
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 CoNLL, pages 104–113
Hong Kong, November 3, 2019. c©2019 Association for Computational Linguistics

https://doi.org/10.18653/v1/K19-2010

104

CUHK at MRP 2019: Transition-Based Parser
with Cross-Framework Variable-Arity Resolve Action

Sunny Lai1,4, Chun Hei Lo2, Kwong Sak Leung1,4 and Yee Leung3,4

1Department of Computer Science and Engineering
2Department of Systems Engineering and Engineering
3Department of Geography and Resource Management

4Institute of Future Cities
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{slai, ksleung}@cse.cuhk.edu.hk,
chlo@se.cuhk.edu.hk, yeeleung@cuhk.edu.hk

Abstract

This paper describes our system (RE-
SOLVER) submitted to the CoNLL 2019
shared task on Cross-Framework Meaning
Representation Parsing (MRP). Our system
implements a transition-based parser with
a directed acyclic graph (DAG) to tree
preprocessor and a novel cross-framework
variable-arity resolve action that generalizes
over five different representations. Although
we ranked low in the competition, we have
shown the current limitations and potentials
of including variable-arity action in MRP and
concluded with directions for improvements
in the future.

1 Introduction

This paper describes our submission1 to the
CoNLL 2019 shared task on Cross-Framework
Meaning Representation Parsing (Oepen et al.,
2019). The task requires participants to de-
velop a unified system for parsing sentences un-
der five different meaning representation frame-
works, which are DELPH-IN MRS (DM; (Ivanova
et al., 2012)), Prague Semantic Dependencies
(PSD; (Hajic et al., 2012; Miyao et al., 2014)),
Elementary Dependency Structures (EDS; (Oepen
and Lønning, 2006)), Universal Conceptual Cog-
nitive Annotation (UCCA; (Abend and Rap-
poport, 2013)) and Abstract Meaning Represen-
tation (AMR; (Banarescu et al., 2013)). Given
a sentence together with its companion data
(e.g. morpho-syntactic parse results) as input, the
parser system should generate five graphs accord-
ing to each frameworks’ rules.

Transition-based approaches have been shown
useful in parsing a spectrum of semantic graphs,
including bi-lexical dependency graphs (flavor 0,

1Our submission is open-sourced in GitHub:
https://github.com/Yermouth/mrp2019

e.g. DM, PSD), general anchored semantic graphs
(flavor 1, e.g. EDS, UCCA), and unanchored se-
mantic graphs (flavor 2, e.g. AMR). Previous
transition-based parsing systems define a set of
constant-arity transition actions2 and these sys-
tems learn to select the best action at each state.
Constant-arity parser actions work well for tack-
ling individual tasks, but may not generalize well
across representations because:

• The graph representation details are differ-
ent across frameworks. i.e. the edge direc-
tions and labels are different when compar-
ing figure 2a and 2c but they describe the
same dependency in terms of semantics. The
parser will have to learn two actions sepa-
rately (LEFT-EDGE and RIGHT-EDGE) as the
actions have different semantics depending
on the framework used.

• Parsing actions can be unique for specific
frameworks defined by different authors (Ta-
ble 1). i.e. Action NODE(X) in UCCA cre-
ates a new node without node label, which
may not be a suitable action for other frame-
works.

As the primary focus of the task is about de-
veloping a robust model that unifies the learn-
ing process across different semantic graph banks,
we develop our system following the tradi-
tional transition-based approach, while adding a
DAG-to-Tree preprocessor and a set of cross-
representation variable-arity actions in an attempt
to tackle these two generalization problems. By
converting graphs of all five frameworks to a com-
mon tree structure using the DAG-to-Tree prepro-

2For instance, in basic arc-standard transition system
(Nivre, 2008), SHIFT takes one node as argument and RE-
DUCE takes two. The number of arguments (arity) for the
action is constant and will not change depending on the word
being parsed.

https://github.com/Yermouth/mrp2019

105

MRP F Actions Author

PSD 0 LEFT-REDUCE(L), RIGHT-SHIFT(L), NO-SHIFT,
NO-REDUCE, LEFT-PASS(L), RIGHT-PASS(L), NO-PASS

(Wang et al., 2018)

UCCA 1 SHIFT, REDUCE, NODE(X), LEFT-EDGE(X), RIGHT-EDGE(X),
LEFT-REMOTE(X), RIGHT-REMOTE(X), SWAP, FINISH

(Hershcovich et al., 2017)

AMR 2 SHIFT, REDUCE, RIGHT-LABEL(R), LEFT-LABEL(R),
SWAP, MERGE, PRED(N), ENTITY(L), GEN(N) (Guo and Lu, 2018)

* * SHIFT, IGNORE, RESOLVE This paper

Table 1: Transition-based parsing actions defined by different authors.

Figure 1: System pipeline diagram.

cessor, we can describe the tree generation process
using three common high-level actions — SHIFT,
IGNORE and RESOLVE.

The three actions in our system are most
similar to the actions defined in the non-
binary bottom-up shift-reduce constituent pars-
ing strategy of Fernández-González and Gómez-
Rodrı́guez (2018). SHIFT and IGNORE both have
an arity of one. Unlike standard binary RE-
DUCE action which handles the relationship be-
tween two nodes at a time, RESOLVE is a cross-
framework variable-arity action that can reduce
multiple nodes and resolve their dependency si-
multaneously. We introduce the RESOLVE ac-
tion so that there is no need to include additional
binarization of the dependencies and reduce the
number of transitions as mentioned by Fernández-
González and Gómez-Rodrı́guez. It is also more
natural to consider the dependency of multiple
nodes jointly as meaning representations like se-
mantic frames usually involve multiple arguments.

The main difference between RESOLVER and

the strategy of Fernández-González and Gómez-
Rodrı́guez is that their strategy handles only con-
stituent parsing problem while RESOLVER can
handle cross-framework parsing problem. Our
cross-framework RESOLVE action can be cus-
tomized by generating framework-specific sub-
graphs.

Our submission ranked 13th overall in the post-
evaluation period of the shared task. Although
we ranked low in the task, we have experimented
with adding variable-arity actions to the transition-
based parsing approach and investigated its down-
sides. We studied why variable-arity transition ac-
tions are hard to learn and propose future direc-
tions for improving the system to predict variable-
arity transition actions more accurately.

The rest of the paper is organized as follows:
Section 2 describes the our system architecture.
Section 3 details the model training steps. We an-
alyze and discuss the result in Section 4 and con-
clude our work in Section 5.

106

2 System Architecture

Our system pipeline (Figure 1) is divided into
three main components — DAG-to-Tree prepro-
cessor, transition action simulator, and transition
action predictor. First, we preprocess the mean-
ing representation data and align it with the com-
panion syntactic parse data to generate a top-node
oriented tree structure. Then, we generate the tran-
sition actions required to reproduce the tree struc-
ture and extract the features involved in each ac-
tion state. Finally, we train the neural network
model to predict the correct actions.

2.1 DAG-to-Tree Preprocessor

Although the five frameworks differ in terms of the
nodes and edges used, they are essentially convey-
ing similar semantic messages. In an attempt to
tackle the first generalization problem, our DAG-
to-Tree preprocessor focuses on transforming the
five frameworks into a common tree representa-
tion.

Our preprocessor converts directed acyclic
graphs (DAGs) to top-node oriented tree struc-
tures. As the top-node of a sentence represents the
most important message or word, they are similar
amongst the five representations for the same sen-
tence. Therefore, we can transform the five rep-
resentations to a similar tree structure, where the
root of the tree is the top-node.

As there are mature and standardized systems
and algorithms for tackling tree-structured syntac-
tic parsing, tree approximations schemes for trans-
forming semantic dependency graphs to trees have
been proposed (Schluter et al., 2014; Agić et al.,
2015). While most of the proposed schemes are
lossy, heuristics are applied to reduce informa-
tion loss. For instance, the graph packing scheme
(Schluter et al., 2014) use a set of 99.6%-reversible
graph transformations to secure graph informa-
tion, and the graph deletion scheme (Agić et al.,
2015) remove minimum number of edges (worst
case 5.7%) from undirected cycles in digraph to
generate tree approximation.

2.1.1 Tree Approximation
Following the deletion scheme, we run an algo-
rithm based on Kruskal’s spanning tree algorithm
(Kruskal, 1956) to select the edges for forming an
undirected tree, and determine the edge direction
of the edges in the tree by traversing the graph
from top-node to every child recursively. The lat-

ter part is intuitive as the edge direction is unique
(anti-arborescence) once the root of the undirected
tree is fixed. As for graphs with more than one top
node, we find the common ancestor of these top
nodes and keep the graph if the ancestor is the root
of the tree.

As for the undirected tree generation process,
we first sort the nodes according to their appear-
ance in the sentence, and assign the nodes with its
appearance index in ascending order (i.e. Node
anchored to the first word in the sentence have ap-
pearance index 1).

Then we extract the appearance index of the
source node and the target node for each edge, and
sort the edge in ascending order first by the max-
imum appearance index involved, and then by the
minimum appearance index regardless of the edge
direction (i.e. An edge with appearance indexes 1
and 3 will be placed in front of an edge with in-
dexes 1 and 5).

Finally, we initialize meaning representation
nodes as forest in a graph, and add the sorted edge
one by one to the graph if the edge connects to two
different trees. After traversing the resulting graph
from top-node, a set of edges accompanied with its
direction is obtained and we refer to these edges
as major edges (e.g. primary edges in UCCA).
Other edges not in the major edge set are con-
sidered as minor edges. Minor edges can exist in
PSD and UCCA, where one node can have mul-
tiple parents. For instance, nodes in UCCA can
have a non-remote edge (major edge) with label
“C” and a remote edge with label “A”. For EDS
specifically, edges that involve quantifiers are con-
sidered as minor edges at the moment to facilitate
alignment.

In figure 2, 2a, 2c and 2e are the original mean-
ing representation graphs and 2b, 2d, 2f are the
top-node oriented trees created by using only the
major edges after preprocessing. All three frame-
works have the same top-node “ cost v 1”.

Edge directions between the node “page” and
its children are changed in figure 2b as “cost” is
the top-node and traverse to node “page” before
reaching nodes “a”, “full”, “color” and “in”.

Figure 2d is the same as 2c as the original graph
is a tree and the edges’ direction follow the traver-
sal order from top-node.

As for figure 2f, minor edges including the
edge with label “BV” from node “udef q” to node
“ dollar n 1” are dropped in the current prepro-

107

(a) Meaning representation graph of DM

(b) Top-node oriented tree of DM

(c) Meaning representation graph of PSD (d) Top-node oriented tree of PSD

(e) Meaning representation graph of EDS

(f) Top-node oriented tree of EDS

Figure 2: Meaning representation graphs of DM, PSD and EDS frameworks, accompanied with their top-node
oriented tree after applying the DAG-to-Tree preprocessor for the sentence “A full, four-color page in Newsweek
will cost $100,980.”.

cessing procedures.

After these conversions, by comparing figure
2a, 2c, 2e with 2b, 2d, 2f, we can easily observe
that the dependencies for the top-node oriented
trees for are more unified as they are aligned with
the top-node and its dependencies from the tree
root. Despite the difference between DM, PSD
and EDS in handling specific words (i.e. “a” is
kept in DM and dropped in PSD), the general de-
pendency structure is now more similar (i.e. all
framework express that node “page” and “$” are
necessary for resolving the complete semantics of

the top-node “cost”).

2.1.2 Limitation

Limitations of the top-node oriented tree repre-
sentation are apparent. The current representation
sacrifices minor edges to retain the cross frame-
work tree structure using the major edges. In
this paper, we adopt the graph deletion scheme
and mainly focus on tackling major edges that are
common amongst the five frameworks. We leave
minor edges and the use of graph packing scheme
as future work.

108

2.2 Transition Action Simulator
To solve the second generalization problem, we
define three actions: SHIFT, IGNORE and RE-
SOLVE as the high-level actions in our action set
which is common amongst the five frameworks.
The tokenized nodes provided by the morpho-
syntactic parse tree are the basic units for apply-
ing the actions. We initialize the parser state with
a queue that stores all the tokenized nodes and an
empty stack that stores the processed tokenized
nodes.

2.2.1 Shift and Ignore
SHIFT and IGNORE are two constant-arity actions
identical for all representations, and both apply di-
rectly to the first tokenized nodes in the queue.
While both actions pop the first tokenized node
from the token queue, SHIFT pushes the popped
node to the stack and sets its state to unresolved,
while IGNORE omits the popped node and move
on to the next tokenized node in the queue. This
action is required as the tokenization method of the
syntactic parse is different from that of the MRP.
Tokenized nodes in the syntactic parse can be ig-
nored by the representation, for instance, verbs
like “is” are omitted by DM, while it is preserved
in PSD. From our observation, whether the word
is ignored or not depends on only itself but not
its neighbor nodes, so we can apply the action di-
rectly to the queue without considering the state of
the stack.

2.2.2 Resolve
RESOLVE is a variable-arity and representation-
customizable action. This action is similar to
LEFT-REDUCE and RIGHT-REDUCE, but instead
of reducing only 2 nodes at each time, RESOLVE

can reduce an arbitrary number of nodes in one
single action. We required our system to learn the
dependencies of multiple nodes jointly in order to
determine frame information in a holistic manner.

This action is mainly parameterized by n (ar-
ity), the number of nodes from the top of the stack
to be reduced (n is a strictly positive integer). The
first n nodes must include one and only one un-
resolved node (i.e. the most recently pushed un-
resolved node in the stack). After an unresolved
node is resolved, it is pushed into the stack. As
we have obtained a top-node oriented tree repre-
sentation from the DAG-to-Tree preprocessor, the
dependencies of each node of the tree are defined
explicitly and RESOLVE is applied when an un-

resolved node’s children are all resolved. For in-
stance, in Figure 2(b), the top-node of the graph
is “cost” and its dependencies is “page” and “$”.
To RESOLVE the node “cost”, we need to first RE-
SOLVE both “page” and “$”, which further de-
pends on their own children. The number of re-
duced node n in this case is 3 (2 resolved nodes
“page” and “$” plus 1 unresolved node “cost”).3

If a node is a leaf node, n in this case would be 1
as only one node is involved.

After selecting n nodes from the stack, the RE-
SOLVE action build the edges between the resolved
nodes and the unresolved ones, and give node label
and properties for the unresolved node. Finally,
the resolved node is pushed back to the stack.

2.3 Alignment

Aligning a sentence S to a graph G = 〈V,E〉 of
meaning representation gives a mapping between
the tokens of S and V . Formally, given a parse
tree of S with tokenized nodes 〈N0, N1, . . . , Nn〉,
with each Ni containing 〈astart, aend〉 of S: pair
of from-to sub-string indices, pos: part of speech
tag, and lemma: lemmatized form, we aim to
produce an alignment V = 〈M0,M1, . . . ,Mm〉,
where each node object Mi contains 〈astart, aend〉:
pair of from-to sub-string indices to S, pos: part
of speech tag, frame: semantic frame (optional)
and label: node label (Figure 3).

As the alignment of the tokenized nodes in the
companion parse to the nodes in the meaning rep-
resentation graph is not given, we devised align-
ment strategies for the respective framework us-
ing anchors and parse information. For DM and
PSD, an oracle look-ahead algorithm is designed,
where the alignment is conducted as guided by a
set of heuristic rules manually derived from the
train data. For each sentence, the alignment pro-
cess proceeds by scanning tokenized nodes of the
parse tree from left to right, one at a time. Each
node is either ignored or aligned to one node of
the meaning representations.

For DM, as white-listed resources are provided,
we allow more aggressive grouping and predic-
tion on semantic frames. Generally, Mj .pos and
Mj .label will be copied directly from the cor-
responding Ni.pos and Ni.lemma respectively,
with a few exceptions handled the other ways; and
Mj .frame are predicted using a simple count-
based approach with train data. Multi-word ex-

3This corresponds to the last RESOLVE action in Table 1

109

Action n Stack Tokenized Node Queue RESOLVE Details
[] [A, full, ...]

SHIFT [A] [full, , ...]
RESOLVE 1 [a] [full, , ...] Leaf node
SHIFT [a, full] [,, four-color, ...]
RESOLVE 1 [a, full] [,, four-color, ...] Leaf node
IGNORE [a, full] [four-color, page, ...]
SHIFT [a, full, four-color] [page, in, ...]
RESOLVE 1 [a, full, color] [page, in, ...] Leaf node
SHIFT [a, full, color, page] [in, Newsweek, ...]
SHIFT [a, full, color, page, in] [Newsweek, will, ...]
SHIFT [a, full, color, page, in, Newsweek] [will, cost, ...]
RESOLVE 1 [a, full, color, page, in, Newsweek] [will, cost, ...] Leaf node

RESOLVE 2 [a, full, color, page, in] [will, cost, ...] in ARG2−−−→ Newsweek

RESOLVE 5 [page] [will, cost, ...] page BV−→ a, page ARG1−−−→ full

page compound−−−−−→ color, page ARG1−−−→ in
IGNORE [page] [cost, $, ...]
SHIFT [page, cost] [$, 100,980]
SHIFT [page, cost, $] [100,980]
SHIFT [page, cost, $, 100,980] []
RESOLVE 1 [page, cost, $, 100,980] [] Leaf node
RESOLVE 2 [page, cost, $] [] $ ARG1−−−→ 100,980
RESOLVE 3 [cost] [] cost ARG1−−−→ page, cost ARG2−−−→ $

Initial tokenized nodes queue: [A, full, ,, four-color, page, in, Newsweek, will, cost, $, 100,980]

Table 2: Actions required to generate the Figure 2(b) graph for the sentence “A full, four-color page in Newsweek
will cost $100,980.”. The column n indicates the number of nodes to be resolved. When n = 1, the resolved
node is a leaf node. When n > 1, the column RESOLVE details shows the edge involved in the RESOLVE process.
Resolved nodes are in normal font. Unresolved nodes are underlined, and the nodes to be resolved in each action
are denoted in boldface. The number of RESOLVE in the actions is the same as the number of nodes in the top-node
oriented tree. The two IGNORE actions ignore the tokenized nodes “,” and “will” respectively.

Figure 3: Example of alignment of nodes of DM meaning representation.

pressions (MWE) are also accounted for during
the alignment through a greedy look-ahead mech-
anism, i.e. searching for MWE in S that appeared
in train data or the SDP 2016 data (Oepen et al.,
2016), which is one of the white-listed resources
for the task. Figure 3 illustrates the alignment
process from tokenized nodes to nodes of DM
representation: MWE “such as” is handled with
heuristics to produce two nodes; “crops” is lem-
matized as the label of the produced node; Frames
are copied except for punctuation “,”, which is ig-
nored. Details of the alignment process are pro-
vided in the supplementary material.

For PSD, only frames that appeared in train data
were inferred. Similar to the approach for DM,
alignment is generally done by copying Mj .pos
and Mj .label from the corresponding Ni.pos and
Ni.lemma respectively; and Mj .frame are pre-
dicted only for verbs using the same count-based
approach as for DM. Multi-word expressions are
also accounted for during the alignment process
through a greedy look-ahead mechanism. PSD
also includes the use of non-lexical nodes for ab-
stract concepts (e.g. #perspron for personal pro-
noun), and they are aligned to Ni first, if possible,
followed by lexical nodes.

110

(a) Original sentence with current node, nodes before the current node (previous) and nodes after the current node (Next)
annotated.

(b) Node prediction.

Figure 4: Neural network architecture diagram of Action type prediction.

For both DM and PSD, given the tokens, frame
predictions are done by a simple count-based
method, i.e. we choose the most-occurred frame
as in the train data given each token; if no such
token is found in train data, we choose the first
frame from the frame inventories of DM and PSD
(white-listed resources) for the corresponding to-
ken or lemma. More robust statistical methods for
frame prediction are left for future work.

For EDS and UCCA, we use exact matching
policy to match the anchors of the tokenized with
the graph nodes. If one tokenized node is mapped
to multiple graph nodes, we drop the whole graph
in the current system. For AMR, we use the JAMR
(Flanigan et al., 2014) alignment provided in the
companion data to align the unanchored nodes to
the tokenized nodes.

2.4 Neural Network Model

To determine the correct action for a particular
parser state, we use two neural network models to
first decide what action should be taken, and de-
termine the framework details if the action is RE-
SOLVE.

2.4.1 Action Type Prediction
Figure 4 describes the neural network architec-
ture for predicting the actions. The nodes in the

parser stack and tokenized node queue are first
mapped to feature embeddings. The feature em-
bedding of each node is created by concatenating
the GloVe (Pennington et al., 2014) word embed-
ding together with three randomly initialized em-
beddings for the features word lemma, upos and
xpos provided by the syntactic parse. Then, we use
LSTM (Hochreiter and Schmidhuber, 1997) lay-
ers to encode three nodes sequences: (1) nodes in
the parser stack, (2) nodes before the current node
and (3) nodes after the current node. For sequence
(2) and (3) we limit the size of the sequence to
be 5. We concatenate the hidden state at the last
time step of the three sequences with the current
node’s feature embedding and feed it to a multi-
layer perceptron (MLP) to predict the action type.
As we need n, the number of nodes to be reduced
for the reduce action, we use the hidden states for
every time step of sequence (1) and pass them to
the same MLP, and then the softmax layer to pre-
dict the value of n. We choose the action type
and n with the greatest probability to execute. If
RESOLVE is to be executed, we extract the first n
nodes from the parser stack, and proceed with the
RESOLVE prediction.

111

(a) Edge predictions when n > 1.

(b) Node prediction.

Figure 5: Neural network architecture diagram of RE-
SOLVE prediction.

2.4.2 Resolve Prediction
Figure 5 pictures the neural network architecture
for predicting the label and properties of the nodes
and edges in the RESOLVE process. If a leaf node
is to be resolved (n = 1), then no edge is in-
volved. we use the feature embedding of the unre-
solved node as input, and pass it to feature specific
MLP for predicting the node label and properties.
If more than one node is involved (n > 1), then
we, in addition, predict the edge information by
passing the feature embedding to an LSTM layer,
followed by feature-specific MLPs for predicting
edge label and directions.

2.4.3 Multi-Task Learning
To enable multi-task learning, we use the same
neural network model for parsing all five frame-
works. We shared the parameters of word embed-
dings and LSTM layers across frameworks, and
separate the MLP parameters for each framework.

3 Training

3.1 Data

We use the official dataset as the development set
to train our system. We use the DAG-to-Tree pre-
processor and action simulator to generate action

snapshots of the parser state features (parser stack
and tokenized node queue) and action labels for
each action applied, acting as the data instances
for training the neural network model. A total
of 169,780 MRP-parse data pairs are given, for
which we generate 2,434,026 action snapshots as
training data instances. Our system is required to
predict the MRP graphs for 13,206 unseen sen-
tences.

3.2 Implementation Details

Our system is packaged as an AllenNLP library
(Gardner et al., 2017), which comprises DAG-to-
Tree preprocessors, dataset readers, training in-
stance iterators, neural network models and MRP
graph predictors. The neural network model is im-
plemented using Pytorch and support training with
either CPU or single GPU setting. Time required
for each procedure is summarized in table 3.

Procedures Required Time
(hour)

Run DAG-to-Tree preprocessor and
action simulator using training data 10

Use AllenNLP data reader to read
data instances 1.5

Train the neural network model
(single GPU setting)

30 in total
(2 per epoch)

Predict the MRP graph of testing data 8
Total 49.5

Table 3: Running time for each procedure.

3.3 Batch training

As each graph is broken down into training in-
stances for each action and the size of the instances
is large, batch training is necessary to speed up
the training process. We group the data instance
into mini-batch of size 100 by their prediction type
(whether it is action type prediction or resolve pre-
diction), meaning representation framework, and
the length of the stack and queue to facilitate batch
training. Both training batches and training in-
stances in the same framework batch are shuffled
in each epoch.

4 Results and Discussion

4.1 Official Results

According to the results announced, we ranked
13th overall in the post-evaluation period of the
shared task. We compared the results of our sys-
tem with a similar transition-based parser TUPA
(Hershcovich and Arviv, 2019) in Table 4. Our

112

Submissions tops labels properties anchors edges
P R F P R F P R F P R F P R F

TUPA(multi) 0.67 0.57 0.616 0.40 0.55 0.457 0.29 0.42 0.327 0.68 0.60 0.626 0.30 0.45 0.347
RESOLVER 0.51 0.50 0.502 0.34 0.40 0.365 0.29 0.35 0.317 0.55 0.59 0.568 0.10 0.10 0.095

Submissions attributes all
P R F P R F

TUPA(multi) 0.06 0.03 0.037 0.39 0.57 0.453
RESOLVER 0.00 0.00 0.00 0.36 0.41 0.378

Table 4: Final results of our system compared with the transition based parser TUPA. All scores are calculated
according to the MRP metric.

system performs slightly worse than TUPA in gen-
eral, while we performed much worse in the edges
component.

4.2 Discussion
We analyze our system and investigate three rea-
sons for causing the low performance.

• Variable-arity actions are hard to learn. Our
system predicts the action type with accu-
racy around 0.8 across frameworks, but can-
not predict the number of nodes, i.e. n, to be
reduced well (less than 0.35). As the num-
ber of training instances with n = 1 is much
larger than that of n > 1, we believe the
unbalanced number of training examples can
be a hindrance for learning to predict n cor-
rectly.

• Information loss happens when converting
graphs to tree structures. As we are using the
DAG-to-Tree preprocessor to convert graphs
to top-node oriented trees using major edges,
we ignore minor edges in the current model
and loss features for predicting the action
and chances for predicting them. Moreover,
we cannot find direct and empirical proof of
why this top-node oriented tree conversion
can help the parsing process.

• Model design can still be improved. There
are numerous variations including neural net-
work architecture, hyperparameters, action
set, feature set, etc, that our team can exper-
iment with under the variable-arity transition
action and top-node oriented tree paradigm.
More time is required to test if this is a valid
approach to tackle the parsing problem in
general.

5 Conclusion

We present RESOLVER, the first transition-based
parser with top-node oriented DAG-to-Tree pre-

processor and variable-arity actions to the best
of our knowledge. We aim to create a general-
ized representation and parsing steps of the five
graphs. We discuss the benefits and limitations of
adding variable-arity actions, and we will continue
to work on our system to show the practical useful-
ness of allowing variable-arity transition actions in
transition-based meaning representation parsers.

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (ucca). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228–238.

Željko Agić, Alexander Koller, and Stephan Oepen.
2015. Semantic dependency graph parsing using
tree approximations. In Proceedings of the 11th
International Conference on Computational Seman-
tics, pages 217–227.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2018. Faster shift-reduce constituent
parsing with a non-binary, bottom-up strategy.
arXiv preprint arXiv:1804.07961.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1426–
1436.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640

113

Zhijiang Guo and Wei Lu. 2018. Better transition-
based amr parsing with a refined search space. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1712–1722.

Jan Hajic, Eva Hajicová, Jarmila Panevová, Petr Sgall,
Ondrej Bojar, Silvie Cinková, Eva Fucı́ková, Marie
Mikulová, Petr Pajas, Jan Popelka, et al. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In LREC, pages 3153–3160.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for ucca. arXiv preprint arXiv:1704.00552.

Daniel Hershcovich and Ofir Arviv. 2019. TUPA at
MRP 2019: A multi-task baseline system. In Pro-
ceedings of the Shared Task on Cross-Framework
Meaning Representation Parsing at the 2019 Con-
ference on Natural Language Learning, pages 28 –
39, Hong Kong, China.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom?:
A contrastive study of syntacto-semantic dependen-
cies. In Proceedings of the sixth linguistic annota-
tion workshop, pages 2–11. Association for Compu-
tational Linguistics.

Joseph B Kruskal. 1956. On the shortest spanning sub-
tree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society,
7(1):48–50.

Yusuke Miyao, Stephan Oepen, and Daniel Zeman.
2014. In-house: An ensemble of pre-existing off-
the-shelf parsers. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 335–340.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
Urešová. 2019. MRP 2019: Cross-framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Nat-
ural Language Learning, pages 1 – 27, Hong Kong,
China.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger,
Jan Hajic, Angelina Ivanova, and Zdenka Uresova.
2016. Towards comparability of linguistic graph
banks for semantic parsing. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 3991–
3995.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based mrs banking. In LREC,
pages 1250–1255.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Natalie Schluter, Anders Søgaard, Jakob Elming,
Dirk Hovy, Barbara Plank, Hector Martinez
Alonso, Anders Johanssen, and Sigrid Klerke. 2014.
Copenhagen-malmö: Tree approximations of se-
mantic parsing problems. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 213–217.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting
Liu. 2018. A neural transition-based approach for
semantic dependency graph parsing. In Thirty-
Second AAAI Conference on Artificial Intelligence.

