std::uint8_t, 16> to reprenset the mappings
between boundary nodes.



	Requirements
	Induce Grammars
	Build HRG Parser
	Run Examples
	Note

