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Abstract

We propose a sequence labeling frame-
work with a secondary training objec-
tive, learning to predict surrounding words
for every word in the dataset. This lan-
guage modeling objective incentivises the
system to learn general-purpose patterns
of semantic and syntactic composition,
which are also useful for improving accu-
racy on different sequence labeling tasks.
The architecture was evaluated on a range
of datasets, covering the tasks of error
detection in learner texts, named entity
recognition, chunking and POS-tagging.
The novel language modeling objective
provided consistent performance improve-
ments on every benchmark, without re-
quiring any additional annotated or unan-
notated data.

1 Introduction

Accurate and efficient sequence labeling mod-
els have a wide range of applications, including
named entity recognition (NER), part-of-speech
(POS) tagging, error detection and shallow pars-
ing. Specialised approaches to sequence label-
ing often include extensive feature engineering,
such as integrated gazetteers, capitalisation fea-
tures, morphological information and POS tags.
However, recent work has shown that neural net-
work architectures are able to achieve compara-
ble or improved performance, while automatically
discovering useful features for a specific task and
only requiring a sequence of tokens as input (Col-
lobert et al., 2011; Irsoy and Cardie, 2014; Lample
et al., 2016).

This feature discovery is usually driven by an
objective function based on predicting the anno-
tated labels for each word, without much incentive

to learn more general language features from the
available text. In many sequence labeling tasks,
the relevant labels in the dataset are very sparse
and most of the words contribute very little to the
training process. For example, in the CoNLL 2003
NER dataset (Tjong Kim Sang and De Meulder,
2003) only 17% of the tokens represent an entity.
This ratio is even lower for error detection, with
only 14% of all tokens being annotated as an error
in the FCE dataset (Yannakoudakis et al., 2011).
The sequence labeling models are able to learn
this bias in the label distribution without obtaining
much additional information from words that have
the majority label (O for outside of an entity; C
for correct word). Therefore, we propose an addi-
tional training objective which allows the models
to make more extensive use of the available data.

The task of language modeling offers an eas-
ily accessible objective – learning to predict the
next word in the sequence requires only plain text
as input, without relying on any particular annota-
tion. Neural language modeling architectures also
have many similarities to common sequence label-
ing frameworks: words are first mapped to dis-
tributed embeddings, followed by a recurrent neu-
ral network (RNN) module for composing word
sequences into an informative context represen-
tation (Mikolov et al., 2010; Graves et al., 2013;
Chelba et al., 2013). Compared to any sequence
labeling dataset, the task of language modeling has
a considerably larger and more varied set of pos-
sible options to predict, making better use of each
available word and encouraging the model to learn
more general language features for accurate com-
position.

In this paper, we propose a neural sequence
labeling architecture that is also optimised as a
language model, predicting surrounding words in
the dataset in addition to assigning labels to each
token. Specific sections of the network are op-
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timised as a forward- or backward-moving lan-
guage model, while the label predictions are per-
formed using context from both directions. This
secondary unsupervised objective encourages the
framework to learn richer features for semantic
composition without requiring additional training
data. We evaluate the sequence labeling model on
10 datasets from the fields of NER, POS-tagging,
chunking and error detection in learner texts. Our
experiments show that by including the unsuper-
vised objective into the training process, the se-
quence labeling model achieves consistent perfor-
mance improvements on all the benchmarks. This
multitask training framework gives the largest im-
provements on error detection datasets, outper-
forming the previous state-of-the-art architecture.

2 Neural Sequence Labeling

We use the neural network model of Rei et al.
(2016) as the baseline architecture for our se-
quence labeling experiments. The model takes as
input one sentence, separated into tokens, and as-
signs a label to every token using a bidirectional
LSTM.

The input tokens are first mapped to a
sequence of distributed word embeddings
[x1, x2, x3, ..., xT ]. Two LSTM (Hochreiter and
Schmidhuber, 1997) components, moving in
opposite directions through the sentence, are
then used for constructing context-dependent
representations for every word. Each LSTM takes
as input the hidden state from the previous time
step, along with the word embedding from the
current step, and outputs a new hidden state. The
hidden representations from both directions are
concatenated, in order to obtain a context-specific
representation for each word that is conditioned
on the whole sentence in both directions:

−→
ht = LSTM(xt,

−−→
ht−1) (1)

←−
ht = LSTM(xt,

←−−
ht+1) (2)

ht = [
−→
ht ;
←−
ht ] (3)

Next, the concatenated representation is passed
through a feedforward layer, mapping the compo-
nents into a joint space and allowing the model to
learn features based on both context directions:

dt = tanh(Wdht) (4)

where Wd is a weight matrix and tanh is used as
the non-linear activation function.

In order to predict a label for each token, we use
either a softmax or CRF output architecture. For
softmax, the model directly predicts a normalised
distribution over all possible labels for every word,
conditioned on the vector dt:

P (yt|dt) = softmax(Wodt)

=
eWo,kdt

∑
k̃∈K eWo,k̃dt

(5)

where K is the set of all possible labels, and
Wo,k is the k-th row of output weight matrix Wo.
The model is optimised by minimising categori-
cal crossentropy, which is equivalent to minimis-
ing the negative log-probability of the correct la-
bels:

E = −
T∑

t=1

log(P (yt|dt)) (6)

While this architecture returns predictions
based on all words in the input, the labels are
still predicted independently. For some tasks, such
as named entity recognition with a BIO1 scheme,
there are strong dependencies between subsequent
labels and it can be beneficial to explicitly model
these connections. The output of the architec-
ture can be modified to include a Conditional Ran-
dom Field (CRF, Lafferty et al. (2001)), which al-
lows the network to look for the most optimal path
through all possible label sequences (Huang et al.,
2015; Lample et al., 2016). The model is then op-
timised by maximising the score for the correct la-
bel sequence, while minimising the scores for all
other sequences:

E = −s(y) + log
∑

ỹ∈Ỹ

es(ỹ) (7)

where s(y) is the score for a given sequence y and
Y is the set of all possible label sequences.

We also make use of the character-level compo-
nent described by Rei et al. (2016), which builds
an alternative representation for each word. The
individual characters of a word are mapped to
character embeddings and passed through a bidi-
rectional LSTM. The last hidden states from both
direction are concatenated and passed through a

1Each NER entity has sub-tags for Beginning, Inside and
Outside

2122



h2

x2

d2

o2

h2

proposes

m2

q2

m2

q2

OFischler measures

h3

x3

d3

o3

h3

measures

m3

q3

m3

q3

Oproposes </s>

h1

x1

d1

o1

h1

Fischler

m1

q1

m1

q1

PER<s> proposes

Figure 1: The unfolded network structure for a sequence labeling model with an additional language
modeling objective, performing NER on the sentence ”Fischler proposes measures”. The input tokens
are shown at the bottom, the expected output labels are at the top. Arrows above variables indicate the
directionality of the component (forward or backward).

nonlinear layer. The resulting vector representa-
tion is combined with a regular word embedding
using a dynamic weighting mechanism that adap-
tively controls the balance between word-level and
character-level features. This framework allows
the model to learn character-based patterns and
handle previously unseen words, while still taking
full advantage of the word embeddings.

3 Language Modeling Objective

The sequence labeling model in Section 2 is only
optimised based on the correct labels. While each
token in the input does have a desired label, many
of these contribute very little to the training pro-
cess. For example, in the CoNLL 2003 NER
dataset (Tjong Kim Sang and De Meulder, 2003)
there are only 8 possible labels and 83% of the to-
kens have the label O, indicating that no named
entity is detected. This ratio is even higher for er-
ror detection, with 86% of all tokens containing
no errors in the FCE dataset (Yannakoudakis et al.,
2011). The sequence labeling models are able to
learn this bias in the label distribution without ob-
taining much additional information from the ma-
jority labels. Therefore, we propose a supplemen-
tary objective which would allow the models to
make full use of the training data.

In addition to learning to predict labels for each
word, we propose optimising specific sections of
the architecture as language models. The task of
predicting the next word will require the model
to learn more general patterns of semantic and
syntactic composition, which can then be reused
in order to predict individual labels more accu-
rately. This objective is also generalisable to any

sequence labeling task and dataset, as it requires
no additional annotated training data.

A straightforward modification of the sequence
labeling model would add a second parallel output
layer for each token, optimising it to predict the
next word. However, the model has access to the
full context on each side of the target token, and
predicting information that is already explicit in
the input would not incentivise the model to learn
about composition and semantics. Therefore, we
must design the loss objective so that only sec-
tions of the model that have not yet observed the
next word are optimised to perform the prediction.
We solve this by predicting the next word in the
sequence only based on the hidden representation−→
ht from the forward-moving LSTM. Similarly, the
previous word in the sequence is predicted based
on
←−
ht from the backward-moving LSTM. This ar-

chitecture avoids the problem of giving the correct
answer as an input to the language modeling com-
ponent, while the full framework is still optimised
to predict labels based on the whole sentence.

First, the hidden representations from forward-
and backward-LSTMs are mapped to a new space
using a non-linear layer:

−→mt = tanh(
−→
Wm
−→
ht) (8)

←−mt = tanh(
←−
Wm
←−
ht) (9)

where
−→
Wm and

←−
Wm are weight matrices. This

separate transformation learns to extract features
that are specific to language modeling, while the
LSTM is optimised for both objectives. We also
use the opportunity to map the representation to a
smaller size – since language modeling is not the
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main goal, we restrict the number of parameters
available for this component, forcing the model to
generalise more using fewer resources.

These representations are then passed through
softmax layers in order to predict the preceding
and following word:

P (wt+1|−→mt) = softmax(
−→
W q
−→mt) (10)

P (wt−1|←−mt) = softmax(
←−
W q
←−mt) (11)

The objective function for both components
is then constructed as a regular language mod-
eling objective, by calculating the negative log-
likelihood of the next word in the sequence:

−→
E = −

T−1∑

t=1

log(P (wt+1|−→mt)) (12)

←−
E = −

T∑

t=2

log(P (wt−1|←−mt)) (13)

Finally, these additional objectives are com-
bined with the training objective E from either
Equation 6 or 7, resulting in a new cost function
Ẽ for the sequence labeling model:

Ẽ = E + γ(
−→
E +

←−
E ) (14)

where γ is a parameter that is used to control the
importance of the language modeling objective in
comparison to the sequence labeling objective.

Figure 1 shows a diagram of the unfolded neu-
ral architecture, when performing NER on a short
sentence with 3 words. At each token position,
the network is optimised to predict the previous
word, the current label, and the next word in the
sequence. The added language modeling objec-
tive encourages the system to learn richer feature
representations that are then reused for sequence
labeling. For example,

−→
h1 is optimised to predict

proposes as the next word, indicating that the cur-
rent word is a subject, possibly a named entity. In
addition,

←−
h2 is optimised to predict Fischler as the

previous word and these features are used as input
to predict the PER tag at o1.

The proposed architecture introduces 4 addi-
tional parameter matrices that are optimised dur-
ing training:

−→
Wm,

←−
Wm,

−→
W q, and

←−
W q. How-

ever, the computational complexity and resource

requirements of this model during sequence la-
beling are equal to the baseline from Section 2,
since the language modeling components are ig-
nored during testing and these additional weight
matrices are not used. While our implementation
uses a basic softmax as the output layer for the lan-
guage modeling components, the efficiency during
training could be further improved by integrating
noise-contrastive estimation (NCE, Mnih and Teh
(2012)) or hierarchical softmax (Morin and Ben-
gio, 2005).

4 Evaluation Setup

The proposed architecture was evaluated on 10
different sequence labeling datasets, covering the
tasks of error detection, NER, chunking, and POS-
tagging. The word embeddings in the model
were initialised with publicly available pretrained
vectors, created using word2vec (Mikolov et al.,
2013). For general-domain datasets we used
300-dimensional embeddings trained on Google
News.2 For biomedical datasets, the word embed-
dings were initialised with 200-dimensional vec-
tors trained on PubMed and PMC.3

The neural network framework was imple-
mented using Theano (Al-Rfou et al., 2016) and
we make the code publicly available online.4 For
most of the hyperparameters, we follow the set-
tings by Rei et al. (2016) in order to facilitate di-
rect comparison with previous work. The LSTM
hidden layers are set to size 200 in each direction
for both word- and character-level components.
All digits in the text were replaced with the char-
acter 0; any words that occurred only once in the
training data were replaced by an OOV token. In
order to reduce computational complexity in these
experiments, the language modeling objective pre-
dicted only the 7,500 most frequent words, with an
extra token covering all the other words.

Sentences were grouped into batches of size 64
and parameters were optimised using AdaDelta
(Zeiler, 2012) with default learning rate 1.0.
Training was stopped when performance on the
development set had not improved for 7 epochs.
Performance on the development set was also used
to select the best model, which was then evalu-
ated on the test set. In order to avoid any outlier
results due to randomness in the model initialisa-

2https://code.google.com/archive/p/word2vec/
3http://bio.nlplab.org/
4https://github.com/marekrei/sequence-labeler
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FCE DEV FCE TEST CoNLL-14 TEST1 CoNLL-14 TEST2
F0.5 P R F0.5 P R F0.5 P R F0.5

Baseline 48.78 55.38 25.34 44.56 15.65 16.80 15.80 25.22 19.25 23.62
+ dropout 48.68 54.11 23.33 42.65 14.29 17.13 14.71 22.79 19.42 21.91
+ LMcost 53.17 58.88 28.92 48.48 17.68 19.07 17.86 27.62 21.18 25.88

Table 1: Precision, Recall and F0.5 score of alternative sequence labeling architectures on error detection
datasets. Dropout and LMcost modifications are added incrementally to the baseline.

tion, each configuration was trained with 10 dif-
ferent random seeds and the averaged results are
presented in this paper. We use previously estab-
lished splits for training, development and testing
on each of these datasets.

Based on development experiments, we found
that error detection was the only task that did not
benefit from having a CRF module at the output
layer – since the labels are very sparse and the
dataset contains only 2 possible labels, explicitly
modeling state transitions does not improve per-
formance on this task. Therefore, we use a soft-
max output for error detection experiments and
CRF on all other datasets.

The publicly available sequence labeling sys-
tem by Rei et al. (2016) is used as the base-
line. During development we found that applying
dropout (Srivastava et al., 2014) on word embed-
dings improves performance on nearly all datasets,
compared to this baseline. Therefore, element-
wise dropout was applied to each of the input em-
beddings with probability 0.5 during training, and
the weights were multiplied by 0.5 during testing.
In order to separate the effects of this modification
from the newly proposed optimisation method, we
report results for three different systems: 1) the
publicly available baseline, 2) applying dropout on
top of the baseline system, and 3) applying both
dropout and the novel multitask objective from
Section 3.

Based on development experiments we set the
value of γ, which controls the importance of the
language modeling objective, to 0.1 for all exper-
iments throughout training. Since context predic-
tion is not part of the main evaluation of sequence
labeling systems, we expected the additional ob-
jective to mostly benefit early stages of training,
whereas the model would later need to specialise
only towards assigning labels. Therefore, we also
performed experiments on the development data
where the value of γ was gradually decreased, but

found that a small static value performed compa-
rably well or even better. These experiments in-
dicate that the language modeling objective helps
the network learn general-purpose features that
are useful for sequence labeling even in the later
stages of training.

5 Error Detection

We first evaluate the sequence labeling architec-
tures on the task of error detection – given a sen-
tence written by a language learner, the system
needs to detect which tokens have been manu-
ally tagged by annotators as being an error. As
the first benchmark, we use the publicly released
First Certificate in English (FCE, Yannakoudakis
et al. (2011)) dataset, containing 33,673 manu-
ally annotated sentences. The texts were writ-
ten by learners during language examinations in
response to prompts eliciting free-text answers
and assessing mastery of the upper-intermediate
proficiency level. In addition, we evaluate on
the CoNLL 2014 shared task dataset (Ng et al.,
2014), which has been converted to an error de-
tection task. This contains 1,312 sentences, writ-
ten by higher-proficiency learners on more tech-
nical topics. They have been manually corrected
by two separate annotators, and we report results
on each of these annotations. For both datasets we
use the FCE training set for model optimisation
and results on the CoNLL-14 dataset indicate out-
of-domain performance. Rei and Yannakoudakis
(2016) present results on these datasets using the
same setup, along with evaluating the top shared
task submissions on the task of error detection. As
the main evaluation metric, we use the F0.5 mea-
sure, which is consistent with previous work and
was also adopted by the CoNLL-14 shared task.

Table 1 contains results for the three different
sequence labeling architectures on the error detec-
tion datasets. We found that including the dropout
actually decreases performance in the setting of
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CoNLL-00 CoNLL-03 CHEMDNER JNLPBA
DEV TEST DEV TEST DEV TEST DEV TEST

Baseline 92.92 92.67 90.85 85.63 83.63 84.51 77.13 72.79
+ dropout 93.40 93.15 91.14 86.00 84.78 85.67 77.61 73.16
+ LMcost 94.22 93.88 91.48 86.26 85.45 86.27 78.51 73.83

Table 2: Performance of alternative sequence labeling architectures on NER and chunking datasets,
measured using CoNLL standard entity-level F1 score.

error detection, which is likely due to the rela-
tively small amount of error examples available in
the dataset – it is better for the model to memo-
rise them without introducing additional noise in
the form of dropout. However, we did verify that
dropout indeed gives an improvement in combina-
tion with the novel language modeling objective.
Because the model is receiving additional infor-
mation at every token, dropout is no longer ob-
scuring the limited training data but instead helps
with generalisation.

The bottom row shows the performance of the
language modeling objective when added on top
of the baseline model, along with dropout on word
embeddings. This architecture outperforms the
baseline on all benchmarks, increasing both pre-
cision and recall, and giving a 3.9% absolute im-
provement on the FCE test set. These results also
improve over the previous best results by Rei and
Yannakoudakis (2016) and Rei et al. (2016), when
all systems are trained on the same FCE dataset.
While the added components also require more
computation time, the difference is not excessive
– one training batch over the FCE dataset was pro-
cessed in 112 seconds on the baseline system and
133 seconds using the language modeling objec-
tive.

Error detection is the task where introducing the
additional cost objective gave the largest improve-
ment in performance, for a few reasons:

1. This task has very sparse labels in the
datasets, with error tokens very infrequent
and far apart. Without the language modeling
objective, the network has very little use for
all the available words that contain no errors.

2. There are only two possible labels, correct
and incorrect, which likely makes it more dif-
ficult for the model to learn feature detec-
tors for many different error types. Language
modeling uses a much larger number of pos-

sible labels, giving a more varied training sig-
nal.

3. Finally, the task of error detection is directly
related to language modeling. By learning a
better model of the overall text in the training
corpus, the system can more easily detect any
irregularities.

We also analysed the performance of the differ-
ent architectures during training. Figure 2 shows
the F0.5 score on the development set for each
model after every epoch over the training data.
The baseline model peaks quickly, followed by a
gradual drop in performance, which is likely due
to overfitting on the available data. Dropout pro-
vides an effective regularisation method, slowing
down the initial performance but preventing the
model from overfitting. The added language mod-
eling objective provides a substantial improve-
ment – the system outperforms other configura-
tions already in the early stages of training and the
results are also sustained in the later epochs.

Figure 2: F0.5 score on the FCE development set
after each training epoch.

6 NER and Chunking

In the next experiments we evaluate the language
modeling objective on named entity recognition
and chunking. For general-domain NER, we use
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GENIA-POS PTB-POS UD-ES UD-FI
DEV TEST DEV TEST DEV TEST DEV TEST

Baseline 98.69 98.61 97.23 97.24 96.38 95.99 95.02 94.80
+ dropout 98.79 98.71 97.36 97.30 96.51 96.16 95.88 95.60
+ LMcost 98.89 98.81 97.48 97.43 96.62 96.21 96.14 95.88

Table 3: Accuracy of different sequence labeling architectures on POS-tagging datasets.

the English section of the CoNLL 2003 corpus
(Tjong Kim Sang and De Meulder, 2003), contain-
ing news stories from the Reuters Corpus. We also
report results on two biomedical NER datasets:
The BioCreative IV Chemical and Drug corpus
(CHEMDNER, Krallinger et al. (2015)) of 10,000
abstracts, annotated for mentions of chemical and
drug names, and the JNLPBA corpus (Kim et al.,
2004) of 2,404 abstracts annotated for mentions
of different cells and proteins. Finally, we use the
CoNLL 2000 dataset (Tjong Kim Sang and Buch-
holz, 2000), created from the Wall Street Journal
Sections 15-18 and 20 from the Penn Treebank,
for evaluating sequence labeling on the task of
chunking. The standard CoNLL entity-level F1

score is used as the main evaluation metric.

Compared to error detection corpora, the labels
are more balanced in these datasets. However, ma-
jority labels still exist: roughly 83% of the tokens
in the NER datasets are tagged as ”O”, indicating
that the word is not an entity, and the NP label
covers 53% of tokens in the chunking data.

Table 2 contains results for evaluating the differ-
ent architectures on NER and chunking. On these
tasks, the application of dropout provides a consis-
tent improvement – applying some variance onto
the input embeddings results in more robust mod-
els for NER and chunking. The addition of the
language modeling objective consistently further
improves performance on all benchmarks.

While these results are comparable to the re-
spective state-of-the-art results on most datasets,
we did not fine-tune hyperparameters for any spe-
cific task, instead providing a controlled analy-
sis of the language modeling objective in differ-
ent settings. For JNLPBA, the system achieves
73.83% compared to 72.55% by Zhou and Su
(2004) and 72.70% by Rei et al. (2016). On
CoNLL-03, Lample et al. (2016) achieve a con-
siderably higher result of 90.94%, possibly due
to their use of specialised word embeddings and
a custom version of LSTM. However, our sys-

tem does outperform a similar architecture by
Huang et al. (2015), achieving 86.26% compared
to 84.26% F1 score on the CoNLL-03 dataset.

Figure 3 shows F1 on the CHEMDNER de-
velopment set after every training epoch. With-
out dropout, performance peaks quickly and then
trails off as the system overfits on the training set.
Using dropout, the best performance is sustained
throughout training and even slightly improved.
Finally, adding the language modeling objective
on top of dropout allows the system to consistently
outperform the other architectures.

Figure 3: Entity-level F1 score on the CHEMD-
NER development set after each training epoch.

7 POS tagging

We also evaluated the language modeling training
objective on four POS-tagging datasets. The Penn
Treebank POS-tag corpus (Marcus et al., 1993)
contains texts from the Wall Street Journal and has
been annotated with 48 different part-of-speech
tags. In addition, we use the POS-annotated subset
of the GENIA corpus (Ohta et al., 2002) contain-
ing 2,000 biomedical PubMed abstracts. Follow-
ing Tsuruoka et al. (2005), we use the same 210-
document test set. Finally, we also evaluate on the
Finnish and Spanish sections of the Universal De-
pendencies v1.2 dataset (UD, Nivre et al. (2015)),
in order to investigate performance on morpholog-
ically complex and Romance languages.
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These datasets are somewhat more balanced in
terms of label distributions, compared to error de-
tection and NER, as no single label covers over
50% of the tokens. POS-tagging also offers a large
variance of unique labels, with 48 labels in PTB
and 42 in GENIA, and this can provide useful in-
formation to the models during training. The base-
line performance on these datasets is also close to
the upper bound, therefore we expect the language
modeling objective to not provide much additional
benefit.

The results of different sequence labeling archi-
tectures on POS-tagging can be seen in Table 3
and accuracy on the development set is shown in
Figure 4. While the performance improvements
are small, they are consistent across all domains,
languages and datasets. Application of dropout
again provides a more robust model, and the lan-
guage modeling cost improves the performance
further. Even though the labels already offer a var-
ied training objective, learning to predict the sur-
rounding words at the same time has provided the
model with additional general-purpose features.

8 Related Work

Our work builds on previous research exploring
multi-task learning in the context of different se-
quence labeling tasks. The idea of multi-task
learning was described by Caruana (1998) and has
since been extended to many language process-
ing tasks using neural networks. For example,
Collobert and Weston (2008) proposed a multi-
task framework using weight-sharing between net-
works that are optimised for different supervised
tasks.

Cheng et al. (2015) described a system for de-
tecting out-of-vocabulary names by also predict-
ing the next word in the sequence. While they use
a regular recurrent architecture, we propose a lan-
guage modeling objective that can be integrated
with a bidirectional network, making it applica-
ble to existing state-of-the-art sequence labeling
frameworks.

Plank et al. (2016) described a related architec-
ture for POS-tagging, predicting the frequency of
each word together with the part-of-speech, and
showed that this can improve tagging accuracy on
low-frequency words. While predicting word fre-
quency can be useful for POS-tagging, language
modeling provides a more general training signal,
allowing us to apply the model to many different

Figure 4: Token-level accuracy on the PTB-POS
development set after each training epoch.

sequence labeling tasks.
Recently, Augenstein and Søgaard (2017)

explored multi-task learning for classifying
keyphrase boundaries, by incorporating tasks
such as semantic super-sense tagging and iden-
tification of multi-word expressions. Bingel and
Søgaard (2017) also performed a systematic
comparison of task relationships by combining
different datasets through multi-task learning.
Both of these approaches involve switching to
auxiliary datasets, whereas our proposed language
modeling objective requires no additional data.

9 Conclusion

We proposed a novel sequence labeling framework
with a secondary objective – learning to predict
surrounding words for each word in the dataset.
One half of a bidirectional LSTM is trained as
a forward-moving language model, whereas the
other half is trained as a backward-moving lan-
guage model. At the same time, both of these are
also combined, in order to predict the most prob-
able label for each word. This modification can
be applied to several common sequence labeling
architectures and requires no additional annotated
or unannotated data.

The objective of learning to predict surrounding
words provides an additional source of informa-
tion during training. The model is incentivised to
discover useful features in order to learn the lan-
guage distribution and composition patterns in the
training data. While language modeling is not the
main goal of the system, this additional training
objective leads to more accurate sequence labeling
models on several different tasks.

The architecture was evaluated on a range of
datasets, covering the tasks of error detection in
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learner texts, named entity recognition, chunking
and POS-tagging. We found that the additional
language modeling objective provided consistent
performance improvements on every benchmark.
The largest benefit from the new architecture was
observed on the task of error detection in learner
writing. The label distribution in the original
dataset is very sparse and unbalanced, making it a
difficult task for the model to learn. The added lan-
guage modeling objective allowed the system to
take better advantage of the available training data,
leading to 3.9% absolute improvement over the
previous best architecture. The language modeling
objective also provided consistent improvements
on other sequence labeling tasks, such as named
entity recognition, chunking and POS-tagging.

Future work could investigate the extension
of this architecture to additional unannotated re-
sources. Learning generalisable language fea-
tures from large amounts of unlabeled in-domain
text could provide sequence labeling models with
additional benefit. While it is common to pre-
train word embeddings on large-scale unanno-
tated corpora, only limited research has been done
towards useful methods for pre-training or co-
training more advanced compositional modules.
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