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Abstract 

The amount of readily available on-line 
text has reached hundreds of billions of 
words and continues to grow.  Yet for 
most core natural language tasks, 
algorithms continue to be optimized, 
tested and compared after training on  
corpora consisting of only one million 
words or less.  In this paper, we 
evaluate the performance of different 
learning methods on a prototypical 
natural language disambiguation task, 
confusion set disambiguation, when 
trained on orders of magnitude more 
labeled data than has previously been 
used.  We are fortunate that for this 
particular application, correctly labeled 
training data is free. Since this will 
often not be the case, we examine 
methods for effectively exploiting very 
large corpora when labeled data comes 
at a cost. 

1 Introduction 

Machine learning techniques, which 
automatically learn  linguistic information from 
online text corpora, have been applied to a 
number of natural language problems 
throughout the last decade.  A large percentage 
of papers published in this area involve 
comparisons of different learning approaches 
trained and tested with commonly used corpora.  
While the amount of available online text has 
been increasing at a dramatic rate, the size of 
training corpora typically used for learning has 
not.  In part, this is due to the standardization of 
data sets used within the field, as well as the 

potentially large cost of annotating data for 
those learning methods that rely on labeled text. 

The empirical NLP community has put 
substantial effort into evaluating performance of 
a large number of machine learning methods 
over fixed, and relatively small, data sets.  Yet 
since we now have access to significantly more 
data, one has to wonder what conclusions that 
have been drawn on small data sets may carry 
over when these learning methods are trained 
using much larger corpora.   

In this paper, we present a study of the 
effects of data size on machine learning for 
natural language disambiguation. In particular, 
we study the problem of selection among 
confusable words, using orders of magnitude 
more training data than has ever been applied to 
this problem.  First we show learning curves for 
four different machine learning algorithms.  
Next, we consider the efficacy of voting, sample 
selection and partially unsupervised learning 
with large training corpora, in hopes of being 
able to obtain the benefits that come from 
significantly larger training corpora without 
incurring too large a cost. 

2 Confusion Set Disambiguation 

Confusion set disambiguation is the problem of 
choosing the correct use of a word, given a set 
of words with which it is commonly confused.  
Example confusion sets include: {principle , 
principal}, {then, than}, {to,two,too}, and 
{weather,whether}. 
 Numerous methods have been presented 
for confusable disambiguation. The more recent 
set of techniques includes mult iplicative weight-
update algorithms (Golding and Roth, 1998), 
latent semantic analysis (Jones and Martin, 
1997), transformation-based learning (Mangu 
and Brill, 1997), differential grammars (Powers, 



1997), decision lists (Yarowsky, 1994), and a 
variety of Bayesian classifiers (Gale et al., 1993, 
Golding, 1995, Golding and Schabes, 1996).  In 
all of these approaches, the problem is 
formulated as follows:  Given a specific 
confusion set (e.g. {to,two,too}), all occurrences 
of confusion set members in the test set are 
replaced by a marker;  everywhere the system 
sees this marker, it must decide which member 
of the confusion set to choose.   
 Confusion set disambiguation is one of a 
class of natural language problems involving 
disambiguation from a relatively small set of 
alternatives based upon the string context in 
which the ambiguity site appears.  Other such 
problems include word sense disambiguation, 
part of speech tagging and some formulations of 
phrasal chunking.  One advantageous aspect of 
confusion set disambiguation, which allows us 
to study the effects of large data sets on 
performance, is that labeled training data is 
essentially free, since the correct answer is 
surface apparent in any collection of reasonably 
well-edited text.  
 

3 Learning Curve Expe riments 

This work was partially motivated by the desire 
to develop an improved grammar checker.  
Given a fixed amount of time, we considered 
what would be the most effective way to focus 
our efforts in order to attain the greatest 
performance improvement.  Some possibilities 
included modifying standard learning 
algorithms, exploring new learning techniques, 
and using more sophisticated features.  Before 
exploring these somewhat expensive paths, we 
decided to first see what happened if we simply 
trained an existing method with much more 
data.  This led to the exploration of learning 
curves for various machine learning algorithms : 
winnow1, perceptron, naïve Bayes, and a very 
simple memory-based learner.  For the first 
three learners, we used the standard collection of 
features employed for this problem: the set of 
words within a window of the target word, and 
collocations containing words and/or parts of 

                                                                 
1 Thanks to Dan Roth for making both Winnow and 
Perceptron available. 

speech.  The memory-based learner used only 
the word before and word after as features. 
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Figure 1. Learning Curves for Confusion Set 

Disambiguation 

 
 We collected a 1-billion-word training 
corpus from a variety of English texts, including 
news articles, scientific abstracts, government 
transcripts, literature and other varied forms of 
prose.  This training corpus is three orders of 
magnitude greater than the largest training 
corpus previously used for this problem.  We 
used 1 million words of Wall Street Journal text 
as our test set, and no data from the Wall Street 
Journal was used when constructing the training 
corpus. Each learner was trained at several 
cutoff points in the training corpus, i.e. the first 
one million words, the first five million words, 
and so on, until all one billion words were used 
for training. In order to avoid training biases that 
may result from merely concatenating the 
different data sources to form a larger training 
corpus, we constructed each consecutive 
training corpus by probabilistically sampling 
sentences from the different sources weighted 
by the size of each source. 
 In Figure 1, we show learning curves for 
each learner, up to one billion words of training 
data.  Each point in the graph is the average 
performance over ten confusion sets for that size 
training corpus.  Note that the curves appear to 
be log-linear even out to one billion words. 
 Of course for many problems, additional 
training data has a non-zero cost.  However, 



these results suggest that we may want to 
reconsider the trade-off between spending time 
and money on algorithm development versus 
spending it on corpus development.  At least for 
the problem of confusable disambiguation, none 
of the learners tested is close to asymptoting in 
performance at the training corpus size 
commonly employed by the field. 
 Such gains in accuracy, however, do not 
come for free.  Figure 2 shows the size of 
learned representations as a function of training 
data size.  For some applications, this is not 
necessarily a concern.  But for others, where 
space comes at a premium, obtaining the gains 
that come with a billion words of training data 
may not be viable without an effort made to 
compress information.  In such cases, one could 
look at numerous methods for compressing data 
(e.g. Dagan and Engleson, 1995, Weng, et al, 
1998). 

4 The Efficacy of Voting 

Voting has proven to be an effective technique 
for improving classifier accuracy for many 
applications, including part-of-speech tagging 
(van Halteren, et al, 1998), parsing (Henderson 
and Brill, 1999), and word sense disambiguation 
(Pederson, 2000).  By training a set of classifiers 
on a single training corpus and then combining 
their outputs in classification, it is often possible 
to achieve a target accuracy with less labeled 
training data than would be needed if only one 
classifier  was being used.  Voting can be 
effective in reducing both the bias of a particular 
training corpus and the bias of a specific learner.  
When a training corpus is very small, there is 
much more room for these biases to surface and 
therefore for voting to be effective.  But does 
voting still offer performance gains when 
classifiers are trained on much larger corpora? 
 The complementarity between two 
learners was defined by Brill and Wu (1998) in 
order to quantify the percentage of time when 
one system is wrong, that another system is 
correct, and therefore providing an upper bound 
on combination accuracy. As training size 
increases significantly, we would expect 
complementarity between classifiers to decrease.  
This is due in part to the fact that a larger 
training corpus will reduce the data set variance 
and any bias arising from this.  Also, some of 

the differences between classifiers might be due 
to how they handle a sparse training set.   
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Figure 2. Representation Size vs. Training 

Corpus Size 

 
 

As a result of comparing a sample of 
two learners as a function of increasingly large 
training sets, we see in Table 1 that 
complementarity does indeed decrease as 
training size increases. 

 
Training Size (words) Complementarity(L1,L2) 

106 0.2612 
107 0.2410 
108 0.1759 
109 0.1612 

Table 1. Complementarity 

 
 Next we tested whether this decrease in 
complementarity meant that voting loses its 
effectiveness as the training set increases.  To 
examine the impact of voting when using a 
significantly larger training corpus, we ran 3 out 
of the 4 learners on our set of 10 confusable 
pairs, excluding the memory-based learner.  
Voting was done by combining the normalized 
score each learner assigned to a classification 
choice.  In Figure 3, we show the accuracy 
obtained from voting, along with the single best 
learner accuracy at each training set size.  We 
see that for very small corpora, voting is 
beneficial, resulting in better performance than 
any single classifier.  Beyond 1 million words, 
little is gained by voting, and indeed on the 



largest training sets voting actually hurts 
accuracy. 
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Figure 3. Voting Among Classifiers 

5 When Annotated Data Is Not Free 

While the observation that learning curves are 
not asymptoting even with orders of magnitude 
more training data than is currently used is very 
exciting, this result may have somewhat limited 
ramifications.  Very few problems exist for 
which annotated data of this size is available for 
free.  Surely we cannot reasonably expect that 
the manual annotation of one billion words 
along with corresponding parse trees will occur 
any time soon (but see (Banko and Brill 2001) 
for a discussion that this might not be 
completely infeasible).  Despite this pitfall, there 
are techniques one can use to try to obtain the 
benefits of considerably larger training corpora 
without incurring significant additional costs.  In 
the sections that follow, we study two such 
solutions: active learning and unsupervised 
learning. 

5.1    Active Learning 

Active learning involves intelligently selecting a 
portion of samples for annotation from a pool of  
as-yet unannotated training samples.  Not all 
samples in a training set are equally useful.  By 
concentrating human annotation efforts on the 
samples of greatest utility to the machine 

learning algorithm, it may be possible to attain 
better performance for a fixed annotation cost 
than if samples were chosen randomly for 
human annotation. 

Most active learning approaches work 
by first training a seed learner (or family of 
learners) and then running the learner(s) over a 
set of unlabeled samples.   A sample is 
presumed to be more useful for training the 
more uncertain its classification label is.  
Uncertainty can be judged by the relative 
weights assigned to different labels by a single 
classifier (Lewis and Catlett, 1994).  Another 
approach, committee-based sampling, first 
creates a committee of classifie rs and then 
judges classification uncertainty according to 
how much the learners differ among label 
assignments. For example, Dagan and Engelson 
(1995) describe a committee-based sampling 
technique where a part of speech tagger is 
trained using an annotated seed corpus.  A 
family of taggers is then generated by randomly 
permuting the tagger probabilities, and the 
disparity among tags output by the committee 
members is used as a measure of classification 
uncertainty.   Sentences for human annotation 
are drawn, biased to prefer those containing high 
uncertainty instances. 
 While active learning has been shown to 
work for a number of tasks, the majority of 
active learning experiments in natural language 
processing have been conducted using very 
small seed corpora and sets of unlabeled 
examples.  Therefore, we wish to explore 
situations where we have, or can afford, a non-
negligible sized training corpus (such as for 
part-of-speech tagging) and have access to very 
large amounts of unlabeled data.  
 We can use bagging (Breiman, 1996), a 
technique for generating a committee of 
classifiers, to assess the label uncertainty of a 
potential training instance.  With bagging, a 
variant of the original training set is constructed 
by randomly sampling sentences with 
replacement from the source training set in order 
to produce N new training sets of size equal to 
the original. After the N models have been 
trained and run on the same test set, their 
classifications for each test sentence can be 
compared for classification agreement.  The 
higher the disagreement between classifiers, the 
more useful it would be to have an instance
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Figure 4.  Active Learning with Large Corpora 

manually labeled. 
 We used the naïve Bayes classifier, 
creating 10 classifiers each trained on bags 
generated from an initial one million words of 
labeled training data.  We present the active 
learning algorithm we used below.  
 
 
Initialize: Training data consists of X words 
correctly labeled 
Iterate : 
1) Generate a committee of classifiers using 

bagging on the training set  
 
2) Run the committee on unlabeled portion of 

the training set 
3) Choose M instances from the unlabeled set 

for labeling - pick the M/2 with the greatest 
vote entropy and then pick another M/2 
randomly – and add to training set 

  
 

We initially tried selecting the M most 
uncertain examples, but this resulted in a sample 
too biased toward the difficult instances.  
Instead we pick half of our samples for 
annotation randomly and the other half from 
those whose labels we are most uncertain of, as 

judged by the entropy of the votes assigned to 
the instance by the committee.  This is, in effect, 
biasing our sample toward instances the 
classifiers are most uncertain of. 

We show the results from sample 
selection for confusion set disambiguation in 
Figure 4.  The line labeled "sequential" shows 
test set accuracy achieved for different 
percentages of the one billion word training set, 
where training instances are taken at random.  
We ran three active learning experiments, 
increasing the size of the total unlabeled training 
corpus from which we can pick samples to be 
annotated.  In all three cases, sample selection 
outperforms sequential sampling.  At the 
endpoint of each training run in the graph, the 
same number of samples has been annotated for 
training.  However, we see that the larger the 
pool of candidate instances for annotation is, the 
better the resulting accuracy.  By increasing the 
pool of unlabeled training instances for active 
learning, we can improve accuracy with only a 
fixed additional annotation cost. Thus it is 
possible to benefit from the availability of 
extremely large corpora without incurring the 
full costs of annotation, training time, and 
representation size.  

5.2 Weakly Supervised Learning 



While the previous section shows that we can 
benefit from substantially larger training corpora 
without needing significant additional manual 
annotation, it would be ideal if we could 
improve classification accuracy using only our 
seed annotated corpus and the large unlabeled 
corpus, without requiring any additional hand 
labeling.  In this section we turn to unsupervised 
learning in an attempt to achieve this goal. 
Numerous approaches have been explored for 
exploiting situations where some amount of 
annotated data is available  and a much larger 
amount of data exists unannotated, e.g. 
Marialdo's HMM part-of-speech tagger training 
(1994), Charniak's parser retraining experiment 
(1996), Yarowsky's seeds for word sense 
disambiguation (1995) and Nigam et al's (1998) 
topic classifier learned in part from unlabelled 
documents.  A nice discussion of this general 
problem can be found in Mitchell (1999). 
 The question we want to answer is 
whether there is something to be gained by 
combining unsupervised and supervised learning 
when we scale up both the seed corpus and the 
unlabeled corpus significantly.  We can again 
use a committee of bagged classifiers, this time 
for unsupervised learning.  Whereas with active 
learning we want to choose the most uncertain 
instances for human annotation, with 
unsupervised learning we want to choose the 
instances that have the highest probability of 
being correct for automatic labeling and 
inclusion in our labeled training data. 

In Table 2, we show the test set 
accuracy (averaged over the four most 
frequently occurring confusion pairs) as a 
function of the number of classifiers that agree 
upon the label of an instance. For this 
experiment, we trained a collection of 10 naïve 
Bayes classifiers, using bagging on a 1-million-

word seed corpus.  As can be seen, the greater 
the classifier agreement, the more likely it is that 
a test sample has been correctly labeled. 
 

Classifiers 
 In Agreement 

Test  
Accuracy 

10 0.8734 
9 0.6892 
8 0.6286 
7 0.6027 
6 0.5497 
5 0.5000 

Table 2. Committee Agreement vs. Accuracy 

 
Since the instances in which all bags agree have 
the highest probability of being correct, we 
attempted to automatically grow our labeled 
training set using the 1-million-word labeled 
seed corpus along with the collection of naïve 
Bayes classifiers described above. All instances 
from the remainder of the corpus on which all 
10 classifiers agreed were selected, trusting the 
agreed-upon label. The classif iers were then 
retrained using the labeled seed corpus plus the 
new training material collected automatically 
during the previous step.  
 In Table 3 we show the results from 
these unsupervised learning experiments for two 
confusion sets.  In both cases we gain from 
unsupervised training compared to using only 
the seed corpus, but only up to a point.  At this 
point, test set accuracy begins to decline as 
additional training instances are automatically 
harvested.  We are able to attain improvements 
in accuracy for free using unsupervised learning, 
but unlike our learning curve experiments using 
correctly labeled data, accuracy does not 
continue to improve with additional data.   

 {then, than} {among, between} 
 Test  

Accuracy 
% Total 

Training Data 
Test  

Accuracy 
% Total  

Training Data 
106-wd labeled seed corpus 0.9624 0.1 0.8183 0.1 

seed+5x106 wds, unsupervised 0.9588 0.6 0.8313 0.5 
seed+107 wds, unsupervised 0.9620 1.2 0.8335 1.0 
seed+108 wds, unsupervised 0.9715 12.2 0.8270 9.2 

seed+5x108 wds, unsupervised 0.9588 61.1 0.8248 42.9 
109 wds, supervised 0.9878 100 0.9021 100 

Table 3. Committee-Based Unsupervised Learning 

 



 Charniak (1996) ran an experiment in 
which he trained a parser on one million words 
of parsed data, ran the parser over an additional 
30 million words, and used the resulting parses 
to reestimate model probabilities.  Doing so 
gave a small improvement over just using the 
manually parsed data.  We repeated this 
experiment with our data, and show  the 
outcome in Table 4.  Choosing only the labeled 
instances most likely to be correct as judged by 
a committee of classifiers results in higher 
accuracy than using all instances classified by a 
model trained with the labeled seed corpus. 
 

 Unsupervised:    
All Labels 

Unsupervised: 
Most Certain Labels 

 {then, than} 
107  words 0.9524 0.9620 
108  words 0.9588 0.9715 

5x108 words 0.7604 0.9588 
 {among, between} 

107  words 0.8259 0.8335 
108  words 0.8259 0.8270 

5x108 words 0.5321 0.8248 

Table 4. Comparison of Unsupervised Learning 
Methods 

 In applying unsupervised learning to 
improve upon a seed-trained method, we 
consistently saw an improvement in 
performance followed by a decline. This is 
likely due to eventually having reached a point 
where the gains from additional training data are 
offset by the sample bias in mining these 
instances.  It may be possible to combine active 
learning with unsupervised learning as a way to 
reduce this sample bias and gain the benefits of 
both approaches. 

6 Conclusions  

In this paper, we have looked into what happens 
when we begin to take advantage of the large 
amounts of text that are now readily available. 
We have shown that for a prototypical natural 
language classification task,  the performance of 
learners can benefit significantly from much 
larger training sets.  We have also shown that 
both active learning and unsupervised learning 
can be used to attain at least some of the 
advantage that comes with additional training 
data, while minimizing the cost of additional 
human annotation. We propose that a logical 
next step for the research community would be 

to direct efforts towards increasing the size of 
annotated training collections, while 
deemphasizing the focus on comparing different 
learning techniques trained only on small 
training corpora.  While it is encouraging that 
there is a vast amount of on-line text, much 
work remains to be done if we are to learn how 
best to exploit this resource to improve natural 
language processing. 
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