
Unlexicalized Transition-based Discontinuous Constituency Parsing

Maximin Coavoux1∗ , Benoı̂t Crabbé2,3, Shay B. Cohen1

1University of Edinburgh, ILCC
2Université Paris Diderot, Université Sorbonne Paris Cité, LLF

3Institut Universitaire de France (IUF)
{mcoavoux,scohen}@inf.ed.ac.uk

bcrabbe@linguist.univ-paris-diderot.fr

Abstract

Lexicalized parsing models are based on the
assumptions that (i) constituents are organized
around a lexical head and (ii) bilexical statistics
are crucial to solve ambiguities. In this paper,
we introduce an unlexicalized transition-based
parser for discontinuous constituency struc-
tures, based on a structure-label transition
system and a bi-LSTM scoring system. We
compare it with lexicalized parsing models
in order to address the question of lexical-
ization in the context of discontinuous con-
stituency parsing. Our experiments show that
unlexicalized models systematically achieve
higher results than lexicalized models, and
provide additional empirical evidence that lex-
icalization is not necessary to achieve strong
parsing results. Our best unlexicalized model
sets a new state of the art on English and
German discontinuous constituency treebanks.
We further provide a per-phenomenon analysis
of its errors on discontinuous constituents.

1 Introduction

This paper introduces an unlexicalized parsing
model and addresses the question of lexicaliza-
tion, as a parser design choice, in the context of
transition-based discontinuous constituency pars-
ing. Discontinuous constituency trees are con-
stituency trees where crossing arcs are allowed
in order to represent long-distance dependencies,
and in general phenomena related to word order
variations (e.g., the left dislocation in Figure 1).

Lexicalized parsing models (Collins, 1997;
Charniak, 1997) are based on the assumptions
that (i) constituents are organized around a lexical

∗Work partly done at Université Paris Diderot.

head and (ii) bilexical statistics are crucial to solve
ambiguities. In a lexicalized Probabilistic Context-
Free Grammar (PCFG), grammar rules involve
nonterminals annotated with a terminal element
that represents their lexical head, for example:

VP[saw] −→ VP[saw] PP[telescope].

The probability of such a rule models the likeli-
hood that telescope is a suitable modifier for saw.

In contrast, unlexicalized parsing models re-
nounce modeling bilexical statistics, based on
the assumptions that they are too sparse to be
estimated reliably. Indeed, Gildea (2001) observed
that removing bilexical statistics from Collins’
(1997) model lead to at most a 0.5 drop in F-score.
Furthermore, Bikel (2004) showed that bilexical
statistics were in fact rarely used during decoding,
and that when used, they were close to that of back-
off distributions used for unknown word pairs.

Instead, unlexicalized models may rely on
grammar rule refinements to alleviate the strong
independence assumptions of PCFGs (Klein and
Manning, 2003; Matsuzaki et al., 2005; Petrov
et al., 2006; Narayan and Cohen, 2016). They
sometimes rely on structural information, such as
the boundaries of constituents (Hall et al., 2014;
Durrett and Klein, 2015; Cross and Huang, 2016b;
Stern et al., 2017; Kitaev and Klein, 2018).

Although initially coined for chart parsers,
the notion of lexicalization naturally transfers to
transition-based parsers. We take lexicalized
to denote a model that (i) assigns a lexical head
to each constituent and (ii) uses heads of consti-
tuents as features to score parsing actions. Head
assignment is typically performed with REDUCE-
RIGHT and REDUCE-LEFT actions. Most proposals in
transition-based constituency parsing since Sagae
and Lavie (2005) have used a lexicalized transition
system, and features involving heads to score

73

Transactions of the Association for Computational Linguistics, vol. 7, pp. 73–89, 2019. Action Editor: Stephen Clark.
Submission batch: 9/2018; Revision batch: 11/2018; Published 4/2019.

c© 2019 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

 S
 ┌─────────┴────┬───────┐
 VP │ │
 ┌───────────┴───────────── │ ──┐ │
 NP NP │ │
 ┌──────┼───────────┬─────────┐ │ │ │
 DT JJ JJ NN PRP VBZ .
 │ │ │ │ │ │ │
 An excellent environmental actor he is .

Figure 1: Tree from the Discontinuous Penn Treebank
(Evang and Kallmeyer, 2011).

actions (Zhu et al., 2013; Zhang and Clark, 2011,
2009; Crabbé, 2014; Wang et al., 2015, among
others), including proposals for discontinuous
constituency parsing (Versley, 2014a; Maier,
2015; Coavoux and Crabbé, 2017a). A few recent
proposals use an unlexicalized model (Watanabe
and Sumita, 2015; Cross and Huang, 2016b; Dyer
et al., 2016). Interestingly, these latter models all
use recurrent neural networks (RNN) to compute
constituent representations.

Our contributions are the following. We intro-
duce an unlexicalized discontinuous parsing
model, as well as its lexicalized counterpart. We
evaluate them in identical experimental condi-
tions. Our main finding is that, in our experiments,
unlexicalized models consistently outperform lex-
icalized models. We assess the robustness of this
result by performing the comparison of un-
lexicalized and lexicalized models with a second
pair of transition systems. We further analyze the
empirical properties of the systems in order to
better understand the reasons for this performance
difference. We find that the unlexicalized system
oracle produces shorter, more incremental deriva-
tions. Finally, we provide a per-phenomenon error
analysis of our best model and identify which types
of discontinuous constituents are hard to predict.

2 Related Work

Several approaches to discontinuous constituency
parsing have been proposed. Hall and Nivre (2008)
reduces the problem to non-projective dependency
parsing, via a reversible transformation, a strategy
developed by Fernández-González and Martins
(2015) and Corro et al. (2017). Chart parsers are
based on probabilistic Linear Context-Free Re-
writing Systems (LCFRS) (Evang and Kallmeyer,
2011; Kallmeyer and Maier, 2010), the Data-
OrientedParsing (DOP) framework (vanCranenburgh
and Bod, 2013; van Cranenburgh et al., 2016), or
pseudo-projective parsing (Versley, 2016).

Some transition-based discontinuous constit-
uency parsers use the swap action, adapted from
dependency parsing (Nivre, 2009) either with an
easy-first strategy (Versley, 2014a,b) or with a
shift-reduce strategy (Maier, 2015; Maier and
Lichte, 2016; Stanojević and Garrido Alhama,
2017). Nevertheless, the swap strategy tends to
produce long derivations (in number of actions) to
construct discontinuous constituents; as a result,
the choice of an oracle that minimizes the number
of swap actions has a substantial positive effect in
accuracy (Maier and Lichte, 2016; Stanojević and
Garrido Alhama, 2017).

In contrast, Coavoux and Crabbé (2017a)
extended a shift-reduce transition system to handle
discontinuous constituents. Their system allows
binary reductions to apply to the top element in the
stack, and any other element in the stack (instead
of the two top elements in standard shift-reduce
parsing). The second constituent for a reduction is
chosen dynamically, with an action called GAP that
gives access to older elements in the stack and can
be performed several times before a reduction. In
practice, they made the following modifications
over a standard shift-reduce system:

1. The stack, that stores subtrees being con-
structed, is split into two parts S and D;

2. reductions are applied to the respective tops
of S and D;

3. the GAP action pops an element from S and
adds it to D, making the next element of S
available for a reduction.

Their parser outperforms swap-based systems.
However, they only experiment with a linear clas-
sifier, and assume access to gold part-of-speech
(POS) tags for most of their experiments.

All these proposals use a lexicalized model,
as defined in the introduction: they assign heads
to new constituents and use them as features
to inform parsing decisions. Previous work on
unlexicalized transition-based parsing models
only focused on projective constituency trees
(Dyer et al., 2016; Liu and Zhang, 2017). In
particular, Cross and Huang (2016b) introduced a
system that does not require explicit binarization.
Their system decouples the construction of a tree
and the labeling of its nodes by assigning types
(structure or label) to each action, and alternating
between a structural action for even steps and

74

Structural actions Input Output

SHIFT 〈S, D, i, C〉 ⇒ 〈S|D, {i+ 1}, i+ 1, C〉
MERGE 〈S|Is0 , D|Id0

, i, C〉 ⇒ 〈S|D, Is0 ∪ Id0
, i, C〉

GAP 〈S|Is0 , D, i, C〉 ⇒ 〈S, Is0 |D, i, C〉

Labeling actions Input Output

LABEL-X 〈S, Id0
, i, C〉 ⇒ 〈S, Id0

, i, C ∪ {(X, Id0
)}〉

NO-LABEL 〈S, Id0
, i, C〉 ⇒ 〈S, Id0

, i, C〉

Table 1: The ML-GAP transition system, an unlexicalized transition system for discontinuous constituency parsing.

labeling action for odd steps. This distinction
arguably makes each decision simpler.

3 Transition Systems for Discontinuous
Parsing

This section introduces an unlexicalized tran-
sition system able to construct discontinuous
constituency trees (Section 3.1), its lexicalized
counterpart (Section 3.2), and corresponding
oracles (Section 3.3).

3.1 The Merge-Label-Gap Transition System
The Merge-Label-Gap transition system (hence-
forth ML-GAP) combines the distinction between
structural and labeling actions from Cross and
Huang (2016b) and the SHIFT-REDUCE-GAP (SR-GAP)
strategy with a split stack from Coavoux and
Crabbé (2017a).

Like the SR-GAP transition system, ML-GAP is
based on three data structures: a stack S, a double-
ended queue (dequeue) D, and a buffer B. We
define a parsing configuration as a quadruple
〈S,D, i, C〉, where S and D are sequences of
index sets, i is the index of the last shifted token,
and C is a set of instantiated discontinuous
constituents. We adopt a representation of instan-
tiated constituents as pairs (X, I), where X
is a nonterminal label, and I is a set of token
indexes. For example, the discontinuous VP in
Figure 1 is the pair (VP, {1, 2, 3, 4, 6}), because it
spans tokens 1 through 4 and token 6.

The ML-GAP transition system is defined as a
deduction system in Table 1. The available actions
are the following:

• The SHIFT action pushes the singleton {i+1}
onto D.

• The MERGE action removes Is0 and Id0 from
the top of S and D, computes their union
I = Is0 ∪ Id0 , transfers the content of D to

S L

S′

SHIFT|MERGE

GAP

GAP

MERGE

LABEL-X|NO-LABEL

Figure 2: Action sequences allowed in ML-GAP. Any
derivation must be recognized by the automaton.

S and pushes I onto D. It is meant to
construct incrementally subsets of tokens that
are constituents.

• The GAP action removes the top element from
S and pushes it at the beginning of D.
This action gives the system the ability to
construct discontinuous trees, by making
older elements inS accessible to a subsequent
merge operation with Id0 .

• LABEL-X creates a new constituent labeled X
whose yield is the set Id0 at the top of D.

• NO-LABEL has no effect.

Actions are subcategorized into structural
actions (SHIFT, MERGE, GAP) and labeling actions
(NO-LABEL, LABEL-X). This distinction is meant to
make each single decision easier. The current state
of the parser determines the type of action to be
predicted next, as illustrated by the automaton in
Figure 2. When it predicts a projective tree, the
parser alternates structural and labeling actions
(states S and L). However, it must be able to
perform several GAP actions in a row to pre-
dict some discontinuous constituents. Since the
semantics of the GAP action, a structural action,

75

Structural action Stack – Dequeue – Buffer Labeling action

An excellent environment actor he is
SH⇒ {An}d0

excellent environment actor he is ⇒ NO-LABEL⇒
SH⇒ {An}s0 {excellent}d0

environment actor he is ⇒ NO-LABEL⇒
MERGE⇒ {An excellent}d0

environment actor he is ⇒ NO-LABEL⇒
SH⇒ {An excellent}s0 {environment}d0

actor he is ⇒ NO-LABEL⇒
MERGE⇒ {An excellent environment}d0

actor he is ⇒ NO-LABEL⇒
SH⇒ {An excellent environment}s0 {actor}d0

he is ⇒ NO-LABEL⇒
MERGE⇒ {An excellent environment actor}d0

he is ⇒ LABEL-NP⇒
SH⇒ {An excellent environment actor}s0 {he}d0

is ⇒ LABEL-NP⇒
SH⇒ {An excellent environment actor}s1 {he}s0 {is}d0

⇒ NO-LABEL⇒
GAP⇒ {An excellent environment actor}s0 {he}d1

{is}d0
⇒

MERGE⇒ {he}s0 {An excellent environment actor is}d0
⇒ LABEL-VP⇒

MERGE⇒ {he An excellent environment actor is}d0
⇒ LABEL-S

Table 2: Example derivation for the tree in Figure 1 with the ML-GAP transition system.

is not to modify the top of D, but to make an
index set in S available for a MERGE, it must not
be followed by a labeling action. Each GAP action
must be followed by either another GAP or a MERGE

action (stateS′ in the automaton). We illustrate the
transition system with a full derivation in Table 2.

3.2 Lexicalized Transition System
In order to assess the role of lexicalization in
parsing, we introduce a second transition system,
ML-GAP-LEX, which is designed (i) to be lexicalized
and (ii) to differ minimally from ML-GAP.

We define an instantiated lexicalized dis-
continuous constituent as a triple (X, I, h)where
X is a nonterminal label, I is the set of terminals
that are in the yield of the constituent, and h ∈ I
is the lexical head of the constituent. In ML-GAP-
LEX, the dequeue and the stack contains pairs
(I, h), where I is a set of indices and h ∈ I is a
distinguished element of I .

The main difference of ML-GAP-LEX with ML-GAP

is that there are two MERGE actions, MERGE-LEFT

and MERGE-RIGHT, and that each of them assigns
the head of the new set of indexes (and implicitly
creates a new directed dependency arc):

• MERGE-LEFT: 〈S|(Is0 , hs0), D|(Id0
, hd0

), i, C〉
⇒ 〈S|D, (Is0 ∪ Id0

, hs0), i, C〉;

• MERGE-RIGHT:
〈S|(Is0 , hs0), D|(Id0

, hd0
), i, C〉

⇒ 〈S|D, (Is0 ∪ Id0
, hd0

), i, C}〉.

3.3 Oracles
In this work, we use deterministic static oracles.
We briefly describe an oracle that builds constit-
uents from their head outwards (head-driven

oracle) and an oracle that performs merges as
soon as possible (eager oracle). The latter can
only be used by an unlexicalized system.

Head-driven Oracle The head-driven oracle
can be straightforwardly derived from the oracle
for SR-GAP presented by Coavoux and Crabbé
(2017a). A derivation in ML-GAP-LEX can be
computed from a derivation in SR-GAP by (i)
replacing REDUCE-LEFT-X (resp. REDUCE-RIGHT-X)
actions by a MERGE-LEFT (resp. MERGE-RIGHT), (ii)
replacing REDUCE-UNARY-X actions by LABEL-X,
and (iii) inserting LABEL-X and NO-LABEL actions as
required. This oracle attaches the left dependents
of a head first. In practice, other oracle strategies
are possible as long as constituents are constructed
from their head outward.

Eager Oracle For the ML-GAP system, we use an
oracle that builds every n-ary constituent in a left-
to-right fashion, as illustrated by the derivation
in Table 2.1 This implicitly corresponds to a
left-branching binarization.

4 Neural Architecture

The statistical model we used is based on a Long
Short-Term Memory network (bi-LSTM) trans-
ducer that builds context-aware representations
for each token in the sentence (Kiperwasser
and Goldberg, 2016; Cross and Huang, 2016a).
The token representations are then fed as input
to (i) a tagging component for assigning POS tags
and (ii) a parsing component for scoring parsing

1The systems exhibit spurious ambiguity for constructing
n-ary (n > 2) constituents. We leave the exploration of
nondeterministic oracles to future work.

76

Contextual
embeddings

Representations
used as input
by parser

…… …… ……

Local
embeddings

D sg det N sg suj V sg root

c
x1

(Char bi-LSTM) (Char bi-LSTM)(Char bi-LSTM)

Auxiliary task
output (POS,
Number,
Function, etc)

c
x2 w

x3
c

x3

h(1,1)

h
x1

w
x2

h(2,2)

h(1,2)

h(2,1) h(2,3)

h(1,3)

h
x2

h
x3

w
x1

Figure 3: Bi-LSTM part of the neural architecture. Each word is represented by the concatenation of a standard
word-embedding w and the output of a character bi-LSTM c. The concatenation is fed to a two-layer bi-LSTM
transducer that produces contextual word representations. The first layer serves as input to the tagger (Section 4.2),
whereas the second layer is used by the parser to instantiate feature templates for each parsing step (Section 4.3).

actions.2 The whole architecture is trained end-to-
end. We illustrate the bi-LSTM and the tagging
components in Figure 3.

In the following paragraphs, we describe the ar-
chitecture that builds shared representations (Sec-
tion 4.1), the tagging component (Section 4.2),
the parsing component (Section 4.3), and the
objective function (Section 4.4).

4.1 Building Context-aware Token
Representations

We use a hierarchical bi-LSTM (Plank et al., 2016)
to construct context-aware vector representations
for each token. A lexical entry x is represented by
the concatenation hx = [wx; cx], where wx is a
standard word embedding and cx = bi-LSTM(x)
is the output of a character bi-LSTM encoder,
i.e., the concatenation of its last forward and back-
ward states.

We run a sentence-level bi-LSTM trans-
ducer over the sequence of local embeddings

2A more involved strategy would be to rely on Recurrent
Neural Network Grammars (Dyer et al., 2016; Kuncoro et al.,
2017). However, the adaptation of this model to discontinuous
parsing is not straightforward and we leave it to future work.

(hx1 ,hx2 , . . . ,hxn), to obtain vector representa-
tions that depend on the whole sentence:

(h(1), . . . ,h(n)) = bi-LSTM(hx1 ,hx2 , . . . ,hxn).

In practice, we use a two-layer bi-LSTM in or-
der to supervise parsing and tagging at different
layers, following results by Søgaard and Goldberg
(2016). In what follows, we denote the ith state of
the jth layer with h(j,i).

4.2 Tagger
We use the context-aware representations as input
to a softmax classifier to output a probability
distribution over part-of-speech (POS) tags for
each token:

P (ti = ·|xn1 ;θt) = Softmax(W(t) · h(1,i) + b(t)),

where W(t),b(t) ∈ θt are parameters.
In addition to predicting POS tags, we also pre-

dict other morphosyntactic attributes when they
are available (i.e., for the Tiger corpus) such
as the case, tense, mood, person, and gender,
since the POS tagset does not necessarily contain
this information. Finally, we predict the syntactic

77

functions of tokens, since this auxiliary task has
been shown to be beneficial for constituency
parsing (Coavoux and Crabbé, 2017b).

For each type of label l, we use a separate
softmax classifier, with its own parameters W(l)

and b(l):

P (li = ·|xn1 ;θt) = Softmax(W(l) · h(1,i) + b(l)).

For a given token, the number and types of
morphosyntactic attributes depend on its POS tag.
For example, a German noun has a gender and
number but no tense nor mood. We use a default
value (‘undef’) to make sure that every token has
the same number of labels.

4.3 Parser
We decompose the probability of a sequence of
actions am1 = (a1, a2, . . . , am) for a sentence xn1
as the product of probability of individual actions:

P (am1 |xn1 ;θp) =
m∏
i=1

P (ai|ai−11 , xn1 ;θp).

The probability of an action given a parsing con-
figuration is computed with a feedforward network
with two hidden layers:

o(1) = g(W(1) ·Φf (a
i−1
1 , xn1) + b(1)),

o(2) = g(W(2) · o(1) + b(2)),

P (ai|ai−11 , xn1) = Softmax(W(3) · o(2) + b(3)),

where

• g is an activation function (rectifier);

• W(i),b(i) ∈ θp are parameters;

• Φf is a function, parameterized by a feature
template list f , that outputs the concatenation
of instantiated features, for the configuration
obtained after performing the sequence of
action a(i−1)1 to the input sentence xn1 .

Feature templates describe a list of positions
in a configuration. Features are instantiated by
the context-aware representation of the token
occupying the position. For example, token i will
yield vector h(2,i), the output of the sentence-level
bi-LSTM transducer at position i. If a position
contains no token, the feature is instantiated by a
special trained embedding.

Feature Templates The two feature template
sets we used are presented in Table 3. The
BASE templates form a minimal set that extracts

Configuration:
〈S|(Is1 , hs1)|(Is0 , hs0), D|(Id1

, hd1
)|(Id0

, hd0
), i, C〉

Template set Token indexes

BASE max(Is1),min(Is0),max(Is0),
max(Id1

),min(Id0
),max(Id0

), i

+LEX BASE+ hd0
, hd1

, hs0 , hs1

Table 3: Feature template set descriptions.

7 indexes from a configuration, relying only on
constituent boundaries. The +LEX feature set adds
information about the heads of constituents at the
top of S and D, and can only be used together
with a lexicalized transition system.

4.4 Objective Function
The objective function for a single sentence xn1
decomposes in a tagging objective and a parsing
objective. The tagging objective is the negative
log-likelihood of gold labels for each token:

Lt(xn1 ;θt) = −
n∑
i=1

k∑
j=1

logP (ti,j |xn1 ;θt),

where k is the number of types of labels to predict.
The parsing objective is the negative log-

likelihood of the gold derivation, as computed by
the oracle:

Lp(xn1 ;θp) = −
m∑
i=1

logP (ai|ai−11 , xn1 ;θp).

We train the model by minimizing Lt + Lp
over the whole corpus. We do so by repeatedly
sampling a sentence, performing one optimization
step for Lt followed by one optimization step for
Lp. Some parameters are shared across the parser
and the tagger, namely the word and character
embeddings, the parameters for the character bi-
LSTM, and those for the first layer of the sentence
bi-LSTM.

5 Experiments

The experiments we performed aim at assessing
the role of lexicalization in transition-based
constituency parsing. We describe the data
(Section 5.1) and the optimization protocol
(Section 5.2). Then, we discuss empirical runtime
efficiency (Section 5.3), before presenting the
results of our experiments (Section 5.4).

78

5.1 Data

To evaluate our models, we used the Negra corpus
(Skut et al., 1997), the Tiger corpus (Brants et al.,
2002), and the discontinuous version of the Penn
Treebank (Evang and Kallmeyer, 2011; Marcus
et al., 1993).

For the Tiger corpus, we use the Statistical
Parsing of Morphologically Rich Languages
(SPMRL) split (Seddah et al., 2013). We obtained
the dependency labels and the morphological
information for each token from the dependency
treebank versions of the SPMRL release. We
converted the Negra corpus to labeled dependency
trees with the DEPSY tool3 in order to annotate each
token with a dependency label. We do not predict
morphological attributes for the Negra corpus
(only POS tags) since only a small section is
annotated with a full morphological analysis. We
use the standard split (Dubey and Keller, 2003)
for this corpus, and no limit on sentence length.
For the Penn Treebank, we use the standard split
(sections 2-21 for training, 22 for development
and 23 for test). We retrieved the dependency
labels from the dependency version of the Penn
Treebank (PTB), obtained by the Stanford Parser
(de Marneffe et al., 2006).

We used the relevant module of discodop4

(van Cranenburgh et al., 2016) for evaluation.
It provides an F1 measure on labeled constit-
uents, as well as an F1 score computed only
on discontinuous constituents (Disc. F1). Fol-
lowing standard practice, we used the eval-
uation parameters included in discodop release
(proper.prm). These parameters ignore punc-
tuation and root symbols.

5.2 Optimization and Hyperparameters

We optimize the loss with the Averaged Sto-
chastic Gradient Descent algorithm (Polyak and
Juditsky, 1992; Bottou, 2010) using the following
dimensions for embeddings and hidden layers:

• Feedforward network: 2 layers of 128 units
with rectifiers as activation function;

• The character bi-LSTM has 1 layer, with
states of size 32 (in each direction);

3https://nats-www.informatik.uni-hamburg.
de/pub/CDG/DownloadPage/cdg-2006-06-21.tar.gz
We modified DEPSY to keep the same tokenization as the
original corpus.

4https://github.com/andreasvc/disco-dop

• The sentence bi-LSTM has 2 layers, with
states of size 128 (in each direction);

• Character embedding size: 32;

• Word-embedding size: 32.

We tune the learning rate ({0.01, 0.02}) and the
number of iterations ({4, 8, 12, . . . , 28, 30}) on the
development sets of each corpus. All parameters,
including embeddings, are randomly initialized.
We use no pretrained word embeddings nor any
other external data.5

Finally, following the method of Kiperwasser
and Goldberg (2016) to handle unknown words,
each time we sample a sentence from the train-
ing set, we stochastically replace each word by
an UNKNOWN pseudoword with a probability
pw =

(
α

#{w}+α

)
, where #{w} is the raw number

of occurrences of w in the training set and α is
a hyperparameter set to 0.8375, as suggested
by Cross and Huang (2016b).

5.3 Runtime efficiency
For each experiment, we performed both training
and parsing on a single CPU core. Training a
single model on the Tiger corpus (i.e., the largest
training corpus) took approximately a week.
Parsing the 5,000 sentences of the development
section of the Tiger corpus takes 53 seconds
(1,454 tokens per second) for the ML-GAP model
and 40 seconds (1,934 tokens per second) for the
SR-GAP-UNLEX model, excluding model initial-
ization and input-output times (Table 5).

Although indicative, these runtimes compare
well with other neural discontinuous parsers, e.g.,
Corro et al. (2017), or to transition-based parsers
using a linear classifier (Maier, 2015; Coavoux
and Crabbé, 2017a).

5.4 Results
First, we compare the results of our proposed
models on the development sets, focusing on
the effect of lexicalization (Section 5.4.1). Then,
we present morphological analysis results (Sec-
tion 5.4.2). Finally, we compare our best model
to other published results on the test sets
(Section 5.4.3).

5We leave to future work the investigation of the effect
of pretrained word embeddings and semi-supervised learning
methods, such as tritraining, that have been shown to be
effective in recent work on projective constituency parsing
(Choe and Charniak, 2016; Kitaev and Klein, 2018).

79

https://nats-www.informatik.uni-hamburg.de/pub/CDG/DownloadPage/cdg-2006-06-21.tar.gz
https://nats-www.informatik.uni-hamburg.de/pub/CDG/DownloadPage/cdg-2006-06-21.tar.gz
https://github.com/andreasvc/disco-dop

English German (Tiger) German (Negra)
Transition System Features Oracle F Disc. F F Disc. F F Disc. F

ML-GAP BASE eager 91.2 72.0 87.6 60.5 83.7 53.8
ML-GAP BASE head-driven 91.1 73.7 87.2 59.7 83.7 53.8

ML-GAP-LEX BASE head-driven 91.1 68.2 86.5 56.3 82.4 47.0
ML-GAP-LEX +LEX head-driven 90.9 68.2 86.5 57.0 82.7 52.3

SR-GAP-UNLEX BASE eager 91.0 72.9 87.1 60.5 84.1 52.0

SR-GAP-LEX BASE head-driven 90.8 70.3 86.0 56.2 82.1 44.9
SR-GAP-LEX +LEX head-driven 90.8 71.3 86.5 55.5 82.8 50.6

Table 4: Discontinuous parsing results on the development sets.

Tiger DPTB
Model tok/s sent/s tok/s sent/s

This work, ML-GAP, BASE 1,454 95 1,450 61
This work, SR-GAP-UNLEX, BASE 1,934 126 1,887 80

Maier (2015), beam=8 80
Coavoux and Crabbé (2017a), beam=4 4,700 260
Corro et al. (2017) ≈7.3

Table 5: Running times on development sets of the Tiger and the DPTB, reported in tokens per second (tok/s) and
sentences per second (sent/s). Runtimes are only indicative; they are not comparable with those reported by other
authors, since they use different hardware.

5.4.1 Effect of Lexicalization

Lexicalized vs. Unlexicalized Models We first
compare the unlexicalized ML-GAP system with
the ML-GAP-LEX system (Table 4). The former
consistently obtains higher results. The F-score
difference is small on English (0.1 to 0.3) but
substantial on the German treebanks (more than
1.0 absolute point) and in general on discontinuous
constituents (Disc. F).

In order to assess the robustness of the ad-
vantage of unlexicalized models, we also compare
our implementation of SR-GAP (Coavoux and
Crabbé, 2017a)6 with an unlexicalized variant
(SR-GAP-UNLEX) that uses a single type of reduction
(REDUCE) instead of the traditional REDUCE-RIGHT

and REDUCE-LEFT actions. This second comparison
exhibits the same pattern in favor of unlexicalized
models.

These results suggest that lexicalization is not
necessary to achieve very strong discontinuous

6This is not the same model as Coavoux and Crabbé
(2017a) since our experiments use the statistical model
presented in Section 4, with joint morphological analysis,
whereas they use a structured perceptron and require a
POS-tagged input.

parsing results. A possible interpretation is that
the bi-LSTM transducer may implicitly learn
latent lexicalization, as suggested by Kuncoro
et al. (2017), which is consistent with recent
analyses of other types of syntactic information
captured by LSTMs in parsing models (Gaddy
et al., 2018) or language models (Linzen et al.,
2016).

Effect of Lexical Features For lexicalized mod-
els, information about the head of constituents
(+LEX) have a mixed effect and brings an im-
provement in only half the cases. It is even slightly
detrimental on English (ML-GAP-LEX).

Controlling for the Oracle Choice The advan-
tage of unlexicalized systems could be due to
the properties of its eager oracle, in particular
its higher incrementality (see Section 6 for an
analysis). In order to isolate the effect of the
oracle, we trained ML-GAP with the head-driven
oracle, i.e., the oracle used by the ML-GAP-LEX

system. We observe a small drop in F-measure
on English (−0.1) and on the Tiger corpus (−0.4)
but no effect on the Negra corpus. However, the
resulting parser still outperforms ML-GAP-LEX, with
the exception of English. These results suggest

80

Corpus Attribute Acc. F1 Cov.

PTB POS 97.2 - 100

Negra POS 98.1 - 100

Tiger POS 98.4 - 100
(ours) Complete match 92.9 - 100

Case 96.9 96.9 48.2
Degree 99.7 98.0 7.5
Gender 96.9 96.8 47.7
Mood 99.9 99.1 7.8
Number 98.4 98.7 57.8
Person 99.9 99.5 9.5
Tense 99.9 99.3 7.8

Tiger (Björkelund et al., 2013; Mueller et al., 2013)
POS 98.1
Complete match 91.8

Table 6: Morphological analysis results on develop-
ment sets.

that the oracle choice definitely plays a role in the
advantage of ML-GAP over ML-GAP-LEX, but is not
sufficient to explain the performance difference.

Discussion Overall, our experiments provide
empirical arguments in favor of unlexicalized
discontinuous parsing systems. Unlexicalized
systems are arguably simpler than their lexicalized
counterparts—since they have no directional (left
or right) actions—and obtain better results. We
further hypothesize that derivations produced
by the eager oracle, which cannot be used by
lexicalized systems, are easier to learn. We
provide a quantitative and comparative analysis
of derivations from both transition systems in
Section 6.

5.4.2 Tagging and Morphological Analysis
We report results for morphological analysis with
the selected models (ML-GAP with BASE features
for the Penn Treebank and Tiger, SR-GAP-UNLEX

with BASE features for Negra) in Table 6. For each
morphological attribute, we report an accuracy
score computed over every token. However, most
morphological attributes are only relevant for
specific part-of-speech tags. For instance, TENSE

is only a feature of verbs. The accuracy metric
is somewhat misleading, since the fact that the
tagger predicts correctly that a token does not
have an attribute is considered a correct answer.
Therefore, if only 5% of tokens bore a specific
morphological attribute, a 95% accuracy is a most

frequent baseline score. For this reason, we also
report a coverage metric (Cov.) that indicates the
proportion of tokens in the corpus that possess an
attribute, and an F1 measure.

The tagger achieves close to state-of-the-art
results on all three corpora. On the Tiger corpus,
it slightly outperforms previous results published
by Björkelund et al. (2013) who used the MARMOT
tagger (Mueller et al., 2013). Morphological
attributes are also very well predicted, with F1
scores above 98%, except for case and gender.

5.4.3 External Comparisons
The two best performing models on the
development sets are the ML-GAP (DPTB, Tiger)
and the SR-GAP-UNLEX (Negra) models with BASE

features. We report their results on the test
sets in Table 7. They are compared with other
published results: transition-based parsers using a
SWAP action (Maier, 2015; Stanojević and Garrido
Alhama, 2017) or a GAP action (Coavoux and
Crabbé, 2017a), the pseudo-projective parser of
Versley (2016), parsers based on non-projective
dependency parsing (Fernández-González and
Martins, 2015; Corro et al., 2017), and finally chart
parsers based on probabilistic LCFRS (Evang
and Kallmeyer, 2011; Gebhardt, 2018) or data-
oriented parsing (van Cranenburgh et al., 2016).
Note that some of these publications report
results in a gold POS-tag scenario, a much easier
experimental setup that is not comparable to ours
(bottom part of the table). In Table 7, we also
indicate models that use a neural scoring system
with a ‘∗’.

Our models obtain state-of-the-art results and
outperform every other system, including the
LSTM-based parser of Stanojević and Garrido
Alhama (2017) that uses a SWAP action to predict
discontinuities. This observation confirms in an-
other setting the results of Coavoux and Crabbé
(2017a), namely that GAP transition systems have
more desirable properties than SWAP transition
systems.

6 Model Analysis

In this section, we investigate empirical properties
of the transition systems evaluated in the previous
section. A key difference between lexicalized
and unlexicalized systems is that the latter are ar-
guably simpler: they do not have to assign heads
to new constituents. As a result, they need fewer

81

English (DPTB) German (Tiger) German (Negra)
Model F Disc. F F Disc. F F Disc. F

Predicted POS tags

Ours∗, ML-GAP (SR-GAP-UNLEX for Negra), BASE features 91.0 71.3 82.7 55.9 83.2 54.6

Stanojević and Garrido Alhama (2017)∗, 77.0
SWAP, stack/tree-LSTM

Coavoux and Crabbé (2017a), 79.3
SR-GAP, perceptron

Versley (2016), pseudo-projective, chart-based 79.5
Corro et al. (2017)∗, bi-LSTM, 89.2

Maximum Spanning Arborescence
van Cranenburgh et al. (2016), DOP, ≤ 40 87.0 74.8
Fernández-González and Martins (2015), 77.3

dependency-based
Gebhardt (2018), LCFRS 75.1

with latent annotations

Gold POS tags

Stanojević and Garrido Alhama (2017)∗, 81.6 82.9
SWAP, stack/tree-LSTM

Coavoux and Crabbé (2017a), 81.6 49.2 82.2 50.0
SR-GAP, perceptron

Maier (2015), SWAP, perceptron 74.7 18.8 77.0 19.8
Corro et al. (2017)∗ bi-LSTM, 90.1 81.6

Maximum Spanning Arborescence
Evang and Kallmeyer (2011), 79†

PLCFRS, < 25

Table 7: Discontinuous parsing results on the test sets.
∗Neural scoring system. †Does not discount root symbols and punctuation.

types of distinct transitions, and they have simpler
decisions to make. Furthermore, they do not run
the risk of error propagation from wrong head
assignments.

We argue that an important consequence of the
simplicity of unlexicalized systems is that their
derivations are easier to learn. In particular, ML-
GAP derivations have a better incrementality than
those of ML-GAP-LEX (Section 6.1) and are more
economical in terms of number of GAP actions
needed to derive discontinuous trees (Section 6.2).

6.1 Incrementality
We adopt the definition of incrementality of
Nivre (2004): an incremental algorithm minimizes
the number of connected components in the
stack during parsing. An unlexicalized system
can construct a new constituent by incorporating
each new component immediately, whereas a
lexicalized system waits until it has shifted the
head of a constituent before starting to build

Average length of stack (S+D)
Corpus ML-GAP-LEX ML-GAP

English (DPTB) 5.62 4.86
German (Negra) 3.69 2.88
German (Tiger) 3.56 2.98

Table 8: Incrementality measured by the average size of
the stack during derivations. The average is calculated
across all configurations (not across all sentences).

the constituent. For example, to construct the
following head-final NP,

NP[actor]

An excellent environmental actor

a lexicalized system must shift every token before
starting reductions in order to be able to predict
the dependency arcs between the head actor and
its three dependents.7 In contrast, an unlexicalized

7SH(IFT), SH, SH, SH, SH, M(ERGE)-R(IGHT), M-R, M-R, M-R,
LABEL-NP. (NO-LABEL actions are omitted.)

82

ML-GAP-LEX ML-GAP

English (DPTB) Max number of consecutive GAPS 9 8
Average number of consecutive GAPS 1.78 1.34
Total number of GAPS 33,341 18,421

German (Tiger) Max number of consecutive GAPS 10 5
Average number of consecutive GAPS 1.40 1.12
Total number of GAPS 40,905 25,852

German (Negra) Max number of consecutive GAPS 11 5
Average number of consecutive GAPS 1.47 1.11
Total number of GAPS 20,149 11,181

Table 9: GAP action statistics in training sets.

system can construct partial structures as soon as
there are two elements with the same parent node
in the stack.8

We report the average number of connected
components in the stack during a derivation
computed by an oracle for each transition system
in Table 8. The unlexicalized transition system
ML-GAP has a better incrementality. On average, it
maintains a smaller stack. This is an advantage
since parsing decisions rely on information
extracted from the stack and smaller localized
stacks are easier to represent.

6.2 Number of GAP Actions

The GAP actions are supposedly the most difficult
to predict, because they involve long distance
information. They also increase the length of a
derivation and make the parser more prone to error
propagation. We expect that a transition system
that is able to predict a discontinuous tree more
efficiently, in terms of number of GAP actions, to
be a better choice.

We report in Table 9 the number of GAP

actions necessary to derive the discontinuous trees
for several corpora and for several transition
systems (using oracles). We also report the
average and maximum number of consecutive
GAP actions in each case. For English and German,
the unlexicalized transition system ML-GAP needs
much fewer GAP actions to derive discontinuous
trees (approximately 45% fewer). The average
number of consecutive GAP actions is also smaller
(as well as the maximum for German corpora).
On average, the elements in the stack (S) that
need to combine with the top of D are closer to
the top of S with the ML-GAP transition system

8SH, SH, M(ERGE), SH, M, SH, M, SH, M, LABEL-NP.

than with lexicalized systems. This observation is
not surprising; since ML-GAP can start constructing
constituents before having access to their lexical
head, it can construct larger structures before
having to GAP them.

7 Error Analysis

In this section, we provide an error analysis fo-
cused on the predictions of the ML-GAP model
on the discontinuous constituents of the dis-
continuous PTB. It is aimed at understanding
which types of long-distance dependencies are
easy or hard to predict and providing insights for
future work.

7.1 Methodology

We manually compared the gold and predicted
trees from the development set that contained at
least one discontinuous constituent.

Out of 278 sentences in the development set
containing a discontinuity (excluding those in
which the discontinuity is only due to punc-
tuation attachment), 165 were exact matches for
discontinuous constituents and 113 contained at
least one error. Following Evang (2011), we
classified errors according to the phenomena
producing a discontinuity. We used the following
typology,9 illustrated by examples where the main
discontinuous constituent is highlighted in bold:

• Wh-extractions: What should I do?

• Fronted quotations: ‘‘Absolutely’’, he said.

• Extraposed dependent: In April 1987, evi-
dence surfaced that commissions were paid.

9These categories cover all cases in the development set.

83

Phenomenon G PfM PaM FN FP

Wh-extractions 122 87 19 16 8
100% 71.3 15.6 13.1 NA

Fronted quotations 81 77 3 1 0
100% 95.1 3.7 1.2 NA

Extrapositions 44 10 1 33 3
100% 22.7 2.3 75 NA

Circumpositioned quotations 22 11 10 1 3
100% 50 45.4 4.5 NA

It-extrapositions 16 6 2 8 2
100% 37.5 12.5 50 NA

Subject-verb inversion 5 4 0 1 1
100% 80 0 20 NA

Table 10: Evaluation statistics per phenomenon. G: gold occurrences; PfM: perfect match; PaM: partial match;
FN: false negatives; FP: false positives.

• Circumpositioned quotations: In general, they
say, avoid takeover stocks.

• It-extrapositions: ‘‘It’s better to wait.’’

• Subject-verb inversion: Said the spokes-
woman: ‘‘The whole structure has
changed.’’

For each phenomenon occurrence, we manually
classified the output of the parser in one of the
following categories: (i) perfect match, (ii) partial
match, and (iii) false negative. Partial matches are
cases where the parser identified the phenomenon
involved but made a mistake regarding the
labelling of a discontinuous constituent (e.g.,
S instead of SBAR) or its scope. The latter
case includes, e.g., occurrences where the parser
found an extraction, but failed to find the correct
extraction site. Finally, we also report false
positives for each phenomenon.

7.2 Results

First of all, the parser tends to be conservative
when predicting discontinuities: there are in gen-
eral few false positives. The 72.0 discontinuous
F1 (Table 4) indeed decomposes in a precision of
78.4 and a recall of 66.6. This does not seem to
be a property of our parser, as other authors also
report systematically higher precisions than recalls
(Maier, 2015; Stanojević and Garrido Alhama,
2017). Instead, the scarcity of discontinuities in the
data might be a determining factor: only 20% of
sentences in the Discontinuous Penn Treebank

contain at least one discontinuity and 30% of
sentences in the Negra and Tiger corpus.

Analysis results are presented in Table 10. For
wh-extractions, there are two main causes of
errors. The first one is an ambiguity on the
extraction site. For example, in the relative clause
which many clients didn’t know about, instead of
predicting a discontinuous PP, where which is the
complement of about, the parser attached which
as a complement of know. Another source of error
(both for false positives and false negatives) is
the ambiguity of that-clauses, that can be either
completive clauses10 or relative clauses.11

Phenomena related to quotations are rather
well identified probably due to the fact that
they are frequent in newspaper data and ex-
hibit regular patterns (quotation marks, speech
verbs). However, a difficulty in identifying
circumpositioned quotations arises when there are
no quotation marks, to determine what the precise
scope of the quotation is.

Finally, the hardest types of discontinuity
for the parser are extrapositions. Contrary to
previously discussed phenomena, there is usually
no lexical trigger (wh-word, speech verb) that
makes these discontinuities easy to spot. Most
cases involve modifier attachment ambiguities,
which are known to be hard to solve (Kummerfeld

10(NP the consensus . . . (SBAR that the Namibian
guerrillas were above all else the victims of suppression
by neighboring South Africa.))

11(NP the place (SBAR that world opinion has been
celebrating over))

84

et al., 2012) and often require some world
knowledge.

8 Conclusion

We have introduced an unlexicalized transition-
based discontinuous constituency parsing model.12

We have compared it, in identical experimental
settings, with its lexicalized counterpart in order
to provide insights on the effect of lexicali-
zation as a parser design choice.

We found that lexicalization is not necessary to
achieve very high parsing results in discontinuous
constituency parsing, a result consistent with
previous studies on lexicalization in projective
constituency parsing (Klein and Manning, 2003;
Cross and Huang, 2016b). A study of empirical
properties of our transition systems suggested
explanations for the performance difference, by
showing that the unlexicalized system produces
shorter derivations and has a better incrementality.
Finally, we presented a qualitative analysis of our
parser’s errors on discontinuous constituents.

Acknowledgments

We thank Kilian Evang and Laura Kallmeyer
for providing us with the Discontinuous
Penn Treebank. We thank Caio Corro, Sacha
Beniamine, TACL reviewers, and action editor
Stephen Clark for feedback that helped improve
the paper. Our implementation makes use of the
Eigen C++ library (Guennebaud and Jacob, 2010),
treetools,13 and discodop.14 MC and SC
gratefully acknowledge the support of Huawei
Technologies.

References

Daniel M. Bikel. 2004. A distributional analysis
of a lexicalized statistical parsing model. In
Proceedings of EMNLP 2004, pages 182–189.
Association for Computational Linguistics.

Anders Björkelund, Ozlem Cetinoglu, Richárd
Farkas, Thomas Mueller, and Wolfgang Seeker.
2013. (Re)ranking meets morphosyntax: State-
of-the-art results from the SPMRL 2013 shared

12The source code of the parser is released with pretrained
models at https://github.com/mcoavoux/mtg_
TACL.

13https://github.com/wmaier/treetools
14https://github.com/andreasvc/disco-dop

task. In Proceedings of the Fourth Work-
shop on Statistical Parsing of Morphologically-
Rich Languages, pages 135–145, Seattle,
Washington, USA. Association for Computa-
tional Linguistics.

Léon Bottou. 2010. Large-scale machine learning
with stochastic gradient descent. In Proceed-
ings of the 19th International Conference on
Computational Statistics (COMPSTAT’2010),
pages 177–187, Paris, France. Springer.

Sabine Brants, Stefanie Dipper, Silvia Hansen,
Wolfgang Lezius, and George Smith. 2002.
Tiger treebank. In Proceedings of the Work-
shop on Treebanks and Linguistic Theories,
September 20-21 (TLT02). Sozopol, Bulgaria.

Eugene Charniak. 1997. Statistical parsing with
a context-free grammar and word statistics.
In Proceedings of the Fourteenth National
Conference on Artificial Intelligence and
Ninth Conference on Innovative Applications
of Artificial Intelligence, AAAI’97/IAAI’97,
pages 598–603. AAAI Press.

Do Kook Choe and Eugene Charniak. 2016.
Parsing as language modeling. In Proceed-
ings of the 2016 Conference on Empirical
Methods in Natural Language Processing,
pages 2331–2336, Austin, Texas. Association
for Computational Linguistics.

Maximin Coavoux and Benoit Crabbé. 2017a.
Incremental discontinuous phrase structure
parsing with the gap transition. In Pro-
ceedings of the 15th Conference of the
European Chapter of the Association for
Computational Linguistics: Volume 1, Long
Papers, pages 1259–1270, Valencia, Spain.
Association for Computational Linguistics.

Maximin Coavoux and Benoit Crabbé. 2017b.
Multilingual lexicalized constituency parsing
with word-level auxiliary tasks. In Proceed-
ings of the 15th Conference of the European
Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers,
pages 331–336, Valencia, Spain. Association
for Computational Linguistics.

Michael Collins. 1997. Three generative,
lexicalised models for statistical parsing. In
Proceedings of the 35th Annual Meeting of

85

https://github.com/mcoavoux/mtg_TACL
https://github.com/mcoavoux/mtg_TACL
https://github.com/wmaier/treetools
https://github.com/andreasvc/disco-dop

the Association for Computational Linguistics,
pages 16–23, Madrid, Spain. Association for
Computational Linguistics.

Caio Corro, Joseph Le Roux, and Mathieu
Lacroix. 2017. Efficient discontinuous phrase-
structure parsing via the generalized maximum
spanning arborescence. In Proceedings of the
2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1645–1655,
Copenhagen, Denmark. Association for Com-
putational Linguistics.

Benoit Crabbé. 2014. An LR-inspired generalized
lexicalized phrase structure parser. In Proceed-
ings of COLING 2014, the 25th International
Conference on Computational Linguistics:
Technical Papers, pages 541–552, Dublin,
Ireland. Dublin City University and Association
for Computational Linguistics.

Andreas van Cranenburgh and Rens Bod. 2013.
Discontinuous parsing with an efficient and
accurate DOP model. In Proceedings of IWPT ,
pages 7–16.

Andreas van Cranenburgh, Remko Scha, and
Rens Bod. 2016. Data-oriented parsing with
discontinuous constituents and function tags.
Journal of Language Modelling, 4(1):57–111.

James Cross and Liang Huang. 2016a. Incremen-
tal parsing with minimal features using bi-
directional LSTM. In Proceedings of the 54th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers),
pages 32–37, Berlin, Germany. Association for
Computational Linguistics.

James Cross and Liang Huang. 2016b. Span-
based constituency parsing with a structure-
label system and provably optimal dynamic
oracles. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language
Processing, pages 1–11, Austin, Texas. Asso-
ciation for Computational Linguistics.

Amit Dubey and Frank Keller. 2003.
Probabilistic parsing for german using sister-
head dependencies. In Proceedings of the
41st Annual Meeting of the Association
for Computational Linguistics, pages 96–103,
Sapporo, Japan. Association for Computational
Linguistics.

Greg Durrett and Dan Klein. 2015. Neural CRF
parsing. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 302–312,
Beijing, China. Association for Computational
Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel
Ballesteros, and Noah A. Smith. 2016. Re-
current neural network grammars. In Pro-
ceedings of the 2016 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego,
California. Association for Computational
Linguistics.

Kilian Evang. 2011. Parsing discontinuous con-
stituents in English. Ph.D. thesis, Masters thesis,
University of Tübingen.

Kilian Evang and Laura Kallmeyer. 2011.
PLCFRS parsing of english discontinuous
constituents. In Proceedings of the 12th Inter-
national Conference on Parsing Technologies,
pages 104–116, Dublin, Ireland. Association
for Computational Linguistics.

Daniel Fernández-González and André F. T.
Martins. 2015. Parsing as reduction. In Pro-
ceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and
the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 1523–1533, Beijing, China.
Association for Computational Linguistics.

David Gaddy, Mitchell Stern, and Dan Klein.
2018. What’s going on in neural constituency
parsers? an analysis. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long Papers), pages 999–1010, New Orleans,
Louisiana. Association for Computational
Linguistics.

Kilian Gebhardt. 2018. Generic refinement of ex-
pressive grammar formalisms with an appli-
cation to discontinuous constituent parsing.
In Proceedings of the 27th International
Conference on Computational Linguistics,

86

pages 3049–3063, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Daniel Gildea. 2001. Corpus variation and parser
performance. In Proceedings of the 2001
Conference on Empirical Methods in Natural
Language Processing, pages 167–202.

Gaël Guennebaud and Benoı̂t Jacob. 2010. Eigen
v3. http://eigen.tuxfamily.org.

David Hall, Greg Durrett, and Dan Klein. 2014.
Less grammar, more features. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 228–237, Baltimore, Maryland.
Association for Computational Linguistics.

Johan Hall and Joakim Nivre. 2008. Parsing
Discontinuous Phrase Structure with Gram-
matical Functions, Springer Berlin Heidelberg,
Berlin, Heidelberg.

Laura Kallmeyer and Wolfgang Maier. 2010.
Data-driven parsing with probabilistic linear
context-free rewriting systems. In Proceedings
of the 23rd International Conference on
Computational Linguistics (Coling 2010),
pages 537–545, Beijing, China. Coling 2010
Organizing Committee.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing
using bidirectional LSTM feature represen-
tations. Transactions of the Association for
Computational Linguistics, 4:313–327.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Pro-
ceedings of the 56th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 2676–2686,
Melbourne, Australia. Association for Compu-
tational Linguistics.

Dan Klein and Christopher D. Manning. 2003.
Accurate unlexicalized parsing. In Proceedings
of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 423–430,
Sapporo, Japan. Association for Computational
Linguistics.

Jonathan K. Kummerfeld, David Hall, James R.
Curran, and Dan Klein. 2012. Parser showdown
at the wall street corral: An empirical

investigation of error types in parser output.
In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language
Processing and Computational Natural
Language Learning, pages 1048–1059, Jeju
Island, Korea. Association for Computational
Linguistics.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and
Noah A. Smith. 2017. What do recurrent
neural network grammars learn about syntax?
In Proceedings of the 15th Conference of
the European Chapter of the Association for
Computational Linguistics: Volume 1, Long
Papers, pages 1249–1258, Valencia, Spain.
Association for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav
Goldberg. 2016. Assessing the ability of lstms
to learn syntax-sensitive dependencies. Trans-
actions of the Association of Computational
Linguistics, 4:521–535.

Jiangming Liu and Yue Zhang. 2017. In-order
transition-based constituent parsing. Transac-
tions of the Association for Computational
Linguistics, 5:413–424.

Wolfgang Maier. 2015. Discontinuous incremen-
tal shift-reduce parsing. In Proceedings of the
53rd Annual Meeting of the Association for
Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 1202–1212, Beijing, China. Association
for Computational Linguistics.

Wolfgang Maier and Timm Lichte. 2016. Dis-
continuous parsing with continuous trees. In
Proceedings of the Workshop on Discontinuous
Structures in Natural Language Processing,
pages 47–57, San Diego, California. Asso-
ciation for Computational Linguistics.

Mitchell Marcus, Beatrice Santorini, and Mary
Ann Marcinkiewicz. 1993. Building a large
annotated corpus of English: The Penn
treebank. Computational Linguistics, Volume
19, Number 2, June 1993, Special Issue on
Using Large Corpora: II.

Marie-Catherine de Marneffe, Bill MacCartney,
and Christopher D. Manning. 2006. Generating

87

typed dependency parses from phrase structure
parses. In Proceedings of the Fifth Interna-
tional Conference on Language Resources and
Evaluation (LREC’06). European Language
Resources Association (ELRA).

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi
Tsujii. 2005. Probabilistic CFG with latent
annotations. In Proceedings of the 43rd Annual
Meeting of the Association for Computational
Linguistics (ACL’05), pages 75–82, Ann Arbor,
Michigan. Association for Computational
Linguistics.

Thomas Mueller, Helmut Schmid, and Hinrich
Schütze. 2013. Efficient higher-order CRFs
for morphological tagging. In Proceedings of
the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 322–332,
Seattle, Washington, USA. Association for
Computational Linguistics.

Shashi Narayan and Shay B. Cohen. 2016.
Optimizing spectral learning for parsing. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1546–1556,
Berlin, Germany. Association for Computa-
tional Linguistics.

Joakim Nivre. 2004. Incrementality in deter-
ministic dependency parsing. In Proceedings
of the ACL Workshop Incremental Parsing:
Bringing Engineering and Cognition Together,
pages 50–57, Barcelona, Spain. Association for
Computational Linguistics.

Joakim Nivre. 2009. Non-projective dependency
parsing in expected linear time. In Proceedings
of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International
Joint Conference on Natural Language
Processing of the AFNLP, pages 351–359.
Association for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux,
and Dan Klein. 2006. Learning accurate,
compact, and interpretable tree annotation.
In Proceedings of the 21st International
Conference on Computational Linguistics and
44th Annual Meeting of the Association for
Computational Linguistics, pages 433–440.
Association for Computational Linguistics.

Barbara Plank, Anders Søgaard, and Yoav
Goldberg. 2016. Multilingual part-of-speech tag-
ging with bidirectional long short-term memory
models and auxiliary loss. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 412–418, Berlin, Germany.
Association for Computational Linguistics.

Boris T. Polyak and Anatoli B. Juditsky. 1992.
Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and
Optimization, 30(4):838–855.

Kenji Sagae and Alon Lavie. 2005. A classifier-
based parser with linear run-time complexity. In
Proceedings of the Ninth International Work-
shop on Parsing Technology, pages 125–132,
Vancouver, British Columbia. Association for
Computational Linguistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler,
Marie Candito, Jinho D. Choi, Richárd
Farkas, Jennifer Foster, Iakes Goenaga,
Koldo Gojenola Galletebeitia, Yoav Goldberg,
Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre,
Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze,
Marcin Woliński, Alina Wróblewska, and
Eric Villemonte de la Clergerie. 2013. Over-
view of the SPMRL 2013 shared task: A
cross-framework evaluation of parsing mor
phologically rich languages. In Proceedings of
the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA. Association for
Computational Linguistics.

Wojciech Skut, Brigitte Krenn, Thorsten Brants,
and Hans Uszkoreit. 1997. An annotation
scheme for free word order languages. In
Proceedings of the Fifth Conference on Applied
Natural Language Processing, pages 88–95,
Washington, DC, USA. Association for
Computational Linguistics.

Anders Søgaard and Yoav Goldberg. 2016.
Deep multi-task learning with low level tasks
supervised at lower layers. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 231–235, Berlin, Germany.
Association for Computational Linguistics.

88

Miloš Stanojević and Raquel Garrido Alhama.
2017. Neural discontinuous constituency pars-
ing. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language
Processing, pages 1667–1677, Copenhagen,
Denmark. Association for Computational
Linguistics.

Mitchell Stern, Jacob Andreas, and Dan
Klein. 2017. A minimal span-based neural
constituency parser. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Yannick Versley. 2014a. Experiments with easy-
first nonprojective constituent parsing. In
Proceedings of the First Joint Workshop on
Statistical Parsing of Morphologically Rich
Languages and Syntactic Analysis of Non-
Canonical Languages, pages 39–53, Dublin,
Ireland. Dublin City University.

Yannick Versley. 2014b. Incorporating semi-
supervised features into discontinuous easy-
first constituent parsing. CoRR, abs/1409.
3813v1.

Yannick Versley. 2016. Discontinuity (re)2visited:
A minimalist approach to pseudoprojective
constituent parsing. In Proceedings of the
Workshop on Discontinuous Structures in
Natural Language Processing, pages 58–69,
San Diego, California. Association for Compu-
tational Linguistics.

Zhiguo Wang, Haitao Mi, and Nianwen Xue.
2015. Feature optimization for constituent

parsing via neural networks. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 1138–1147, Beijing, China. Association
for Computational Linguistics.

Taro Watanabe and Eiichiro Sumita. 2015.
Transition-based neural constituent parsing. In
Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics
and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 1169–1179, Beijing, China.
Association for Computational Linguistics.

Yue Zhang and Stephen Clark. 2009. Transition-
based parsing of the chinese treebank using
a global discriminative model. In Proceedings
of the 11th International Conference on Pars-
ing Technologies (IWPT’09), pages 162–171,
Paris, France. Association for Computational
Linguistics.

Yue Zhang and Stephen Clark. 2011. Syntactic
processing using the generalized perceptron
and beam search. Computational Linguistics,
37(1):105–151.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min
Zhang, and Jingbo Zhu. 2013. Fast and accurate
shift-reduce constituent parsing. In Proceedings
of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 434–443, Sofia, Bulgaria.
Association for Computational Linguistics.

89

	Introduction
	Related Work
	Transition Systems for Discontinuous Parsing
	The Merge-Label-Gap Transition System
	Lexicalized Transition System
	Oracles

	Neural Architecture
	Building Context-aware Token Representations
	Tagger
	Parser
	Objective Function

	Experiments
	Data
	Optimization and Hyperparameters
	Runtime efficiency
	Results
	Effect of Lexicalization*6pt
	Tagging and Morphological Analysis
	External Comparisons

	Model Analysis
	Incrementality
	Number of gap Actions

	Error Analysis
	Methodology
	Results

	Conclusion

