
Translating Spanish into Logic through Logic
Veronica Dahl

D e p a r t m e n t of M a t h e m a t i c s
U n i v e r s i t y of Buenos A i r e s
B u e n o s Ai res , A R G E N T I N A

We discuss the use of logic for natural language (NL) processing, both as an internal
query language and as a programming tool. Some extensions of standard predicate calculus
are motivated by the first of these roles. A logical system including these extensions is
informally described. It incorporates semantic as well as syntactic NL features, and its
semantics in a given interpretation (or data base) determines the answer-extraction process.
We also present a logic-programmed analyser that translates Spanish into this system. It
equates semantic agreement with syntactic wei l - formedness , and can detect certain
presuppositions, resolve certain ambiguities and reflect relations among sets.

1. Introduction

The idea of using logic as a conceptual f ramework
in question-answering systems is not new. The fact
that it can formally deal with the notion of logical
consequence makes it particularly attractive for repre-
senting meaning. Standard predicate calculus, howev-
er, does not seem adequate for representing all the
semantic features of natural language (NL), e.g. pre-
suppositions and the subtleties of meaning involved in
NL quantifiers. Nevertheless, some recent develop-
ments indicate that logic can play an important role in
NL processing.

In the first place, recent linguistic research [15,18]
has arrived at interesting results concerning the exten-
sion of standard predicate calculus in order to provide
a bet ter formal model of language.

Secondly, programming in logic [19,29] has become
possible since the development of the P R O L O G pro-
gramming language at Marseille [3,5,27]. Logic can
now be used both as the underlying formalism and as
the programming tool. As has been shown in [30], no
loss in eff iciency need be involved with respect to
languages such as LISP, even though higher level fea-
tures are supported in P R O L O G (e.g. non-deter -
minism).

Thirdly, most P R O L O G implementations include a
version of metamorphosis grammars (MGs), a logic-
based formalism useful in particular for describing NL
processors in terms of very powerful rewriting rules
[5].

Finally, the evolution in data base technology has
been tending more and more towards the use of logic,
both for data description and for queries [14].

Drawing on these developments , we have imple-
mented (starting in 1976) successive experimental data
base query systems, each written entirely in PROLOG.

The first system [6] represented the hardware and
software catalogues for the Solar 16 series of comput-
ers. The user could ask it to build up a computer con-
figuration satisfying his particular needs. We then
developed a simpler but more general system which
accepts different data bases to be consulted in Spanish
or in French [7]. This system was later adapted to
Portuguese consultation by H. Coelho and L. Pereira
(personal communication, 1978), and to English con-
sultation by D. Warren and F. Pereira (personal com-
munication, 1980). In both cases, notably few modifi-
cations were needed.

The data base querying features that evolved from
the development of these successive systems were
coupled with NL representat ion features into a single
logical formalism. Its linguistic motivation and general
outline has been described by A. Colmerauer in [4],
and its motivation from the data base querying view-
point has been studied in [10]. The formal definition
corresponding precisely to our multilingual system can
be found in [11].

In this paper we present a thorough description of
the main principles under ly ing ' these NL processors.
There is some overlap with previous work of the au-
thor [9], to make this paper self-contained.

Copyright 1981 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee a n d / o r specific permission.

0362-613X/81 /030149-16501 .00

American Journal of Computational Linguistics, Volume 7, Number 3, July-September 1981 149

Veronica Dahl Translating Spanish into Logic through Logic

We first discuss what features are convenient in a
computa t ional ly useful logical represen ta t ion of N L
sentences. Then we present an informal definition of
the logical sys tem possessing these fea tures which
serves as our internal query language. Finally, we
show a s tep-by-s tep development of a P R O L O G ana-
lyser for Spanish, after an informal description of our
programming tools.

A complete listing of our P R O L O G Spanish gram-
mar is given in the Appendix in the Microfiche Supple-
ment to this issue of the Journal.

The discussion of our analyzer is not intended to be
normative: al ternative solutions for the problems we
encounte red are certainly conceivable . Moreover ,
many of our choices were constrained by the hardware
and software tools available to us. We merely show
one way of using logic throughout a N L query system,
which has proved feasible within modest computa t ion-
al environments . (Our system was first implemented
on a 32K, T-1600 minicomputer , using a 1975 version
of P R O L O G .)

The research repor ted here has mot ivated fur ther
work on log ic -p rogrammed N L processors for data
bases (e.g. [2,22,32], and on the need of extending the
original M G formalism [24]. On the other hand, the
data base componen t of this system, together with that
of the SOLAR 16 system [6], has also influenced other
researchers (cf. [2,31]).

A comprehensive description of the data base com-
ponent of our system can be found in [13]. The SO-
L A R 16 system has only been repor ted in [6].

2. Mapping Natural Language into Logic

This section discusses several NL processing prob-
lems and suggests ways of solving them, through care-
ful choices for the internal language 's features. We
arrive at a typed, three-valued, se t -or iented logical
system, which we shall call L3. Its role is a double
one. On the one hand, its syntax serves as a more
r igorous and informat ive al ternat ive to NL, making
semantic features of N L sentences explicit. On the
other hand, its semantics provides a clear definition of
the answer-extract ion process: the evaluation of an
L3 formula yields either a truth value (corresponding
to a yes-no question) or the representat ion of a set
(corresponding to a wh-quest ion) . Spanish is used as
the concre te point of reference. Rela ted work for
French is [4].

2.1 Meaningfulness, Ambiguity and Semantic Types

A N L processing sys tem must have a means for
checking semant ic as well as syntact ic well-
formedness , in order to reject semantically anomalous
sentences.

A widespread solution to this problem consists in
first generat ing a "deep s t ruc ture" of the sentence,
taking only syntax into account, and then performing
all the necessary semantic operat ions and checks on it.

As has already been observed [26], this of ten im-
plies a t radeoff be tween syntactic and semantic com-
plexity. But it should be emphasized that it is overall
simplicity and efficiency that are important . It seems
likely, at least for limited computa t ional resources and
a given coverage of NL, that a several-pass analyser
will take more space and time than a one-pass analys-
er.

Mtrreover~ linguists themselves are not unanimous
as to whether the semantic componen t should be sepa-
rate or intermingled with the syntact ic c o m p o n e n t
[21].

While taking no sides in this discussion, we shall
describe a f r amework in which syntactic and semantic
analysis take place during a one-pass , non-
determinist ic process, and which, as we have said, has
proved sufficient even on small machines.

Where logic is concerned, there is a simple and
elegant way of dealing with meaningfulness: by using
types. Types, by the way, are also a useful means for
associat ing the universe of predica te calculus to the
relations in a particular data base.

They are also useful for improving efficiency: a)
by narrowing the search space, as only those values in
a var iable 's associated domain (or type) need be con-
sidered, and b) by avoiding futile access to the data
base, as absurd queries can be rejected by the analyser
on the grounds of domain incompatibil i ty.

Another interest in using types is that they provide
an eff icient means for discarding readings that are
syntact ical ly acceptab le but semant ical ly incorrect .
Take for instance the query:

Cu~l es el salario del empleado que vive en Lomas?
What is the salary of the employee who lives in Lomas?

From syntax alone, there is no way to decide
whether the antecedent of the relative clause is " the
salary of the employee" or " the employee" . But in a
type-checking system in which the first a rgument of
the relation "l ive" is associated with the human do-
main, and in which e m p l o y e e s - - a n d not sa l a r i e s - - a re
known to belong to this same domain, the first reading
is not even possible.

Ambigui t ies concerning di f ferent meanings of a
word can of ten be resolved through domain checking.

Types can also be used to place modif iers o ther
than relative clauses. Our system, however , does not
exploit them in this way, al though it does check that
the modifiers it encounters are of the expected type.

150 American Journal of Computational Linguistics, Volume 7, Number 3, July-September 1981

Veronica Dahl Translating Spanish into Logic through Logic

Finally, let us ment ion that types in a finite world
can contr ibute to solving an important problem arising
in P R O L O G programs in which negat ion is defined by
proof failure (i.e., the failure to prove a given fact is
taken as proof of its negative counterpart) . This is the
case for most practical data bases. As a discussion of
this problem falls outside the scope of this paper, the
interested reader is referred to [12].

2.1.1 Contextual Typing

The use of variable typing to constrain the parse
and aid in disambiguation is not new. Many language
p rocesso r s - - such as L U N A R [34], C O - O P [17], LAD-
D E R [16], P H L I Q A 1 [1] - - r e s o r t to some kind of
typing to provide these capabilities.

In our particular approach, the selection of a se-
mantic interpretat ion is dynamically made on a syntac-
tic basis. This takes place automatically, in the stand-
ard P R O L O G matching of terms. A simplified expla-
nation follows, and more precise details are given in a
later section.

Briefly, referential words (nouns, verbs and adjec-
tives) parse into predicates whose arguments are
typed. For instance, the verb "to paint" might induce
predicates of the form:

paint (person-x,object-y)

The expected types of a predicate 's arguments are
given in lexical entries. Ambiguous referential words
have a lexical entry for each possible combinat ion of
meaning and syntactic role they can accept. For in-
stance, the word "blue" can designate an object ' s col-
our or a person 's mood, giving rise to the following
entries:

Adjective (sad(person-x)) = blue
Adjective(blue (object-x)) = blue

where the funct ion terms act as internal r e p r e s e n t a -
tions of the word. During the parsing process, which
is non-determinist ic, the correct parse is automatically
chosen by matching appropriate terms. For instance,
"Which blue door is John painting?" " " would generate a
formula containing predicates of the form "door (t - z) " ,
, I • pa in t (pe r son - John , t - z) " and " p (t - z) " , where p is
either "sad" or "blue" . Only those lexical rules allow-
ing t to take a value (namely, t=ob jec t) that is com-
patible with its three occurrences will result in a suc-
cessful parse. Thus, the "sad" interpretat ion is ruled
out by type requirements.

As we shall see later, types are actually represented
by expressions that reflect subcategorizat ions and al-
low for domain intersections to be found automatical ly
simply by leaving the P R O L O G interpreter to match
these expressions.

2.2 Presupposit ions, Quant i f iers and a
Three-Valued Logic

Typed calculus in itself is not enough to make all
sentences meaningful . A third logical t ruth value
would be useful, because in NL there are two ways in
which a s ta tement may fail to be true: either because
its negation holds, or because something presupposed
by the s ta tement fails to be satisfied. In the latter
case, the s ta tement is felt to be pointless rather than
false.

There is another reason why it must not be consid-
ered false. Take for instance the statement:

El sombrerero loco odia a Alicia.
The mad hatter hates Alice.

In a context in which no hat ter is mad, it is obviously
not true. However , we cannot consider it false either,
since then the s ta tement

El sombrerero loco no odia a Alicia.
The mad hatter does not hate Alice.

would have to be considered true.

The nonexis tence of a re ferent for the definite
noun phrase makes the whole sentence pointless. The
existence of more than one referent would also make
it pointless. This is because the Spanish singular defi-
nite article induces a presupposi t ion of existence and
uniqueness on the noun phrase ' s referent.

Our t rea tment of quantif ication has been devised to
account for those presupposi t ions induced by N L
quantifiers. We prefer to call them "determiners" ", as
they include all articles, cardinal numbers and words

l ' '1 I I '1 such as some , many , etc.

If a sentence contains a determiner, a quantif ica-
tion of the form " those(x ,p)" is introduced, where x is
a typed variable and p is a logical formula in our sys-
tem. Its evaluation yields the set of all x 's in x 's asso-
ciated domain which satisfy p. According to the
determiner ' s meaning, presupposi t ions about the cardi-
nality of such a set are represented within the output
formula. For instance, "Three blind mice run" is rep-
resented as

equal(card(those(x,and(mice(x),
and(blind(x) ,run(x))))),3)

which says that the cardinality of the set of those blind
mice that run is 3.

Definite articles introduce the formula " i f (f l , f 2) " ,
the value of which is "point less" whenever f l fails to
be satisfied, and has the same value as f2 if f l is true.

Figure 1 shows an example, using the eas ier - to-
picture tree representat ion. The formula represented
in Figure 1 will evaluate to "point less" if the set of
mad hat ters does not contain exactly one element.

American Journal of Computational Linguistics, Volume 7, Number 3, July-September 1981 151

Veronica Dahl Translating Spanish into Logic through Logic

i f

I

equal hate

I I
.

I l l I
card ! those A l i c e

I I
those

I I I
. x and

I I I
x and

I I I
. h a t t e r mad

I l I I
h a t t e r mad x x

L I
X X

Figure 1. Representation of "The mad hatter hates Alice".

Examples of pragmat ica l ly based systems are
P H L I Q A 1 [1] and C O - O P [17]. The semant ic ap-
proach is taken for instance in [23], where it serves in
part icular to check presupposi t ions induced by pro-
nouns.

2 . 2 . 1 S p a n i s h D e t e r m i n e r s a n d T h e i r T r a n s l a t i o n s

We can now examine the general process by which
a de te rminer in t roduces a " those" formula. Le t us
consider a sentence consisting of a noun phrase fol-
lowed by a verb phrase, in which the noun phrase
contains a noun introduced by a determiner. We can
first represent the sentence through a th ree-branched
quantif icat ion of the form:

q(x,f l , f2)

where q is a quant i f ier into which the de te rminer
translates, f l is the noun phrase ' s translation, and f2 is
the verb phrase ' s translation. Intuitively, f l specifies
the domain of quantification, and q states what por-
tion of the domain f2 holds for. Our previous exam-
ple, for instance, can first be represented as in Figure
2.

Notice that the "if" formula could be used for rep-
resenting other types of presupposi t ions as well (e.g.,
those of factive predicates) , al though our system only
uses it for the presupposi t ions of definite articles.

An al ternat ive approach to false presuppos i t ion
detect ion is the pragmat ic one, in which false presup-
positions are caught by noting their empty extensions
in the data base, and a two-valued logic is preserved.
The quest ion of whether a pragmat ic or a semant ic
analysis of presupposi t ions is best is far f rom settled,
and we shall not a t t empt to solve it here. Le t us
merely note the following:

a) The pragmat ic and semant ic approaches
are not incompatible: one can both report
pragmatically detected failed assumptions,
and assign non-tradi t ional truth values to
the sentences containing them.

b) Subtler t ru th-value ass ignments facil i tate
low-cost overall responses of the system.
For instance, a given presupposi t ion 's fail-
ure can both be pointed out during its
local evaluation, and carried on (via t ruth-
values) to upper levels, for the system it-
self to see and to possibly take fur ther
action of its own (such as trying al terna-
tive ways of complying with the request) .

Although not exploited in this sense in our system,
this feature would allow a more flexible t rea tment of
presupposit ions, as it would enable the system to de-
cide, for instance, in which cases they can be safely
and usefully ignored.

the

I
.

I I
and hate

.

l I I t
h a t t e r mad x A l i c e

l l
X X

Figure 2. A first representation of "The mad hatter hates Alice".

In our implementat ion, a var iable ' s associated do-
main depends both on f l and f2 in the following man-
ner: each predicate known to the data base system
has a domain associated with each of its arguments .
For instance, "mad" and "ha t te r" could require their
a rguments to belong to the human domain, whereas
"ha te" could require its first a rgument to belong to the
animal domain.

When a three-branched quantif icat ion is generated,
the variable it creates is typed by the intersect ion of
all those domains it has been associated with by the
predicates appear ing in ei ther f l or f2. In our exam-
ple, x 's type would be human (the intersection of the
human and the animal domains) .

Instead of generating a different quantif ier for each
determiner, it is useful to represent all quantifications
through a single one of the form:

152 A m e r i c a n J o u r n a l o f C o m p u t a t i o n a l L i n g u i s t i c s , V o l u m e 7, N u m b e r 3, J u l y - S e p t e m b e r 1981

Veronica Dab! Translat ing Spanish into Logic through Logic

for(x,p,c)

the intuitive meaning of which is: "c holds for the set
E of all x's in x 's domain which satisfy p". In the
formula c, the set E will be represented simply by the
variable x, so that x plays a double role.

Each quantif ication is thus assigned an equivalent
" for" expression, in which the determiner ' s meaning is
represented. Here are the representat ions of some of
our Spanish quantifiers. The rest are considered in
Section 2.2.1.2.

un(x , f l , f2) = fo r (x ,and(f l , f2) ,g rea te r - than(ca rd (x) ,0))
a

todo(x,f 1 ,f2) = for (x ,and(f l ,not (f2)) ,equal (card(x) ,0))
every

el(x,f 1 ,f2) = for (x , f l , i f(equal(card(x), 1) ,f2))
singular the

los (x,f 1 ,f2) = for(x,f 1 , i f (greater- than(card(x) , 1) ,f2))
plural the

ningfin(x,f l , f2) = fo r (x ,and(f l , f2) , equa l (ca rd(x) ,0))
n o

i (x , f l , f2) = for (x ,and(f l , f2) ,equa l (card(x) , i))
any cardinal number

unos(x , f l , f2) = a lgunos(x , f l , f2) =
some fo r (x , and(f l , f2) ,g rea t e r - than (ca rd (x) , l))

Notice that we have chosen to translate "un" (a) as
"at least one" (a frequent sense for "un") . In order
to avoid ambiguity, "1" should be used to mean
"exact ly one". This convent ion is particularly useful
when negation is involved. For instance, "No tengo
un centavo" (I have not a cent) would be wrongly rep-
resented in the "exact ly one" interpretation: it would
state that the number of cents I possess is not
one,which means it can either be 0,2,3, etc.

Finally, any formula of the form "for (x ,p ,c)" can
be replaced by just the formula c, in which all occur-
rences of x have been replaced by the formula:

those(x,p)

representing the subset of x's domain whose elements
satisfy p. This replacement takes place in the data
base component of our system.

The reader can now verify that the representat ions
shown in Figures 1 and 2 are equivalent.

2 . 2 . 1 . 1 Q u a n t i f i e r H i e r a r c h y

In our NL subset , quant if ier hierarchy obeys the
following three rules, which perhaps are too simplistic,
but have proved useful. A more thorough description
can be found in [4].

Rule 1: A determiner in a verb ' s subject intro-
duces a quantif ication which dominates all quantif ica-
tions in t roduced by the verb ' s complement (s) . For

instance, "Toda rosa tiene (algunas) espinas" (Every
rose has (some) thorns) is represented:

toda(x , rosa(x) ,a lgunas(y ,espinas(y) , t iene(x ,y)))
every rose some thorns has

Notice that the representat ion

some(y,thorn(y),every(x,rose(x),has(x,y)))

would be incorrect, as it means instead: " there exists
a particular set of thorns which every rose has".

- Rule 2: Whenever a noun has a complement , the
quantif ication introduced by the complement ' s deter-
miner dominates the one in t roduced by the noun ' s
determiner. For instance, "Sfibato autografia el libro
de cada visitante" (Sizbato autographs the book o f each
visitor) is represented:

cada(x,vis i tante(x) ,e l (y , l ibro-de(x,y) ,
au tograf ia (Sabato ,y)))

each visitor the book-of autographs

- Rule 3: When a referential word (a verb, a noun
or an adjective) has more than one complement , quan-
tification takes place f rom right to left: the r ightmost
complemen t generates a quant i f icat ion which domi-
nates the quantif icat ion(s) introduced by the lef tmost
complement(s) . For instance, "Rafil regala un espejo
a cada nifio" (Raid gives a mirror to each child) is rep-
resented:

cada(x ,n ino(x) ,un(y ,espejo(y) , regala(Raul ,y ,x)))
each child a mirror gives

2.2.1.2 Determiners with a Negative Implication

As a general rule, the negat ion introduced by "no"
in a sentence is t ransla ted by placing the opera to r
"no" (not) right af ter the quantif icat ion introduced by
the subject. For instance, "La indemnizaci6n no com-
pensa el despido de Mart in" (The indemnity does not
compensate for Martin's dismissal) is represented:

la(x , indemnizacion(x) ,no(e l (y ,despido-de(Mart in ,y) ,
compensa(x ,y))))

the indemnity not the dismissal-of compensate

But negation is not always explicit. The Spanish
determiner "ningfin" (no) can be regarded as an im-
plicit negation, since it expresses that no port ion of
the domain of quant i f icat ion satisfies the s ta tement
involved.

In a non-inverted subject position (e.g., "Ningfin
elefante vuela" -No elephant flies), it generates a spe-
cial quantifier called "ningfin", the representat ion of
which takes this fact into account, as we have seen.

There are two other cases, however , in which the
determiner "ningfin" coexists with an explicit negation.
These cases require a different quantifier, as otherwise

American Journal of Computat ional Linguistics, Volume 7, Number 3, Ju ly-September 1981 153

Veronica Dahl Translating Spanish into Logic through Logic

the negation would be represented twice. These cases
are:

- In a subject position, with subject -verb inversion:
the "ningfln" determiner is assimilated to the "every"
quantifier. For instance, "No vino ningfln a lumno"
(No student came) is represented:

todo(x ,a lumno(x) ,no(v ino(x)))
every student not came

- In a position other than the subject: the "ningfln"
de te rminer is assimilated to the indefinite ar t icle 's
quantifier. For instance, "Car los no tiene ningfln
hijo" (Carlos has not any chiM) is represented:

no(un(x,hi jo (x),t iene (Carlos ,x)))
not a child has

Another special case is the negat ion preceding the
" todo" (every) determiner, e.g. "No todo p~jaro can-
ta" (Not every bird sings). The analyser considers "no
todo" as a single determiner generating its own associ-
ated quantifier:

no- todo(x,f l , f2) =
for(x,and(f l ,not (f2)) ,greater-than(card(x),0))

2.3 Distributive, Collective, and Respective Plural

Semantically, different kinds of plurals can be dis-
tinguished. For instance, the sentence "Ana y Juan
hablan espafiol y franc6s" (Ann and John speak Span-
ish and French), which translates roughly into

speak({Ann,John] , {Spanish,French]) ,

introduces a distributive plural and must therefore eval-
uate to true (false) if the following formulas are all
true (false):

speak(Ann,Spanish)
speak(John,Spanish)
speak(Ann,French)
speak(John,French)

On the other hand, the sentence "A y B son paralelas"
(A and B are parallel), which translates into

parallel({A,B]),

introduces a collective plural and must evaluate to ei-
ther true or false as a result of testing the whole set
{A,B} for the proper ty of being parallel.

Finally, the sentence "Ana y Juan ganan respecti-
vamente 1000 y 800 dolares" (Ann and John respec-
tively earn 1000 and 800 dollars), which translates into

earn({Ann,John] , {$1000,$800}),

introduces a respective plural and must evaluate to true
(false) if the following formulas are both true (false):

earn(Ann,$1000)
earn(John,S800)

Notice that both distributive and respective plurals
presuppose that the set of formulas to be tested all
have the same truth value. Whenever such a presup-
position is not satisfied, the plural predicat ion is nei-
ther true nor false. In the logic L3, the predicat ion is
assigned the "poin t less" t ruth value; but in an im-
p rovement of this system, we are proposing the use of
a fourth truth value, called "mixed" , for this situation.
It seems more appropr ia te to differentiate "point less"
and "mixed" , so that the system has easy access to
locally detected semantic information, in case it needs
to take fur ther action.

Distributive and collective plurals are distinguished
in the lexicon by syntact ical ly marking the relat ion
they translate into.

Respec t ive plurals are not handled in our imple-
mentat ion: they were introduced (although with only
two logical values) in the Portuguese version of our
system, where the analyser recognizes them through
the words " respect ive" and "respect ively" .

2.4 Sets

Relations must be allowed to apply on sets if we
are to deal with collective relations. Sets are moreover
natural enough in data base applications, as retrieval
of ten concerns sets of objects satisfying certain prop-
erties. They can also be useful for defining types. We
represent them either extensionally (through lists) or
intensionally (through " those" formulas) .

Set opera t ions are implicit while p a r s i n g - - a s dy-
namic type checking involves intersect ing various
d o m a i n s - - a n d also during formula evaluation (i.e., in
the data base c o m p o n e n t of our sys tem). In bo th
cases they are kept invisible to the user.

In particular, the user can refer to either sets or
individuals when defining a new relation, and rely on
the sys tem to make appropr ia te inferences f rom his
definitions.

2.5 Linguistic Coverage

Our NL subset is extendible in the sense that the
user can define those referential words (nouns, verbs
and adject ives) associa ted with his par t icular data
base. This includes the definit ion of synonyms, always
useful regarding different users ' views of a data base.

The analyser uses a syntactic variant of P R O L O G ,
called (normal ized) me tamorphos i s g rammars (MGs)
[5]. As such, MGs share a most useful feature of logic
programs: a p rob lem's descript ion and the program
which solves it are one and the same. This is due to
the existence of an operational as well as a declarative
interpretat ion for logic programs [19].

154 American Journal of Computational Linguistics, Volume 7, Number 3, Ju ly-September 1981

Veronica Dahl Translating Spanish into Logic through Logic

Thus, the grammar shown in the Appendix (in the
Microfiche Supplement) both provides a formal defini-
tion of our linguistic coverage (in its declarative read-
ing) and is the analyser itself (in its procedural read-
ing, which the P R O L O G interpreter gives it).

An informal description of its coverage follows.

- Fixed vocabulary

Determiners:
el la los las un una unos unas

the a some

ningfm todo i
no every any cardinal number

Prepositions: all Spanish prepositions

Conjunction: y and

Relative pronouns: que quien donde cuyo cual(es)
~: which who where whose

Interrogative pronouns:
qu6 cu~nto(s) d6nde qui6n cu~l

which how much/many where who which

Negative particle: no

Variable vocabulary. Each particular data base
includes a definition of its associated proper names,
nouns, adjectives and verbs. Only simple verbal forms
in the third person are allowed.

- Structure. Sentences are either declarative or inter-
rogative, in the active voice. A declarative sentence
consists of a subject, an optional negation particle, a
verb and its modifiers (in the restricted sense de-
scribed below).

A subject consists of a noun phrase. A noun
phrase is either a series of proper names or a kernel
followed by noun modifiers and relative clauses (both
optional).

A noun phrase's kernel consists of an optional det-
erminer, an optional series of adjectives, a noun, and
possibly a series of adjectival groups. Mass nouns are
not dealt with. An adjectival group is an adjective
with modifiers.

A modifier (of a noun, an adjective or a verb) is
just a noun phrase as described above, possibly intro-
duced by a preposition.

Both relative and interrogative clauses are modified
versions of a declarative sentence, where some ele-
ments have changed places and some have been re-
placed by a relative or an interrogative pronoun.

Figure 3 gives a sample consultation session with
the system. The data base being consulted concerns
individuals grouped as either salesmen, administrative
employees, managers, sites, departments or salaries.
The first two sets are grouped to form the employee
domain, which together with the manager domain
forms the human domain. The data base contains the

1. Hola. (Hello.)
Diga. (I am listening.)

2. Con qui6n est~ casada Eva?
(Who is Eva married to?)
Con Adhn. (To Adhn.)

3. Aden y Eva viven en Lanfis?
(Do Adhn and Eva live in Lanits?)
No.

4. D6nde viven Eva y Aden?
(Where do Eva and Aditn live?)
En Montechingolo. (In Montechingolo.)

5. Los departamentos viven en Lanfls?
(Do departments live in Lanus?)
No entiendo su frase.
(I cannot understand your sentence.)

6. Cu~ntos vendedores no trabajan en Dep- l ?
(How many salesmen do not work in Dep-l ?)
2.

7. Qu~ vendedores no trabajan en D e p - l ?
(Which salesmen do not work in Dep-l ?)
Aden y Beatriz. (Adan and Beatriz.)

8. Con qui6n est~ casada la empleada cuyo salario es
3 millones?
(Who is the employee (+fern.) whose salary is 3 mil-
lion married to?)
Con Zoilo. (To Zoilo.)

9. Curies son las empleadas con cuya jefa trabaja
Quintin?
(Which are the employees (+fern.) whose manager
(+fern.) Quintin works with?)
Beatriz y Eva. (Beatriz and Eva.)

10. No todos los empleados viven en Lanfls.
(Not every employee lives in Lanlts.)
Muy cierto. (Quite true.)

11. Ningfln empleado vive en Lanfis.
(No employee lives in Lanits.)
No es cierto! (It is not true.t)

12. El vendedor que vive en T6mperley gana 4 mil-
lones.
(The salesman who lives in Tbmperley earns 4
million.)
Hay alguna presuposici6n falsa en su afirmaci6n.
(There is a false presupposition in your statement.)

13. Cu~l es el lugar donde no vive ningfln empleado?
(Which is the place where no employee lives?)
T6mperley.

14. Cu~ntas personas viven en T6mperley?
(How many people live in Tbmperley?)
Ninguna. (None.)

15. Con qui6n est~ casado Daniel?
(Who is Daniel married to?)
Con nadie. (To nobody.)

Figure 3. A sample consultation session.

American Journal of Computational Linguistics, Volume 7, Number 3, Ju ly -Sep tember 1981 155

Veronica Dahl Translating Spanish into Logic through Logic

relat ions live-in, earn, married, marr ied- to , work-a t ,
work-wi th and manager -of . Unary relat ions named
after each domain are implicit in any data base.

3. The Internal Query Language: L3

Informally, three kinds of L3 formulas can be dis-
tinguished: typed formulas t, s ta tement formulas s, and
integer formulas n.

- a typed f o r m u l a t denotes a subset of a given do-
main. It can be either a list of constants, a variable or
an expression of the form " those(x ,s)" .

- a s ta tement f o r m u l a s evaluates to either true, false,
or pointless. It can take any of the forms:

r (t l tn) where r is an n-ary predicate symbol
corresponding to a distributive, col-
lective or respective relation.

and(s l , s2)
if(s 1,s2)
not(s)
equa l (n l ,n2)
g rea t e r - than (n l ,n2)

- an integer f o r m u l a n l denotes an integer number ,
and can take one of the forms:

j where j is an integer such that j > 0
card(t)

Fur ther details can be found in [11].

4. Tools for Wr i t ing the Analyser

A brief and informal introduction to logic programs
and me tamorphos i s g rammars is given here, for the
sake of completeness. Fuller accounts can be found in
[5,19,20,29].

4.1 On Logic Programming

Logic programs are essentially sets of clauses of the
form:

B < - - A1,A2 An

called Horn clauses, where B and Ai are atomic formu-
las, and all variables in the atomic formulas are under-
s tood to be universally quantified. " < - - " is read "if" ,
and the commas s tand for conjunct ion. An empty
r ight-hand side denotes a non-condi t ional assert ion of
fact. For example,

1) l ikes(mother(x) ,x) < - -
every x is l iked by his-her-its mother

2) l ikes(Rover,y) < - - l ikes(y,Rover)
Rover l ikes every y who l ikes h im

In the rest of the paper (except for the figures),
variables appear in italics in order to distinguish them
f rom constants.

With respect to a given set of clauses (i.e., a pro-
gram), the user can ask for relations to be computed,
by stating procedure calls, i.e., clauses of the form:

< - - A1,A2,.. . ,An

This triggers an automat ic demons t ra t ion process,
during which the variables in the call take values for
which "A1 and A2 and ... and An" holds. Here
" < - - " can be in te rpre ted as a quest ion mark. An
unsuccessful te rminat ion implies that no such values
exist.

Thus, with respect to clauses 1 and 2 above, the
following call:

3) < - - l ikes(z,Rover)
Who l ikes Rover?

results in z being unified (bound) to " m o t h e r (R o v e r) " .
The same result would have been obta ined f rom the
call:

4) < - - l ikes(z,Rover) , l ikes(Rover,z)
Who l ikes and is l iked by Rover?

Alternat ive results for the same call may be ob-
ta ined within non-de te rminis t ic programs. For in-
stance, if we add the clause:

likes(Sweetie,Rover) < - -

then call 3 can al ternatively result in z being bound to
"Sweet ie" .

Practical logic p rogram interpreters , such as PRO-
L O G , also include some extra- logical fea tures for
i npu t /ou tpu t and control functions.

4.2 On Metamorphos is Grammars

MGs are a powerful formal ism for describing and
processing languages, in which:

- context-sensi t ive rewriting rules can be described.
- any substring of any length can be rewri t ten into

any other string.
- g rammar symbols may include arguments.
- conditions on rule applicat ion may be specified.
- sentence generat ion and parsing are provided

by the processor.

MGs can be regarded as a convenient al ternative
no ta t ion for logic programs. Ra the r than defining
them precisely, we shall exhibit some sample g rammar
rules and show informally one way of translating them
into Horn classes, that basical ly follows A.
Co lmeraue r ' s P R O L O G axiomat iza t ion of MGs. A
formal and comprehensive description can be found in
[5].

156 American Journal of Computational Linguistics, Volume 7, Number 3, July-September 1981

Veronica Dahl Translating Spanish into Logic through Logic

4.2.1 C o n t e x t - F r e e Ru les

Grammar rules can be graphically represented by
considering non-terminals as labeled arcs connect ing
phrase boundaries. A rule such as S - -> A B is repre-
sented as

s

I I
I A B v
0 >0 >0

xO x l x 2

or, in Horn-clause terms:

arrow(S,xO,x2) <-- arrow(A,xO,x l), arrow(B,xl ,x2)

which can be read, for every xO, x l and x2, there is an
arrow labeled S between points xO and x2 i f there is an
arrow labeled A between xO and x l and another one
labeled B between x l and x2.

Terminals in a rule are included as part of an
edge's name and do not give rise to extra atoms. If a
terminal symbol "a" labels an arc leading to point "x",
the starting point is named "a.x" (where is a bina-
ry operator in infix notation). Thus, the rule S - -> a
B S c can be represented:

s
.

I I
I a B S c v
0 >0 >0 >0 >0

a . x O xO x l c . x 2 x 2

arrow(S,a.x0,x2) < - - arrow(B,x,xl), arrow(S,xl ,c.x2)

Strings of consecutive terminals are treated as a
single one named after their concatenation.

4.2.2 G e n e r a l R e w r i t i n g Ru les

When the left-hand side of a rule contains more
than one symbol, a single arrow is not enough to de-
pict it: we need another path between the extreme
points. For instance, the rule B a - -> a B can be
graphed as:

B a . x a

. >0

I I

I a B v

0 >0 >0

a.xO xO x

where the lower path represents the right-hand side, as
usual, and the upper path represents the left-hand side
of the rule. In terms of Horn clauses, this gives:

arrow(B,a.xO,a.x) <-- arrow(B,xO,x)

Notice that no restrictions need be imposed on the
length of the strings on either side of the rule.

4.2.3 A Full E x a m p l e

Completing the last two rules, we obtain an MG
grammar for the language {anbncn}:

1) S - -> a B S c
2) S - -> a b c
3) B a - -> a B
4) B b - -> b b

where rules 2) and 4) translate respectively into:

2') arrow(S,a.b.c.x,x) <--
4') arrow(B,b.b.x,b.x) <- -

In the Horn-clause formulation of this grammar,
recognit ion and parsing of a given string (e.g.
"a.a.b.b.c.c.nil") is automatically obtained through the
respective P R O L O G calls:

5') <-- arrow(S,a.a.b.b.c.c.nil,x)
6') <-- arrow~,a.a.b.b.c.c.nil,x)

where the value of x is of no interest to the user. In
order that he need not specify it, a P R O L O G predi-
cate called "syn" (for "synthesize") is made available.
Its general form is

syn(x,y)

where x stands for the internal representation of the
surface sentence y. The above commands are there-
fore actually written:

5) <- - syn(S,a.a.b.b.c.c.nil)
6) <- - syn(y,a.a.b.b.c.c.nil)

4.2.4 Pars ing and G e n e r a t i n g

MGs can also be written for the purpose of
generating sentences. The same syn command is used
for this purpose, except that this time the second argu-
ment is the one represented by a variable, e.g.:

<-- syn(S,x)

In some cases, it is even possible for the same
grammar to work in both ways, although this requires
a very careful design. In the rest of this paper, we
shall only be concerned with parsing.

4.2.5 A r g u m e n t s W i t h i n G r a m m a r S y m b o l s

We might normally want the parser to retrieve
more information than mere recognition. The gram-
mar shown above, for instance, can be also used to
retrieve the substring of a's, if it is modified as fol-
lows:

1) S(a.x) - -> a B S(x) c
2) S(a) - -> a b c

Call 6 would now bind y to S(a.a).

American Journal of Computat ional Linguistics, Volume 7, Number 3, July-September 1981 157

Veronica Dahl Translating Spanish into Logic through Logic

4.2.6 Conditions and Calculations

Right -hand sides of rules may contain P R O L O G
calls (which we shall note be tween square brackets) .
They must be successfully evaluated for the rule to
apply. For instance, retrieval of the number of a 's can
be ob ta ined in the above g rammar by changing the
first two rules into:

1) S(n) - -> a B S(m) c [plus(m,l,n)]
2) S(1) - -> a b c

where "plus" is a P R O L O G predicate defining addi-
tion of integers. P R O L O G calls can also be used to
enforce conditions on rule applications.

4.2.7 Normalized MGs

P R O L O G only accepts normalized G rules, i.e., of
the form

A x - -> y

The derivation graph for "John laughs" is shown in
Figure 4. The numbers identify the rule applied. The
subst i tut ions needed for applying the rule appear as
r ight-hand side labels. Through them we can recon-
struct the deep structure " laugh(john)" .

Sentence(x)

I
11 x < - s

.

I I
Proper-noun(k) Verb(k,s)

3 I k <- john 4 I s <- laugh(john)

I I

john laughs

Figure 4. Derivation graph for "John laughs".

where A is a non- te rmina l symbol , x is a string of
terminals and y is any sequence of g rammar symbols.
This restriction is necessary, within the schema shown,
for t ranslat ing rules into Horn clauses (also called
definite clauses), in which at most one lef t-hand side
atomic formula is allowed. For this reason, they have
also been called "def ini te clause g rammars "t, in a
recent article [24] which compares them favourab ly
against the Augmented Transi t ion Ne twork formalism,
introduced by Woods [39].

As has been shown in [5], non-normal ized rules can
be easily replaced by an equivalent set of normalized
ones. For instance, B a C b - - > f g can be replaced
by B a c b - - > f g and C - - > c, where c is a " dummy"
terminal. F rom the parsing point of view, the results
are equivalent.

We can therefore safely ignore this restriction in all
that follows, for the sake of clarity.

4 . 2 . 8 D e r i v a t i o n G r a p h s

Although MGs can be unders tood declaratively, it
is somet imes useful to follow a sen tence ' s comple te
derivation, by construct ing a graph which depicts the
top-down, lef t - to-r ight his tory of rule applications.
We illustrate this through the grammar:

1) Sentence(s) - - > Proper -noun(k) Verb(k ,s) .
2) P roper -noun(tom) - - > tom
3) Proper -noun(john) - - > john
4) Verb(k , laugh(k)) - - > laughs

1 In a restricted sense, DCGs only allow a single non-terminal
on the left hand side, and are therefore an even more restricted
form of MGs. A more accurate synonym for "normalized MG"
might be "full D C G " - - a n expression suggested by D. Warren and
F. Pereira in the first draft of [24].

Notice that, once a variable takes a value, this val-
ue is p ropaga ted to each of its occur rences in the
graph. Thus, when applying rule 4, we use the known
value of k= john . Also, variable renaming must take
place whenever necessary in order to ensure that the
rule applied and the string it applies to share no varia-

bles.

5. Step-by-Step Development of a Spanish Analyser

We now develop a small Spanish parsing grammar,
step by step. Al though oversimplif ied, it i l lustrates
practically all of the techniques used to develop the
g rammar shown in the Append ix (in the Microf iche
Supplement) . Deep structures and non-terminal sym-
bols are in English, for the convenience of most read-

ers.

5.1 Elementary Sta tements

The following g r ammar descr ibes some simple
s ta tements cons t ruc ted a round proper nouns, verbs

and adjectives.

S) Sta tement(s) - - > P rope r -noun(k) Verb(k,l,s)
Complements(l , s)

V1) Verb(k,l,s) - - > Verb 1 (be) Adjective(k,l,s)

V2) Verb(kl ,list(arg(in,k2),nil),live-in(kl,k2)) -->
Verb 1 (live)

A1) Adject ive(k,ni l , intel l igent(k)) - - >
Adj 1 (intelligent)

A2) Adjective(k l ,list(arg(with,k2),nil),
ang ry -wi th (k / , k2)) - - > Adj 1 (angry)

158 American Journal of Computational Linguistics, Volume 7, Number 3, Ju l y -Sep tember 1981

Veronica Dahl Translating Spanish into Logic through Logic

C 1) Complements(ni l ,s) - - >

C2) Complements(list(arg(p,k),l),s) -->
Complements(l , s) Preposi t ion(p) P roper -noun(k)

Lexicon:
L1) Adj 1 (intelligent) - - > inteligente
L2) Adj l (angry) - - > enojado
L3) V e r b l (b e) - - > es
L4) V e r b l (b e) - - > estA
L5) Verb l (l ive) - - > vive
L6) Preposit ion(in) - - > en
L7) Preposit ion(with) - - > con
L8) Proper -noun(joan) - - > juana
L9) Proper -noun(tom) - - > tomAs

L10) Proper -noun(london) - - > londres
etc.

Figure 5 shows the derivation graph for "TomAs
estA enojado con Juana" (Tom is angry with Joan).
Most of the subst i tut ions shown concern the deep
structure, x. The empty string is denoted by a lambda.
Some non-terminal symbols are abbreviated. From the
substitutions shown, we can see that x takes the value
"angry- with (tom,j oan)" .

Statement(x)

I
S I x < - s

.

I
Pr-noun(k)

I
L9 1 k<-tom

I
tomas

I

Verb(k,l ,s)

I
Compls(ni l ,s)

I

VI C1 I
I
X

I I
Compls(l,s)

I
C2 I

.

I I
Prep(with) Pr-noun(k2)

I I
L7 1 L8 I k2<-

I I joan
con juana

I I
Verb1(be) Ad j (tom, l , s)

I I
L4 I A2 I kl <- tom

I I 1 <- l i s t (a r g (w i t h , k 2) , n i l)

esta I s <- angry-wi th(tom,k2)

I
Adj1(angry)

I
L2 1

I
enojado

Figure 5. Derivation graph for "Tom~s est~ enojado con Juana".

5.2 Syntact ic and Semant ic A g r e e m e n t

Syntactic agreement can be enforced by manipulat-
ing features such as gender and number within every
rule concerned with syntactic checks. For instance,
the modified rules:

L2) Adj l (fern-angry) - - > enojada
L2 ') Ad j l (mas-angry) - - > enojado
L8) Proper -noun(fem- joan) - - > juana
L9) P rope r -noun(mas - tom) - - > tomAs
A2) Adj(g l -k l ,list(arg(with,g2-k2),nil),

angry -wi th (k / , k2) - - > Adj 1 (gl-angry)

make it impossible to accept a sentence such as:

TomAs estA enojada con Juana.
Tom is angry (+fem.) with Joan.

Semantic constraints can be enforced similarly.
For a referential word to induce a distributive relation,
for instance, we add a prefix such as 'dr ' in the corre-
sponding rule, e.g.:

A1) Adj(g-k,nil,dr(intelligent(k))) - - > Adj(intelligent)

and establish the convent ion that unmarked predicates
are assumed to be collective. The data base compo-
nent of our system can thus distinguish each kind of
relat ion and ensure an appropr ia te in terpre ta t ion in
each case.

Types can be represented in the same way as syn-
tactic information. But we want them to be built up
during the parse, as a function of the various types
involved in a given sentence. A quick way to achieve
this is through unification. We can represent a type t
in a manner that reflects set inclusion relations to oth-
er types, e.g.:

nil&t&t l&...&tn

where the ti are types such that E (t) c E (t l) c . . . c E (t n) ,
and & is a binary opera tor in infix notation.

Such representat ions may be partially specified, as
in

v&employee&human

which can be matched with all those type representa-
tions for types conta ined in or equal to the
"employee" type. For instance, v can take the values:

nil
nil&salesman
nil&manager

etc., according to the context.

In general , noun defini t ions will have the mos t
weight in determining types: since it is nouns that
introduce data base domains, their associated types are
usually completely specified. Although this convent ion

American Journal of Computational Linguistics, Volume 7, Number 3, Ju ly-September 1981 159

V e r o n i c a Dah l T r a n s l a t i n g S p a n i s h into Logic t h r o u g h Logic

might result in rejecting as semantically anomalous
sentences that might deserve closer inspection (e.g.
"Do all the animals speak Lat in?") , it would seem a
reasonable compromise between speed and coverage.

5 . 3 N o u n P h r a s e s

We now modify our grammar so as to handle quan-
tified noun phrases. Agreement, both syntactic and
semantic, is now left out for the sake of clarity.

For explanatory purposes, let us imagine a NL
quantifier as a device which creates a variable k and
constructs a ' for ' formula s out of k and of two given
formulas sl and s2 (respectively standing for the noun
phrase's and the verb phrase's translations). In terms
of MG rules, this can be expressed as:

Determiner(k,sl,s2,s) - -> det

where "det" is a given NL determiner. Two sample
rules follow:

D 1) Determiner(k,sl ,s2,for(k,sl,
if(equal(card(k,1),s2)) - -> el (singular the)

D2) Determiner(k,s l ,s2 ,for(k,and(s l ,not(s2)),
equal(card(k),0)) - -> todo (every)

A noun, in turn, can be imagined as a device that
takes the variable created by the quantification and
constructs a relation, as in the following example:

NO1) Noun(k,fr iend(k)) - -> amigo

We can now relate a noun phrase to a verb phrase,
through the rules:

N1) Noun-phrase(k,s2,s) -->
Determiner(k,sl ,s2,s) Noun(k,sl)

N2) Noun-phrase(k,s,s) - -> Proper-noun(k)

S) S t a t e m e n t (s) - - >
Noun-phrase(k,s2,s) Verb(k,l,s2) Compls(l,s2)

Thus, a noun phrase can be regarded as a device
taking a formula s2 (the verb phrase's representation),
and producing a variable k and a formula s that repre-
sents the whole statement. In the case of a proper
noun, s merely takes the same value as s2.

Notice that the order in which these devices are
imagined to work is unimportant. They can be regard-
ed as term (i.e., tree) constructors which fill in differ-
ent gaps in those trees they share. For instance, the
variable s2 in rule S, which stands for a term of the
form

r(t l tn),

is given such a form by the Verb device, while the
Compls device fills in the values of its arguments. The
Noun-phrase device, on the other hand, can be consid-
ered a consumer of s2: it uses s2 in order to build up
s. It does not need s2 to be completely specified,

however. It merely fits s2 into its place in s, expecting
that sooner or later it will become completely speci-

fied.

We can now modify our rules for complements so

that they will allow quantified noun phrases as well as
proper nouns:

C1) Compls(nil,s,s) - ->

C2) Compls(list(arg(p,k),l),s l ,s) -->
Compls(l,sl,s2) Prep(p) Noun-phrase(k,s2,s)

Notice that these two simple rules are enough to han-
dle verb, adjective, and noun complements. All we

have to do is modify rules S and N2 as follows:

S) Statement(s) - -> Noun-phrase(k,s2,s)
Verb(k,l,s l) Compls(l,s l ,s2)

N2) Noun-phrase(k,s2,s) -->
Determiner(k,s l ,s2 ,s)
Noun(k,l,s3) Compls(l,s3,s)

and add extra rules for nouns, adjectives, or verbs that

accept complements, e.g.:

NO2) Noun(k l ,list(arg(of,k2),nil),friend-of(k l ,k2))
- -> amigo

For uniformity, we rewrite NO1 into:

NO1) Noun(k,nil , fr iend(k)) - -> amigo

The reader can now make a derivation graph for,
for instance, "El amigo de Juana ester enojado con
Tom~s" (Joan's friend is angry with Tom). The deep
structure shown in Figure 6 should be obtained.

fo r

l
.

k f r i e n d - o f i f

I t
.

l l
k Joan

I I

equal angry-wi th

i I

l l I i
card 1 k Tom

I
k

Figure 6. Internal representation for "El amigo de Juana est~
enojado con Tom~s".

1 6 0 A m e r i c a n J o u r n a l of C o m p u t a t i o n a l L inguis t ics , V o l u m e 7, N u m b e r 3, J u l y - S e p t e m b e r 1981

Veronica Dahl Translating Spanish into Logic through Logic

5.4 Negat ive Sentences

To handle negation, we can replace rule S by:

S) Statement(s) - - > Kernel(l,sl,s2,s) Compls(l,sl,s2)

K) Kernel(l,sl,s2,s) --> Noun-phrase(k,s3,s)
Neg(s2,s3) Verb(k,l,sl)

G1) Neg(s,s) - - >

G2) Neg(s ,not(s)) - - > no

where the Neg "device" takes a formula s and prod-
uces either s itself or not(s) , according to whether the
negation particle "no" is absent or present.

In sentences like "No vino ningfln a lumno" (No
student came), there is sub jec t -verb inversion, and
negat ion is represented twice. The deep structure
should read: "For every student, it is stated that he
did not come". To handle this situation, we take ad-
vantage of a non-terminal Case(c) which can explicitly
record the role of a given noun phrase as subject. Our
rules are augmented as follows:

K) Kernel(l,sl,s2,s) --> Modifier(subject-k,s3,s)
Neg(s2,s3) Verb(k,l,s l)

M) Modifier(c-k,sl,s2)-->
Case(c) Noun-phrase(k,s l ,s2)

The subject-verb inversion rule is as follows. Its
application leaves a symbol " Inv" as a marker.

I) Modifier(k,s3,s) Neg(s2,s3) Verb(k,l,sl) -->
Neg(s2,s3) Verb(k,l,s l) Inv Modifier(k,s3 ,s)

This marker is used to t ransform a surface 'ningfin'
quantifier into ' todo ' (every) , provided it occurs in an
inverted subject. Otherwise, the markers are erased:

T) Inv Case(subject)

M1) Case(subject) - ->

M2) Inv - ->

todo - -> ningfln

These rules implement our general t rea tment of nega-
tion described earlier.

The non- terminal Case(c) is impor tan t also in
handling complement noun phrases. Such noun phras-
es introduced by a preposit ion p will have associated
case prep(p) . Direct object noun phrases will have
case "dir" , and so on. We generalize rule C2 to

C2) Compls(list(arg(c,k),l),sl,s) - ->

Compls(l,sl,s2) Modifier(c-k,s2,s)
and add

M2) Case(prep(p)) - -> Prep(p)
etc.

5.5 Interrogat ive and Relat ive Clauses

As subject -verb inversion has already been defined,
we can handle Spanish yes-no quest ions simply by
adding:

SE1) Sentence(fact(s)) - -> Statement(s).
SE2) Sentence(yes-no(s)) - -> Statement(s) ?

(Notice, by the way, that the analyser actually prod-
uces more information than the L3 formula s. The
data base componen t uses this extra informat ion to
determine the form of the answer, to identify the set
to be retr ieved (as in rule SE3 below), etc.).

Wh-quest ions , on the other hand, of ten require
modifiers to be moved around and replaced by pro-
nouns. For instance, "D6nde vive Tomfis?" (Where
does Tom live?) can be considered as a variant for
"Tomfis vive en k" (Tom lives in k), in which "en k"
has been moved to the beginning of the sentence and
replaced by "D6nde" .

Relative clauses usually undergo similar t ransforma-
tions. For instance, "El empleado cuya jefa es Juana"
(The employee whose manager is Joan) can be consid-
ered as a variant of "El empleado [la jefa del emplea-
do] es Juana" (the employee [the manager of the em-
ployee] is Joan), where "del empleado" has shifted to
just before " je fa" to be subsumed, together with " la" ,
by the relative p ronoun "cuya" . To handle these
clauses, we use markers in the form of g rammar sym-
bols; we move the concerned modifiers and then we
use context-sensit ive rules to replace the appropr ia te
consti tuents by a pronoun. We illustrate this for inter-
rogative sentences such as the above example. First
we add an interrogative marker:

SE3) Sentence(wh(k,s)) - - > W h - l (k) Statement(s) ?

A modifier to be moved can be handled by the extra
rule:

C3) Compls(list(arg(c,k),l),sl,s)-->
Moved-mod(k,s2 ,s) Compls(l,s l ,s2)

which places it as the first complement . It must now
skip the kernel so as to become the head of the sen-
tence:

SK) W h - l (k) Kernel(l,sl,s2,s) Moved-mod(k,s3,s4)
- - > Wh-2(k) Modifier(k,s3,s4) Kernel(l,sl,s2,s)

Finally, it can be replaced by a pronoun:

PR) Wh-2(k) Modifier(k,sl,s2) - - > d6nde

Figure 7 shows a simplified derivation graph for
"D6nde vive Tomfis?", f rom which the internal repre-
senta t ion wh(k , l ive - in (Tom,k)) is obtained. Argu-
ments and substitutions are left out in order to empha-
size the structure of the derivation.

American Journal of Computational Linguistics, Volume 7, Number 3, July-September 1981 161

V e r o n i c a Dah l Translating Spanish into Logic through Logic

Sentence

SE31
.

I I I

Wh- 1 Statement ?

s I
.

I I
Kernel Compl s

I c31

I

I I I
I Moved-mod Compl s

l I c1 J

. 1

S K I ~.
.

I I I
Wh-2 Modif ier Kernel

I i KI

PR I

d6nde

Neg

G1 I

I

I i i
Modif ier Neg Verb

I I I
.

I I
.

I I l i
Verb Inv Modif ier

L5 I M2 I M I

I I

vive ~ I I

Case Noun-phrase

M1 I N1 I

Proper-noun

L91

tomas

Sentence

SE3 J
.

I I L
Wh-1 Statement ?

S l
.

I I
Kernel Compl s

KI C21
.

l I l I I
Modi f i er Neg Verb Compl s Modi f i er

I I I C1 I / /
. ~ j

I I / /
/

. f

PR' I

d6nde

I t I / I

Neg Verb Inv / Modi f ier /
GI I L51 M21 / M I

I l / I

vive / ~ I I /
/ Case Noun-phrase

MI i NIL

Proper-noun

L91

tomas

Figure 8. XG skeleton derivation graph for "D6nde vive Tom~s?"

Here ". . ." stands for any intermediate string of
symbols, which the rule's application leaves untouched
to the right of "D6nde" . Thus, the skeleton derivation
graph would now be as shown in Figure 8. Two rules
(C3 and SK) have been eliminated, and the resulting
graph is clearer.

Figure 7. MG skeleton derivation graph for "Donde vive Tomas?".

An alternative way of moving modifiers within
MGs is by adding extra arguments to each non-
terminal possibly dominating a modifier to be sub-
sumed by a pronoun, as has been observed in [25]. It
is however useful to be able to picture transformations
through argument-str ipped derivation graphs, as in the
technique just exemplified. This leads naturally to
ways of extending the MG formalism: Figure 7 sug-
gests that movements might be achieved more easily if
unidentified substrings can be refer red to, so that
whatever appears in be tween the expected pronoun
and the mobile modifier can be skipped by the latter
through a single rule. Such syntactic liberty is allowed
in extraposit ion grammars (XGs) [25], where, for in-
stance, rule PR cn be replaced by:

PR') W h - l (k) . . . Modifier(k,sl,s2) - -> D6nde

6 . E x t e n s i o n s

Some of the limitations of our system are quite
obvious from our discussion; e.g., pronoun references
are not dealt with, other than for relative and interro-
gative pronouns. Possible extensions and related work
include the following:

More flexible modifier scoping rules. The ones de-
scribed here were adopted as a compromise between
linguistic power and computat ional speed. Our choice
was constrained by the inconvenience of resorting to
f requent tests within grammar rules. Although allowed
in P R O L O G , this facility was too costly in the mini-
computer version available to us. Meaning distortions
resulting from too rigid quantifier scoping were, how-
ever, partly compensated for by using contextual infor-
mat ion available through unif icat ion to choose be-
tween alternative meanings of a given determiner. An
interest ing t rea tment of modifiers in logic grammars
has been recent ly proposed in [22]. It involves a

1 6 2 A m e r i c a n J o u r n a l of Computational Linguistics, V o l u m e 7, N u m b e r 3, J u l y - S e p t e m b e r 1981

Veronica Dahl Translating Spanish into Logic through Logic

three-pass analyser, developed within a part icularly
modular f ramework, in which all syntactic structures
are represented through a single format.

,4 subtler treatment o f presupposition detection. Al-
though the t rea tment discussed here allows for a quick
detect ion of failed presupposit ions, it fails to indicate
their nature. More helpful answers should make ex-
plicit the user 's wrong assumptions, and possibly cor-
rect them. The latest version of our system includes
the former capability. These problems have been ex-
tensively addressed in [17], although not in the context
of logic programs.

Dialogue extensions, e.g. for data base creation and
updating in natural language, for clarification of the
user 's intended meaning, etc. Some conversa t ional
facilities have been developed recently within a logic-
p rogrammed system for consulting library information
in Portuguese [2].

.4 wider linguistic output coverage. In its current
version, our system only handles a few answer for-
mats, constructed around the sets it retrieves and the
truth values it assigns to the questions. A synthesizing
grammar would be useful, particularly regarding more
informative answers. Ideally, a single g rammar should
work both for sentence generat ion and parsing.

Application to other language processing problems.
Notice that our choice of using English words for the
deep structures in Section 5 gives the parser a translat-
ing flavour. The fact that our system has been adapt-
ed to consultation in various natural languages without
substantial modif icat ions to ei ther the parser or the
internal language's features suggests that it might be
possible to use a similar f ramework for language trans-
lation. Another possibility is to develop a single, mul-
tilingual g rammar capable of switching to the user ' s
mother tongue as soon as the dialogue opens.

Finally, let us point out that the evolut ion in
P R O L O G ' s features is likely to make it possible to
improve on the implementat ion, at least, of the ideas
presented here. For instance, our set evaluation primi-
tives rely too much upon exhaustive domain enumera-
tion. While solving P R O L O G ' s negat ion p rob lem
satisfactorily for small domains, this is inefficient for
very large data bases.

Our previous so lu t ion - -que ry reordering [6] - - w a s
on the whole more adequate, but incurred the over-
head of filtering each query through a corout ining
interface. A recent DEC -10 P R O L O G implementa-
tion of this solution [31,32], however, has proved very
efficient in the Cha t -80 system, which also shares
other features with SOLAR 16 (namely, the minimiza-
tion of the search space through query reordering and
the addition of a set constructor predicate). Some of
these features have actually been incorpora ted as
standard into recent P R O L O G versions (cf. in [28]),
making it possible to develop more powerful systems
at a low cost.

Similarly, further MG extensions could make possi-
ble a wider linguistic coverage with no loss in efficien-
cy. Provisions for right as well as left extraposit ion,
for instance, would facilitate a full t rea tment of coor-
dination.

7. Conclud ing Remarks

Similar ideas to the ones discussed in this paper (in
part icular, those on quant i f icat ion (cf. [35])) have
influenced other NL data base systems, namely LU-
N A R [30] and P H L I Q A 1 [1]. But in spite of the
points in common, our general approach is markedly
different. We have tried to incorporate all relevant
semantic as well as syntactic NL features into a single
formalism, in order to do without intermediate sublan-
guages and have a single process per form the analysis
of an input sentence. L U N A R , on the contrary, first
generates deep structures and then maps them into a
semantic representat ion. P H L I Q A 1 has several suc-
cessive levels of semant ic analysis, each requiring a
special formal language. Some of them are meant to
deal with ambiguity, which in our approach , as we
have seen, is dealt with through the contextual typing
of variables during the quantif icat ion process.

A common disadvantage of this in tegra ted
a p p r o a c h - - n a m e l y , that the syn tac t ic / semant ic gram-
mar obtained is too domain-specif ic and therefore less
t r a n s p o r t a b l e - - i s avoided by relegating all domain-
specific knowledge to the domain -dependen t par t of
the lexicon (i.e., noun, verb, and adjective definitions).
Fur the rmore , the fact that semant ic agreement is
equated with syntactic wel l - formedness evens the rela-
tive costs of doing semantic versus syntactic tests.

The use of logic as the single formalism underlying
all aspects of our system's development is a distinctive
feature of the approach. Logic serves both as the
theoret ical f r amework and as the implementa t ion
means, In particular, this gives our system a definitely
non-procedura l f lavour: our programs, as we have
seen, can be unders tood in purely declarative terms.

The main strengths of our approach are, we feel:

Uniformity. Within our data base system, pro-
grams, parser, data, semantic interpretat ion and query
evaluation are uniformly represented.

Formalization. Due to the generalized use of logic,
important theoretical a spec t s - - such as a rigorous char-
acterization of our natural language subset and of the
syntax and semantics of our internal query
l a n g u a g e - - n e e d not be dissociated f rom those practi-
cal aspects concerning the implementat ion.

Conciseness. We have shown how a fairly compact ,
one-pass analyser can suffice to process a useful and
extendible natural language subset.

American Journal of Computational Linguistics, Volume 7, Number 3, July-September 1981 163

Veronica Dahl Translating Spanish into Logic through Logic

Clarity. The parser is modular, in the sense that
each rule can be unders tood declaratively by itself.
Problem-independent concerns (e.g. backtracking,
pattern-matching, etc.) are all left to PROLOG.

Performance. These assets do not imply sacrificing
efficiency. Parsing times have been shown to compare
favourably against those of the L U N A R system [30],
by using an adaptation of our Spanish analyser to Eng-
lish [24, p.276].

As we have also seen, many improvements remain
to be made. With the present study we hope to moti-
vate further research into the uses of logic for natural
language processing.

A c k n o w l e d g e m e n t s

T h e a u t h o r w i s h e s t o t h a n k A l a i n C o l m e r a u e r , u n -

d e r w h o s e s u p e r v i s i o n t h e r e s e a r c h p a r t i a l l y r e p o r t e d

h e r e w a s d e v e l o p e d ; M i c h a e l M c C o r d , f o r h is e n c o u r -

a g e m e n t t o g e t t h i s p a p e r f i n i s h e d ; a n d t h e r e v i e w e r s ,

f o r t h e i r u s e f u l s u g g e s t i o n s .

References

1. BrC3nnenberg W.J.H.J. et al. "The question-answering system
PHLIQAI." In: Natural Language Communication with
Computers, vol. II. L. Bole (ed.). Carl Hanser Verlag, Munchen
Wien, Macmillan, London, 1979, pp. 217-305.

2. Coelho H.M.F. "A program conversing in Portuguese providing
a library service." Ph.D. Thesis, Univ. of Edinburgh, 1979.

3. Colmerauer A. et al. "Un syst~me de communication homme-
machine en franeais." Univ. Aix-Marseille, 1973.

4. Colmerauer A. "Un sous-ensemble int6ressant du francais."
R.A.1.R.O. vol. 13, N 4, 1979.

5. Colmerauer A. "Metamorphosis grammars." In: Natural Lan-
guage Communication with Computers, vol. I. Springer Verlag,
1978, pp. 133-189.

6. Dahl V. and Sambuc R. "Un syst6me de banque de donn~es en
logique du premier ordre, en vue de sa consultation en langue
naturelle." D.E.A. Report, Univ. Aix-Marseille, 1976.

7. Dahl V. "Un syst~me d~ductif d'interrogation de banques de
donn~es en espagnol." Thbse de Doctorat de Spdcialitd, Univ.
Aix-Marseille, 1977.

8. Dahl V. "Some experiences on natural language question-
answering systems." Proc. Workshop on Logic and Data Bases,
Toulouse, 1977.

9. Dahl V. "Quantification in a three-valued logic for natural
language question-answering systems." Proc. 6th 1JCAI, Tokyo,
1979.

10. Dahl V. "Logical design of deductive, natural language consult-
able data bases." Proc. V International Conference on Very Large
Data Bases, Rio de Janeiro, 1979.

11. Dahl V. "A three-valued logic for natural language computer
applications." Proc. Tenth International Symposium on Multiple
Valued Logic, Illinois, 1980.

12. Dahl V. "Two solutions for the negation problem." Proc.
Logic Programming Workshop, Hungary, 1980.

13. Dahl V. On database systems development through logic. To
appear in: ACM Transactions on Database Systems.

14. Gallaire H. and Minker J. (eds.) Logic and Data Bases. Plenum
Publ. Co., 1978.

15. Hausser R. "Quantification in an extended Montague gram-
mar." Dissertation, Univ. of Texas at Austin, 1974.

16. Hendrix G.G. et al. "Developing a natural language interface to
complex data." ACM Transactions on Database Systems, vol. 3,
No. 2, June 1978.

17. Kaplan J. "Cooperative responses from a portable natural
language data base query system." MS-C1S-79-26. Univ. of
Pennsylvania, 1979.

18. Keenan E. L. "On semantically based grammars." Linguistic
Inquiry, 1972.

19. Kowalski R. "Predicate logic as a programming language." Proc.
IF1P 74, North-Holland Publishing Co., Amsterdam, pp. 569-
574.

20. Kowalski R. Logic for problem solving. North-Holland, 1979.

21. Lakoff G. and Ross J.R. " Es necesaria la estructura profun-
da?" In: Semantica y sintaxis en la linguistica transformatoria.
Alianza Editorial de Madrid, 1974.

22. McCord M. "Using slots and modifiers in logic grammars for
natural language." Technical Report N 69-80, Univ. of Kentuc-
ky, 1980. To appear in Artificial Intelligence.

23. Pasero R. "Un essai de communication sens6e en langue natu-
relle." Univ. Aix-Marseille, 1976.

24. Pereira F. and Warren D. "Definite clause grammars for lan-
guage analysis - - A survey of the formalism and a comparison
with augmented transition networks." Artificial Intelligence 13,
1980.

25. Pereira F. "Extraposition grammars." Proc. Logic Programming
Workshop, Hungary, 1980, pp. 231-242.

26. Petrick S.R. "On natural language based computer systems."
IBM Journal of Research and Development, July 1976.

27. Roussel Ph. "PROLOG: manuel de r6f6rence et d'utilisation."
Univ. Aix-Marseille, 1975.

28. T~irnlund S-A. (Ed.) Logic Programming Workshop Proceedings.
Debrecen, Hungary, July 1980.

29. van Emden M.H. "Programming with resolution logic." In:
Machine Intelligence 8, Elcock E. & Michie D. (eds.). Chiches-
ter: Ellis Horwood, 1977, pp. 266-299.

30. Warren D. et al. "PROLOG: the language and its implementa-
tion compared with LISP." Proc. ACM Symposium on AI and
Programming Languages, SIGPLAN, S1GART Newsletter, Roch-
ester, NY, 1977, pp. 109-115.

31. Warren D.H.D. "Efficient processing of interactive relational
database queries expressed in logic." Dept. of Artificial Intelli-
gence, Univ. of Edinburgh, 1981.

32. Warren D.H.D. and Pereira F.C.N. "An efficient easily adapta-
ble system for interpreting natural language queries." Dept. of
Artificial Intelligence, Univ. of Edinburgh, 1981.

33. Woods W.A. "Transition network grammars for natural lan-
guage analysis." Comm. ACM, vol. 1, N 10, October, 1970.

34. Woods W.A. et al. "The lunar sciences natural language infor-
mation system: Final report." BBN Rep. 2378, Bolt Beranek &
Newman, Cambridge, Mass., 1972.

35. Woods W.A. "Semantics and quantification in natural language
question answering." Advances in Computers, vol. 17, 1978, pp.
1-87.

Veronica Dahl is a Researcher in Computer Science
for the Argentine National Council for Scientific and
Technical Investigations and an Adjunct Professor in the
Mathematics Department at the University o f Buenos
Aires. She received the Doctorat de Sp~cialit~ in Artifi-
cial Intelligence at the University o f Aix-Marseil le in
1977.

164 American Journal of Computational Linguistics, Volume 7, Number 3, July-September 1981

