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Abstract
Understanding the connotation of words
plays an important role in interpreting sub-
tle shades of sentiment beyond denotative
or surface meaning of text, as seemingly
objective statements often allude nuanced
sentiment of the writer, and even purpose-
fully conjure emotion from the readers’
minds. The focus of this paper is draw-
ing nuanced, connotative sentiments from
even those words that are objective on the
surface, such as “intelligence”, “human”,
and “cheesecake”. We propose induction
algorithms encoding a diverse set of lin-
guistic insights (semantic prosody, distri-
butional similarity, semantic parallelism of
coordination) and prior knowledge drawn
from lexical resources, resulting in the first
broad-coverage connotation lexicon.

1 Introduction

There has been a substantial body of research
in sentiment analysis over the last decade (Pang
and Lee, 2008), where a considerable amount of
work has focused on recognizing sentiment that is
generally explicit and pronounced rather than im-
plied and subdued. However in many real-world
texts, even seemingly objective statements can be
opinion-laden in that they often allude nuanced
sentiment of the writer (Greene and Resnik, 2009),
or purposefully conjure emotion from the readers’
minds (Mohammad and Turney, 2010). Although
some researchers have explored formal and statis-
tical treatments of those implicit and implied sen-
timents (e.g. Wiebe et al. (2005), Esuli and Sebas-
tiani (2006), Greene and Resnik (2009), Davidov
et al. (2010)), automatic analysis of them largely
remains as a big challenge.

In this paper, we concentrate on understanding
the connotative sentiments of words, as they play
an important role in interpreting subtle shades of
sentiment beyond denotative or surface meaning
of text. For instance, consider the following:

Geothermal replaces oil-heating; it helps re-
ducing greenhouse emissions.1

Although this sentence could be considered as a
factual statement from the general standpoint, the
subtle effect of this sentence may not be entirely
objective: this sentence is likely to have an influ-
ence on readers’ minds in regard to their opinion
toward “geothermal”. In order to sense the subtle
overtone of sentiments, one needs to know that the
word “emissions” has generally negative connota-
tion, which geothermal reduces. In fact, depend-
ing on the pragmatic contexts, it could be precisely
the intention of the author to transfer his opinion
into the readers’ minds.

The main contribution of this paper is a broad-
coverage connotation lexicon that determines the
connotative polarity of even those words with ever
so subtle connotation beneath their surface mean-
ing, such as “Literature”, “Mediterranean”, and
“wine”. Although there has been a number of
previous work that constructed sentiment lexicons
(e.g., Esuli and Sebastiani (2006), Wilson et al.
(2005a), Kaji and Kitsuregawa (2007), Qiu et
al. (2009)), which seem to be increasingly and
inevitably expanding over words with (strongly)
connotative sentiments rather than explicit senti-
ments alone (e.g., “gun”), little prior work has di-
rectly tackled this problem of learning connota-
tion,2 and much of the subtle connotation of many
seemingly objective words is yet to be determined.

1Our learned lexicon correctly assigns negative polarity to
emission.

2A notable exception would be the work of Feng et al.
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POSITIVE NEGATIVE

FEMA, Mandela, Intel, Google, Python, Sony, Pulitzer,
Harvard, Duke, Einstein, Shakespeare, Elizabeth, Clooney,
Hoover, Goldman, Swarovski, Hawaii, Yellowstone

Katrina, Monsanto, Halliburton, Enron, Teflon, Hi-
roshima, Holocaust, Afghanistan, Mugabe, Hutu, Sad-
dam, Osama, Qaeda, Kosovo, Helicobacter, HIV

Table 1: Example Named Entities (Proper Nouns) with Polar Connotation.

A central premise to our approach is that it is
collocational statistics of words that affect and
shape the polarity of connotation. Indeed, the ety-
mology of “connotation” is from the Latin “com-
” (“together or with”) and “notare” (“to mark”).
It is important to clarify, however, that we do not
simply assume that words that collocate share the
same polarity of connotation. Although such an
assumption played a key role in previous work for
the analogous task of learning sentiment lexicon
(Velikovich et al., 2010), we expect that the same
assumption would be less reliable in drawing sub-
tle connotative sentiments of words. As one ex-
ample, the predicate “cure”, which has a positive
connotation typically takes arguments with nega-
tive connotation, e.g., “disease”, when used as the
“relieve” sense.3

Therefore, in order to attain a broad cover-
age lexicon while maintaining good precision, we
guide the induction algorithm with multiple, care-
fully selected linguistic insights: [1] distributional
similarity, [2] semantic parallelism of coordina-
tion, [3] selectional preference, and [4] seman-
tic prosody (e.g., Sinclair (1991), Louw (1993),
Stubbs (1995), Stefanowitsch and Gries (2003))),
and also exploit existing lexical resources as an ad-
ditional inductive bias.

We cast the connotation lexicon induction task
as a collective inference problem, and consider ap-
proaches based on three distinct types of algorith-
mic framework that have been shown successful
for conventional sentiment lexicon induction:

Random walk based on HITS/PageRank (e.g.,
Kleinberg (1999), Page et al. (1999), Feng
et al. (2011) Heerschop et al. (2011),
Montejo-Ráez et al. (2012))

Label/Graph propagation (e.g., Zhu and Ghahra-

(2011) but with practical limitations. See §3 for detailed dis-
cussion.

3Note that when “cure” is used as the “preserve” sense, it
expects objects with non-negative connotation. Hence word-
sense-disambiguation (WSD) presents a challenge, though
not unexpectedly. In this work, we assume the general conno-
tation of each word over statistically prevailing senses, leav-
ing a more cautious handling of WSD as future work.

mani (2002), Velikovich et al. (2010))

Constraint optimization (e.g., Roth and Yih
(2004), Choi and Cardie (2009), Lu et al.
(2011)).

We provide comparative empirical results over
several variants of these approaches with compre-
hensive evaluations including lexicon-based, hu-
man judgments, and extrinsic evaluations.

It is worthwhile to note that not all words have
connotative meanings that are distinct from deno-
tational meanings, and in some cases, it can be dif-
ficult to determine whether the overall sentiment is
drawn from denotational or connotative meanings
exclusively, or both. Therefore, we encompass any
sentiment from either type of meanings into the
lexicon, where non-neutral polarity prevails over
neutral one if some meanings lead to neutral while
others to non-neutral.4

Our work results in the first broad-coverage
connotation lexicon,5 significantly improving both
the coverage and the precision of Feng et al.
(2011). As an interesting by-product, our algo-
rithm can be also used as a proxy to measure the
general connotation of real-world named entities
based on their collocational statistics. Table 1
highlights some example proper nouns included in
the final lexicon.

The rest of the paper is structured as follows.
In §2 we describe three types of induction algo-
rithms followed by evaluation in §3. Then we re-
visit the induction algorithms based on constraint
optimization in §4 to enhance quality and scala-
bility. §5 presents comprehensive evaluation with
human judges and extrinsic evaluations. Related
work and conclusion are in §6 and §7.

4In general, polysemous words do not seem to have con-
flicting non-neutral polarities over different senses, though
there are many exceptions, e.g., “heat”, or “fine”. We treat
each word in each part-of-speech as a separate word to reduce
such cases, otherwise aim to learn the most prevalent polar-
ity in the corpus with respect to each part-of-speech of each
word.

5Available at http://www.cs.stonybrook.edu/
˜ychoi/connotation.
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Figure 1: Graph for Graph Propagation (§2.2).
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Figure 2: Graph for ILP/LP (§2.3, §4.2).

2 Connotation Induction Algorithms

We develop induction algorithms based on three
distinct types of algorithmic framework that have
been shown successful for the analogous task of
sentiment lexicon induction: HITS & PageRank
(§2.1), Label/Graph Propagation (§2.2), and Con-
straint Optimization via Integer Linear Program-
ming (§2.3). As will be shown, each of these ap-
proaches will incorporate additional, more diverse
linguistic insights.

2.1 HITS & PageRank

The work of Feng et al. (2011) explored the use
of HITS (Kleinberg, 1999) and PageRank (Page
et al., 1999) to induce the general connotation
of words hinging on the linguistic phenomena of
selectional preference and semantic prosody, i.e.,
connotative predicates influencing the connotation
of their arguments. For example, the object of
a negative connotative predicate “cure” is likely
to have negative connotation, e.g., “disease” or
“cancer”. The bipartite graph structure for this
approach corresponds to the left-most box (labeled
as “pred-arg”) in Figure 1.

2.2 Label Propagation

With the goal of obtaining a broad-coverage lexi-
con in mind, we find that relying only on the struc-
ture of semantic prosody is limiting, due to rel-
atively small sets of connotative predicates avail-
able.6 Therefore, we extend the graph structure
as an overlay of two sub-graphs (Figure 1) as de-
scribed below:

6For connotative predicates, we use the seed predicate set
of Feng et al. (2011), which comprises of 20 positive and 20
negative predicates.

Sub-graph #1: Predicate–Argument Graph
This sub-graph is the bipartite graph that encodes
the selectional preference of connotative predi-
cates over their arguments. In this graph, conno-
tative predicates p reside on one side of the graph
and their co-occurring arguments a reside on the
other side of the graph based on Google Web 1T
corpus.7 The weight on the edges between the
predicates p and arguments a are defined using
Point-wise Mutual Information (PMI) as follows:

w(p→ a) := PMI(p, a) = log2

P (p, a)

P (p)P (a)

PMI scores have been widely used in previous
studies to measure association between words
(e.g., Turney (2001), Church and Hanks (1990)).

Sub-graph #2: Argument–Argument Graph
The second sub-graph is based on the distribu-
tional similarities among the arguments. One pos-
sible way of constructing such a graph is simply
connecting all nodes and assign edge weights pro-
portionate to the word association scores, such as
PMI, or distributional similarity. However, such a
completely connected graph can be susceptible to
propagating noise, and does not scale well over a
very large set of vocabulary.

We therefore reduce the graph connectivity by
exploiting semantic parallelism of coordination
(Bock (1986), Hatzivassiloglou and McKeown

7We restrict predicte-argument pairs to verb-object pairs
in this study. Note that Google Web 1T dataset consists of
n-grams upto n = 5. Since n-gram sequences are too short
to apply a parser, we extract verb-object pairs approximately
by matching part-of-speech tags. Empirically, when overlaid
with the second sub-graph, we found that it is better to keep
the connectivity of this sub-graph as uni-directional. That is,
we only allow edges to go from a predicate to an argument.
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POSITIVE NEGATIVE NEUTRAL

n. avatar, adrenaline, keynote, debut,
stakeholder, sunshine, cooperation

unbeliever, delay, shortfall, gun-
shot, misdemeanor, mutiny, rigor

header, mark, clothing, outline,
grid, gasoline, course, preview

v. handcraft, volunteer, party, ac-
credit, personalize, nurse, google

sentence, cough, trap, scratch, de-
bunk, rip, misspell, overcharge

state, edit, send, put, arrive, type,
drill, name, stay, echo, register

a. floral, vegetarian, prepared, age-
less, funded, contemporary

debilitating, impaired, swollen,
intentional, jarring, unearned

same, cerebral, west, uncut, auto-
matic, hydrated, unheated, routine

Table 2: Example Words with Learned Connotation: Nouns(n), Verbs(v), Adjectives(a).

(1997), Pickering and Branigan (1998)). In par-
ticular, we consider an undirected edge between a
pair of arguments a1 and a2 only if they occurred
together in the “a1 and a2” or “a2 and a1” coor-
dination, and assign edge weights as:

w(a1 − a2) = CosineSim(−→a1,−→a2) =
−→a1 · −→a2
||−→a1|| ||−→a2||

where −→a1 and −→a2 are co-occurrence vectors for a1
and a2 respectively. The co-occurrence vector for
each word is computed using PMI scores with re-
spect to the top n co-occurring words.8 n (=50)
is selected empirically. The edge weights in two
sub-graphs are normalized so that they are in the
comparable range.9

Limitations of Graph-based Algorithms
Although graph-based algorithms (§2.1, §2.2) pro-
vide an intuitive framework to incorporate various
lexical relations, limitations include:

1. They allow only non-negative edge weights.
Therefore, we can encode only positive (sup-
portive) relations among words (e.g., distri-
butionally similar words will endorse each
other with the same polarity), while miss-
ing on exploiting negative relations (e.g.,
antonyms may drive each other into the op-
posite polarity).

2. They induce positive and negative polarities
in isolation via separate graphs. However, we
expect that a more effective algorithm should
induce both polarities simultaneously.

3. The framework does not readily allow incor-
porating a diverse set of soft and hard con-
straints.

8We discard edges with cosine similarity ≤ 0, as those
indicate either independence or the opposite of similarity.

9Note that cosine similarity does not make sense for the
first sub-graph as there is no reason why a predicate and an ar-
gument should be distributionally similar. We experimented
with many different variations on the graph structure and
edge weights, including ones that include any word pairs that
occurred frequently enough together. For brevity, we present
the version that achieved the best results here.

2.3 Constraint Optimization
Addressing limitations of graph-based algorithms
(§2.2), we propose an induction algorithm based
on Integer Linear Programming (ILP). Figure 2
provides the pictorial overview. In comparison to
Figure 1, two new components are: (1) dictionary-
driven relations targeting enhanced precision, and
(2) dictionary-driven words (i.e., unseen words
with respect to those relations explored in Figure
1) targeting enhanced coverage. We formulate in-
sights in Figure 2 using ILP as follows:

Definition of sets of words:
1. P+: the set of positive seed predicates.
P−: the set of negative seed predicates.

2. S: the set of seed sentiment words.
3. Rsyn: word pairs in synonyms relation.
Rant: word pairs in antonyms relation.
Rcoord: word pairs in coordination relation.
Rpred: word pairs in pred-arg relation.
Rpred+(−)

: Rpred based on P+ (P−).

Definition of variables: For each word i, we
define binary variables xi, yi, zi ∈ {0, 1}, where
xi = 1 (yi = 1, zi = 1) if and only if i has a pos-
itive (negative, neutral) connotation respectively.
For every pair of word i and j, we define binary
variables dpqij where p, q ∈ {+,−, 0} and dpqij = 1
if and only if the polarity of i and j are p and q
respectively.

Objective function: We aim to maximize:

F = Φprosody + Φcoord + Φneu

where Φprosody is the scores based on semantic
prosody, Φcoord captures the distributional similar-
ity over coordination, and Φneu controls the sen-
sitivity of connotation detection between positive
(negative) and neutral. In particular,

Φprosody =

Rpred∑

i,j

wpred
i,j (d++

i,j + d−−i,j − d+−i,j − d−+
i,j )

Φcoord =

Rcoord∑

i,j

wcoord
i,j (d++

i,j + d−−i,j + d00i,j)
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Φneu = α

Rpred∑

i,j

wpred
i,j · zj

Soft constraints (edge weights): The weights in
the objective function are set as follows:

wpred(p, a) =
freq(p, a)∑

(p,x)∈Rpred

freq(p, x)

wcoord(a1, a2) = CosSim(−→a1,−→a2) =
−→a1 · −→a2
||−→a1|| ||−→a2||

Note that the same wcoord(a1, a2) has been used
in graph propagation described in Section 2.2. α
controls the sensitivity of connotation detection
such that higher value of α will promote neutral
connotation over polar ones.

Hard constrains for variable consistency:

1. Each word i has one of {+,−, ø} as polarity:
∀i, xi + yi + zi = 1

2. Variable consistency between dpqij and
xi, yi, zi:

xi + xj − 1 ≤ 2d++
i,j ≤ xi + xj

yi + yj − 1 ≤ 2d−−i,j ≤ yi + yj

zi + zj − 1 ≤ 2d00i,j ≤ zi + zj

xi + yj − 1 ≤ 2d+−i,j ≤ xi + yj

yi + xj − 1 ≤ 2d−+i,j ≤ yi + xj

Hard constrains for WordNet relations:

1. Cant: Antonym pairs will not have the same
positive or negative polarity:

∀(i, j) ∈ Rant, xi + xj ≤ 1, yi + yj ≤ 1

For this constraint, we only consider
antonym pairs that share the same root, e.g.,
“sufficient” and “insufficient”, as those pairs
are more likely to have the opposite polarities
than pairs without sharing the same root, e.g.,
“east” and “west”.

2. Csyn: Synonym pairs will not have the oppo-
site polarity:

∀(i, j) ∈ Rsyn, xi + yj ≤ 1, xj + yi ≤ 1

3 Experimental Result I

We provide comprehensive comparisons over vari-
ants of three types of algorithms proposed in §2.
We use the Google Web 1T data (Brants and Franz
(2006)), and POS-tagged ngrams using Stanford
POS Tagger (Toutanova and Manning (2000)). We
filter out the ngrams with punctuations and other
special characters to reduce the noise.

3.1 Comparison against Conventional
Sentiment Lexicon

Note that we consider the connotation lexicon to
be inclusive of a sentiment lexicon for two prac-
tical reasons: first, it is highly unlikely that any
word with non-neutral sentiment (i.e., positive or
negative) would carry connotation of the oppo-
site, i.e., conflicting10 polarity. Second, for some
words with distinct sentiment or strong connota-
tion, it can be difficult or even unnatural to draw a
precise distinction between connotation and senti-
ment, e.g., “efficient”. Therefore, sentiment lexi-
cons can serve as a surrogate to measure a subset
of connotation words induced by the algorithms,
as shown in Table 3 with respect to General In-
quirer (Stone and Hunt (1963)) and MPQA (Wil-
son et al. (2005b)).11

Discussion Table 3 shows the agreement statis-
tics with respect to two conventional sentiment
lexicons. We find that the use of label propaga-
tion alone [PRED-ARG (CP)] improves the per-
formance substantially over the comparable graph
construction with different graph analysis algo-
rithms, in particular, HITS and PageRank ap-
proaches of Feng et al. (2011). The two com-
pletely connected variants of the graph propa-
gation on the Pred-Arg graph, [

⊗
PRED-ARG

(PMI)] and [
⊗

PRED-ARG (CP)], do not neces-
sarily improve the performance over the simpler
and computationally lighter alternative, [PRED-
ARG (CP)]. The [OVERLAY], which is based
on both Pred-Arg and Arg-Arg subgraphs (§2.2),
achieves the best performance among graph-based
algorithms, significantly improving the precision
over all other baselines. This result suggests:

1 The sub-graph #2, based on the semantic par-
allelism of coordination, is simple and yet
very powerful as an inductive bias.

2 The performance of graph propagation varies
significantly depending on the graph topol-
ogy and the corresponding edge weights.

Note that a direct comparison against ILP for top
N words is tricky, as ILP does not rank results.
Only for comparison purposes however, we assign

10We consider “positive” and “negative” polarities conflict,
but “neutral” polarity does not conflict with any.

11In the case of General Inquirer, we use words in POSITIV
and NEGATIV sets as words with positive and negative labels
respectively.

1778



GENINQ EVAL MPQA EVAL
100 1,000 5,000 10,000 ALL 100 1,000 5,000 10,000 ALL

ILP 97.6 94.5 84.5 80.8 80.4 98.0 89.7 84.6 81.2 78.4
OVERLAY 97.0 95.1 78.8 (78.3) 78.3 98.0 93.4 82.1 77.7 77.7⊗

PRED-ARG (PMI) 91.0 91.4 76.1 (76.1) 76.1 88.0 89.1 78.8 75.1 75.1⊗
PRED-ARG (CP) 88.0 85.4 76.2 (76.2) 76.2 87.0 82.6 78.0 76.3 76.3
PRED-ARG (CP) 91.0 91.0 81.0 (81.0) 81.0 88.0 91.5 80.0 78.3 78.3

HITS-ASYMT 77.0 68.8 - - 66.5 86.3 81.3 - - 72.2
PAGERANK-ASYMF 77.0 68.5 - - 65.7 87.2 80.3 - - 72.3

Table 3: Evaluation of Induction Algorithms (§2) with respect to Sentiment Lexicons (precision%).

ranks based on the frequency of words for ILP. Be-
cause of this issue, the performance of top ∼1k
words of ILP should be considered only as a con-
servative measure. Importantly, when evaluated
over more than top 5k words, ILP is overall the
top performer considering both precision (shown
in Table 3) and coverage (omitted for brevity).12

4 Precision, Coverage, and Efficiency

In this section, we address three important aspects
of an ideal induction algorithm: precision, cover-
age, and efficiency. For brevity, the remainder of
the paper will focus on the algorithms based on
constraint optimization, as it turned out to be the
most effective one from the empirical results in §3.

Precision In order to see the effectiveness of the
induction algorithms more sharply, we had used a
limited set of seed words in §3. However to build a
lexicon with substantially enhanced precision, we
will use as a large seed set as possible, e.g., entire
sentiment lexicons13.

Broad coverage Although statistics in Google
1T corpus represent a very large amount of text,
words that appear in pred-arg and coordination re-
lations are still limited. To substantially increase
the coverage, we will leverage dictionary words
(that are not in the corpus) as described in §2.3
and Figure 2.

Efficiency One practical problem with ILP is ef-
ficiency and scalability. In particular, we found
that it becomes nearly impractical to run the ILP
formulation including all words in WordNet plus
all words in the argument position in Google Web
1T. We therefore explore an alternative approach
based on Linear Programming in what follows.

12In fact, the performance of PRED-ARG variants for top
10K w.r.t. GENINQ is not meaningful as no additional word
was matched beyond top 5k words.

13Note that doing so will prevent us from evaluating
against the same sentiment lexicon used as a seed set.

4.1 Induction using Linear Programming
One straightforward option for Linear Program-
ming formulation may seem like using the same
Integer Linear Programming formulation intro-
duced in §2.3, only changing the variable defini-
tions to be real values ∈ [0, 1] rather than integers.
However, because the hard constraints in §2.3 are
defined based on the assumption that all the vari-
ables are binary integers, those constraints are not
as meaningful when considered for real numbers.
Therefore we revise those hard constraints to en-
code various semantic relations (WordNet and se-
mantic coordination) more directly.

Definition of variables: For each word i, we de-
fine variables xi, yi, zi ∈ [0, 1]. i has a positive
(negative) connotation if and only if the xi (yi) is
assigned the greatest value among the three vari-
ables; otherwise, i is neutral.

Objective function: We aim to maximize:

F = Φprosody + Φcoord + Φsyn + Φant + Φneu

Φprosody =

Rpred+∑

i,j

wpred+

i,j · xj +
Rpred−∑

i,j

wpred−
i,j · yj

Φcoord =

Rcoord∑

i,j

wcoord
i,j · (dc++

i,j + dc−−i,j )

Φsyn = W syn
Rsyn∑

i,j

(ds++
i,j + ds−−i,j )

Φant = W ant
Rant∑

i,j

(da++
i,j + da−−i,j )

Φneu = α

Rpred∑

i,j

wpred
i,j · zj

Hard constraints We add penalties to the
objective function if the polarity of a pair of words
is not consistent with its corresponding semantic
relations. For example, for synonyms i and j, we
introduce a penalty W syn (a positive constant) for
ds++

i,j , ds
−−
i,j ∈ [−1, 0], where we set the upper

bound of ds++
i,j (ds−−i,j ) as the signed distance of
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FORMULA
POSITIVE NEGATIVE ALL

R P F R P F R P F
ILP Φprosody + Csyn + Cant 51.4 85.7 64.3 44.7 87.9 59.3 48.0 86.8 61.8

Φprosody + Csyn + Cant + CS 61.2 93.3 73.9 52.4 92.2 66.8 56.8 92.8 70.5
Φprosody + Φcoord + Csyn + Cant 67.3 75.0 70.9 53.7 84.4 65.6 60.5 79.7 68.8
Φprosody + Φcoord + Csyn + Cant + CS 62.2 96.0 75.5 51.5 89.5 65.4 56.9 92.8 70.5

LP Φprosody + Φsyn + Φant 24.4 76.0 36.9 23.6 78.8 36.3 24.0 77.4 36.6
Φprosody + Φsyn + Φant + ΦS 71.6 87.8 78.9 68.8 84.6 75.9 70.2 86.2 77.4
Φprosody + Φcoord + Φsyn + Φant 67.9 92.6 78.3 64.6 89.1 74.9 66.3 90.8 76.6
Φprosody + Φcoord + Φsyn + Φant + ΦS 78.6 90.5 84.1 73.3 87.1 79.6 75.9 88.8 81.8

Table 4: ILP/LP Comparison on MQPA′ (%).

xi and xj (yi and yj) as shown below:

For (i, j) ∈ Rsyn,

ds++
i,j ≤ xi − xj , ds++

i,j ≤ xj − xi
ds−−i,j ≤ yi − yj , ds−−i,j ≤ yj − yi

Notice that ds++
i,j , ds

−−
i,j satisfying above inequal-

ities will be always of negative values, hence in
order to maximize the objective function, the LP
solver will try to minimize the absolute values of
ds++

i,j , ds
−−
i,j , effectively pushing i and j toward

the same polarity. Constraints for semantic coor-
dination Rcoord can be defined similarly. Lastly,
following constraints encode antonym relations:

For (i, j) ∈ Rant ,

da++
i,j ≤ xi − (1− xj), da++

i,j ≤ (1− xj)− xi
da−−i,j ≤ yi − (1− yj), da−−i,j ≤ (1− yj)− yi

Interpretation Unlike ILP, some of the vari-
ables result in fractional values. We consider a
word has positive or negative polarity only if the
assignment indicates 1 for the corresponding po-
larity and 0 for the rest. In other words, we treat
all words with fractional assignments over differ-
ent polarities as neutral. Because the optimal so-
lutions of LP correspond to extreme points in the
convex polytope formed by the constraints, we ob-
tain a large portion of words with non-fractional
assignments toward non-neutral polarities. Alter-
natively, one can round up fractional values.

4.2 Empirical Comparisons: ILP v.s. LP
To solve the ILP/LP, we run ILOG CPLEX Opti-
mizer (CPLEX, 2009)) on a 3.5GHz 6 core CPU
machine with 96GB RAM. Efficiency-wise, LP
runs within 10 minutes while ILP takes several
hours. Table 4 shows the results evaluated against
MPQA for different variations of ILP and LP.
We find that LP variants much better recall and
F-score, while maintaining comparable precision.

Therefore, we choose the connotation lexicon by
LP (C-LP) in the following evaluations in §5.

5 Experimental Results II
In this section, we present comprehensive intrin-
sic §5.1 and extrinsic §5.2 evaluations comparing
three representative lexicons from §2 & §4: C-
LP, OVERLAY, PRED-ARG (CP), and two popular
sentiment lexicons: SentiWordNet (Baccianella et
al., 2010) and GI+MPQA.14 Note that C-LP is the
largest among all connotation lexicons, including
∼70,000 polar words.15

5.1 Intrinsic Evaluation: Human Judgements

We evaluate 4000 words16 using Amazon Me-
chanical Turk (AMT). Because we expect that
judging a connotation can be dependent on one’s
cultural background, personality and value sys-
tems, we gather judgements from 5 people for
each word, from which we hope to draw a more
general judgement of connotative polarity. About
300 unique Turkers participated the evaluation
tasks. We gather gold standard only for those
words for which more than half of the judges
agreed on the same polarity. Otherwise we treat
them as ambiguous cases.17 Figure 3 shows a part
of the AMT task, where Turkers are presented with
questions that help judges to determine the subtle
connotative polarity of each word, then asked to
rate the degree of connotation on a scale from -
5 (most negative) and 5 (most positive). To draw

14GI+MPQA is the union of General Inquirer and MPQA.
The GI, we use words in the “Positiv” & “Negativ” set. For
SentiWordNet, to retrieve the polarity of a given word, we
sum over the polarity scores over all senses, where positive
(negative) values correspond to positive (negative) polarity.

15∼13k adj, ∼6k verbs, ∼28k nouns, ∼22k proper nouns.
16We choose words that are not already in GI+MPQA and

obtain most frequent 10,000 words based on the unigram fre-
quency in Google-Ngram, then randomly select 4000 words.

17We allow Turkers to mark words that can be used with
both positive and negative connotation, which results in about
7% of words that are excluded from the gold standard set.
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Figure 3: A Part of AMT Task Design.

YES NO
QUESTION % Avg % Avg
“Enjoyable or pleasant” 43.3 2.9 16.3 -2.4
“Of a good quality” 56.7 2.5 6.1 -2.7
“Respectable / honourable” 21.0 3.3 14.0 -1.1
“Would like to do or have” 52.5 2.8 11.5 -2.4

Table 5: Distribution of Answers from AMT.

the gold standard, we consider two different voting
schemes:

• ΩV ote: The judgement of each Turker is
mapped to neutral for −1 ≤ score ≤ 1, pos-
itive for score ≥ 2, negative for score ≤ 2,
then we take the majority vote.

• ΩScore: Let σ(i) be the sum (weighted vote)
of the scores given by 5 judges for word i.
Then we determine the polarity label l(i) of i
as:

l(i) =





positive if σ(i) > 1
negative if σ(i) < −1
neutral if −1 ≤ σ(i) ≤ 1

The resulting distribution of judgements is shown
in Table 5 & 6. Interestingly, we observe
that among the relatively frequently used English
words, there are overwhelmingly more positively
connotative words than negative ones.

In Table 7, we show the percentage of words
with the same label over the mutual words by the
two lexicon. The highest agreement is 77% by
C-LP and the gold standard by AMTV ote. How
good is this? It depends on what is the natural de-
gree of agreement over subtle connotation among
people. Therefore, we also report the degree of
agreement among human judges in Table 7, where
we compute the agreement of one Turker with re-
spect to the gold standard drawn from the rest of
the Turkers, and take the average across over all
five Turkers18. Interestingly, the performance of

18In order to draw the gold standard from the 4 remaining
Turkers, we consider adjusted versions of ΩV ote and ΩScore

schemes described above.

POS NEG NEU UNDETERMINED

ΩV ote 50.4 14.6 24.1 10.9
ΩScore 67.9 20.6 11.5 n/a

Table 6: Distribution of Connotative Polarity from
AMT.

C-LP SENTIWN HUMAN JUDGES

ΩV ote 77.0 71.5 66.0
ΩScore 73.0 69.0 69.0

Table 7: Agreement (Accuracy) against AMT-
driven Gold Standard.

Turkers is not as good as that of C-LP lexicon. We
conjecture that this could be due to generally vary-
ing perception of different people on the connota-
tive polarity,19 while the corpus-driven induction
algorithms focus on the general connotative po-
larity corresponding to the most prevalent senses
of words in the corpus.

5.2 Extrinsic Evaluation

We conduct lexicon-based binary sentiment clas-
sification on the following two corpora.

SemEval From the SemEval task, we obtain a
set of news headlines with annotated scores (rang-
ing from -100 to 87). The positive/negative scores
indicate the degree of positive/negative polarity
orientation. We construct several sets of the posi-
tive and negative texts by setting thresholds on the
scores as shown in Table 8. “≶ n” indicates that
the positive set consists of the texts with scores
≥ n and the negative set consists of the texts with
scores ≤ −n.

Emoticon tweets The sentiment Twitter data20

consists of tweets containing either a smiley
emoticon (positive sentiment) or a frowny emoti-
con (negative sentiment). We filter out the tweets
with question marks or more than 30 words, and
keep the ones with at least two words in the union
of all polar words in the five lexicons in Table 8,
and then randomly select 10000 per class.

We denote the short text (e.g., content of tweets
or headline texts from SemEval) by t. w repre-
sents the word in t. W+/W− is the set of posi-

19Pearson correlation coefficient among turkers is 0.28,
which corresponds to a positive small to medium correlation.
Note that when the annotation of turkers is aggregated, we
observe agreement as high as 77% with respect to the learned
connotation lexicon.

20http://www.stanford.edu/˜alecmgo/
cs224n/twitterdata.2009.05.25.c.zip
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DATA
LEXICON TWEET SEMEVAL

≶20 ≶40 ≶60 ≶80
C-LP 70.1 70.8 74.6 80.8 93.5
OVERLAY 68.5 70.0 72.9 76.8 89.6
PRED-ARG (CP) 60.5 64.2 69.3 70.3 79.2
SENTIWN 67.4 61.0 64.5 70.5 79.0
GI+MPQA 65.0 64.5 69.0 74.0 80.5

Table 8: Accuracy on Sentiment Classification
(%).

tive/negative words of the lexicon. We define the
weight of w as s(w). If w is adjective, s(w) = 2;
otherwise s(w) = 1. Then the polarity of each text
is determined as follows:

pol(t) =





positive if
W+∑
w∈t

s(w) ≥
W−∑
w∈t

s(w)

negative if
W+∑
w∈t

s(w) <
W−∑
w∈t

s(w)

As shown in Table 8, C-LP generally performs
better than the other lexicons on both corpora.
Considering that only very simple classification
strategy is applied, the result by the connotation
lexicon is quite promising.

Finally, Table 1 highlights interesting exam-
ples of proper nouns with connotative polarity,
e.g., “Mandela”, “Google”, “Hawaii” with pos-
itive connotation, and “Monsanto”, “Hallibur-
ton”, “Enron” with negative connotation, sug-
gesting that our algorithms could potentially serve
as a proxy to track the general connotation of real
world entities. Table 2 shows example common
nouns with connotative polarity.

5.3 Practical Remarks on WSD and MWEs
In this work we aim to find the polarity of most
prevalent senses of each word, in part because it
is not easy to perform unsupervised word sense
disambiguation (WSD) on a large corpus in a reli-
able way, especially when the corpus consists pri-
marily of short n-grams. Although the resulting
lexicon loses on some of the polysemous words
with potentially opposite polarities, per-word con-
notation (rather than per-sense connotation) does
have a practical value: it provides a convenient
option for users who wish to avoid the burden of
WSD before utilizing the lexicon. Future work in-
cludes handling of WSD and multi-word expres-
sions (MWEs), e.g., “Great Leader” (for Kim
Jong-Il), “Inglourious Basterds” (a movie title).21

21These examples credit to an anonymous reviewer.

6 Related Work

A very interesting work of Mohammad and Tur-
ney (2010) uses Mechanical Turk in order to build
the lexicon of emotions evoked by words. In con-
trast, we present an automatic approach that in-
fers the general connotation of words. Velikovich
et al. (2010) use graph propagation algorithms for
constructing a web-scale polarity lexicon for sen-
timent analysis. Although we employ the same
graph propagation algorithm, our graph construc-
tion is fundamentally different in that we integrate
stronger inductive biases into the graph topology
and the corresponding edge weights. As shown
in our experimental results, we find that judicious
construction of graph structure, exploiting multi-
ple complementing linguistic phenomena can en-
hance both the performance and the efficiency of
the algorithm substantially. Other interesting ap-
proaches include one based on min-cut (Dong et
al., 2012) or LDA (Xie and Li, 2012). Our pro-
posed approaches are more suitable for encoding
a much diverse set of linguistic phenomena how-
ever. But our work use a few seed predicates with
selectional preference instead of relying on word
similarity. Some recent work explored the use
of constraint optimization framework for inducing
domain-dependent sentiment lexicon (Choi and
Cardie (2009), Lu et al. (2011)). Our work dif-
fers in that we provide comprehensive insights into
different formulations of ILP and LP, aiming to
learn the much different task of learning the gen-
eral connotation of words.

7 Conclusion

We presented a broad-coverage connotation lexi-
con that determines the subtle nuanced sentiment
of even those words that are objective on the sur-
face, including the general connotation of real-
world named entities. Via a comprehensive eval-
uation, we provided empirical insights into three
different types of induction algorithms, and pro-
posed one with good precision, coverage, and effi-
ciency.
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