Generating Personalized Recipes from Historical User Preferences

Bodhisattwa Prasad Majumder; Shuyang Li; Jianmo Ni, Julian McAuley
Computer Science and Engineering
University of California, San Diego
{bmajumde, shl008, jin018, jmcauley}@ucsd.edu

Abstract

Existing approaches to recipe generation are unable to create recipes for users with culinary preferences but incomplete knowledge of ingredients in specific dishes. We propose a new task of personalized recipe generation to help these users: expanding a name and incomplete ingredient details into complete natural-text instructions aligned with the user’s historical preferences. We attend on technique- and recipe-level representations of a user’s previously consumed recipes, fusing these ‘user-aware’ representations in an attention fusion layer to control recipe text generation. Experiments on a new dataset of 180K recipes and 700K interactions show our model’s ability to generate plausible and personalized recipes compared to non-personalized baselines.

1 Introduction

In the kitchen, we increasingly rely on instructions from cooking websites: recipes. A cook with a predilection for Asian cuisine may wish to prepare chicken curry, but may not know all necessary ingredients apart from a few basics. These users with limited knowledge cannot rely on existing recipe generation approaches that focus on creating coherent recipes given all ingredients and a recipe name (Kiddon et al., 2016). Such models do not address issues of personal preference (e.g. culinary tastes, garnish choices) and incomplete recipe details. We propose to approach both problems via personalized generation of plausible, user-specific recipes using user preferences extracted from previously consumed recipes.

Our work combines two important tasks from natural language processing and recommender systems: data-to-text generation (Gatt and Krahmer, 2018) and personalized recommendation (Rashid et al., 2002). Our model takes as user input the name of a specific dish, a few key ingredients, and a calorie level. We pass these loose input specifications to an encoder-decoder framework and attend on user profiles—learned latent representations of recipes previously consumed by a user—to generate a recipe personalized to the user’s tastes. We fuse these ‘user-aware’ representations with decoder output in an attention fusion layer to jointly determine text generation. Quantitative (perplexity, user-ranking) and qualitative analysis on user-aware model outputs confirm that personalization indeed assists in generating plausible recipes from incomplete ingredients.

While personalized text generation has seen success in conveying user writing styles in the product review (Ni et al., 2017; Ni and McAuley, 2018) and dialogue (Zhang et al., 2018) spaces, we are the first to consider it for the problem of recipe generation, where output quality is heavily dependent on the content of the instructions—such as ingredients and cooking techniques.

To summarize, our main contributions are as follows:

1. We explore a new task of generating plausible and personalized recipes from incomplete input specifications by leveraging historical user preferences;
2. We release a new dataset of 180K+ recipes and 700K+ user reviews for this task;
3. We introduce new evaluation strategies for generation quality in instructional texts, centering on quantitative measures of coherence. We also show qualitatively and quantitatively that personalized models generate high-quality and specific recipes that align with historical user preferences.

* denotes equal contribution

1Our source code and appendix are at https://github.com/majumderb/recipe-personalization
2 Related Work

Large-scale transformer-based language models have shown surprising expressivity and fluency in creative and conditional long-text generation (Vaswani et al., 2017; Radford et al., 2019). Recent works have proposed hierarchical methods that condition on narrative frameworks to generate internally consistent long texts (Fan et al., 2018; Xu et al., 2018; Yao et al., 2018). Here, we generate procedurally structured recipes instead of free-form narratives.

Recipe generation belongs to the field of data-to-text natural language generation (Gatt and Krahmer, 2018), which sees other applications in automated journalism (Leppänen et al., 2017), question-answering (Agrawal et al., 2017), and abstractive summarization (Paulus et al., 2018), among others. Kiddon et al. (2015); Bosselut et al. (2018b) model recipes as a structured collection of ingredient entities acted upon by cooking actions. Kiddon et al. (2016) imposes a ‘checklist’ attention constraint emphasizing hitherto unused ingredients during generation. Yang et al. (2017) attend over explicit ingredient references in the prior recipe step. Similar hierarchical approaches that infer a full ingredient list to constrain generation will not help personalize recipes, and would be infeasible in our setting due to the potentially unconstrained number of ingredients (from a space of 10K+) in a recipe. We instead learn historical preferences to guide full recipe generation.

A recent line of work has explored user- and item-dependent aspect-aware review generation (Ni et al., 2017; Ni and McAuley, 2018). This item-dependent aspect-aware review generation prefers to guide full recipe generation.

To personalize output, we use historical preferences from user histories: (1) recipe interaction constraint emphasizing hitherto unused ingredients during generation. Yang et al. (2017) attend over explicit ingredient references in the prior recipe step. Similar hierarchical approaches that infer a full ingredient list to constrain generation will not help personalize recipes, and would be infeasible in our setting due to the potentially unconstrained number of ingredients (from a space of 10K+) in a recipe. We instead learn historical preferences to guide full recipe generation.

A recent line of work has explored user- and item-dependent aspect-aware review generation (Ni et al., 2017; Ni and McAuley, 2018). This item-dependent aspect-aware review generation prefers to guide full recipe generation.

We define an attention-score function \(\alpha \) with key \(K \) and query \(Q \):

\[
\alpha(K, Q) = \frac{\exp(\text{tanh}(W_\alpha [K + Q] + b_\alpha))}{Z}
\]

with trainable weights \(W_\alpha \), bias \(b_\alpha \), and normalization term \(Z \). At decoding time \(t \), we calculate the ingredient context \(a_{t}^i \in \mathbb{R}^{d_h} \) as:

\[
a_{t}^i = \sum_{j=1}^{L_i} \alpha(i_{enc,j}, h_t) \times i_{enc,j}.
\]

Decoder: The decoder is a two-layer GRU with hidden state \(h_t \) conditioned on previous hidden state \(h_{t-1} \) and input token \(w_{r,t} \) from the original recipe text. We project the concatenated encoder outputs as the initial decoder hidden state:

\[
h_0 = W_h_0 [n_{enc,L_r}; i_{enc,L_r}; c_{enc}] + b_h_0,
\]

\[
h_t, o_t = \text{GRU} \left([w_{r,t}; a_t^i], h_{t-1} \right).
\]

To bias generation toward user preferences, we attend over a user’s previously reviewed recipes to jointly determine the final output token distribution. We consider two different schemes to model preferences from user histories: (1) recipe interactions, and (2) techniques seen therein (defined in Section 4). Rendle et al. (2009); Quadrana et al. (2018); Ueda et al. (2011) explore similar schemes for personalized recommendation.

Prior Recipe Attention: We obtain the set of prior recipes for a user \(u \): \(R_{u}^+ \), where each recipe can be represented by an embedding from a recipe embedding layer \(\mathcal{R} \) or an average of the name tokens embedded by \(\mathcal{V} \). We attend over the \(k \)-most recent prior recipes, \(R_{u}^{+k} \), to account for temporal drift of user preferences (Moore et al., 2013).
These embeddings are used in the ‘Prior Recipe’ and ‘Prior Name’ models, respectively.

Given a recipe representation \(r \in \mathbb{R}^{d_r} \) (where \(d_r \) is recipe- or vocabulary-embedding size depending on the recipe representation) the prior recipe attention context \(\alpha^{r_{tu}}_t \) is calculated as

\[
\alpha^{r_{tu}}_t = \sum_{r \in R^{u+t}} \alpha(r, h_t) \times r.
\]

Prior Technique Attention: We calculate prior technique preference (used in the ‘Prior Tech’ model) by normalizing co-occurrence between users and techniques seen in \(R^{u+t} \), to obtain a preference vector \(\rho_u \). Each technique \(x \) is embedded via a technique embedding layer \(X \) to \(x \in \mathbb{R}^{d_x} \). Prior technique attention is calculated as

\[
\alpha^{x_{tu}}_t = \sum_{x \in \text{seen in } R^{u+t}} (\alpha(x, h_t) + \rho_{u,x}) \times x,
\]

where, inspired by copy mechanisms (See et al., 2017; Gu et al., 2016), we add \(\rho_{u,x} \) for technique \(x \) to emphasize the attention by the user’s prior technique preference.

Attention Fusion Layer: We fuse all contexts calculated at time \(t \), concatenating them with decoder GRU output and previous token embedding:

\[
a_t^f = \text{ReLU} \left(W_f [w_{tu,t}; o_t; \alpha^t_v; (\alpha^{r_{tu}}_t or \alpha^{x_{tu}}_t)] + b_f \right).
\]

We then calculate the token probability:

\[
P(S_{r,t}) = \text{softmax} \left(W_P [a_t^f] + b_P \right),
\]

and maximize the log-likelihood of the generated sequence conditioned on input specifications and user preferences. Figure 1 shows a case where the Prior Name model attends strongly on previously consumed savory recipes to suggest the usage of an additional ingredient (‘cilantro’).
for both the encoder and decoder. Embedding dimensions for vocabulary, ingredient, recipe, techniques, and caloric level are 300, 10, 50, 50, and 5 (respectively). For prior recipe attention, we set $k = 20$, the 80th %-ile for the number of user interactions. We use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 10^{-3}, annealed with a decay rate of 0.9 (Howard and Ruder, 2018). We also use teacher-forcing (Williams and Zipser, 1989) in all training epochs.

In this work, we investigate how leveraging historical user preferences can improve generation quality over strong baselines in our setting. We compare our personalized models against two baselines. The first is a name-based Nearest-Neighbor model (\texttt{NN}). We initially adapted the Neural Checklist Model of Kiddon et al. (2016) as a baseline; however, we ultimately use a simple Encoder-Decoder baseline with ingredient attention (\texttt{Enc-Dec}), which provides comparable performance and lower complexity. All personalized models outperform baseline in BPE perplexity (Table 2) with Prior Name performing the best. While our models exhibit comparable performance to baseline in BLEU-1/4 and ROUGE-L, we generate more diverse (Distinct-1/2: percentage of distinct unigrams and bigrams) and acceptable recipes. BLEU and ROUGE are not the most appropriate metrics for generation quality. A ‘correct’ recipe can be written in many ways with the same main entities (ingredients). As BLEU-1/4 capture structural information via n-gram matching, they are not correlated with subjective recipe quality. This mirrors observations from Baheti et al. (2018); Fan et al. (2018).

We observe that personalized models make more diverse recipes than baseline. They thus perform better in BLEU-1 with more key entities (ingredient mentions) present, but worse in BLEU-4, as these recipes are written in a personalized way and deviate from gold on the phrasal level. Similarly, the ‘Prior Name’ model generates more unigram-diverse recipes than other personalized models and obtains a correspondingly lower BLEU-1 score.

\textbf{Qualitative Analysis:} We present sample outputs for a cocktail recipe in Table 3, and additional recipes in the appendix. Generation quality progressively improves from generic baseline output to a blended cocktail produced by our best performing model. Models attending over prior recipes explicitly reference ingredients. The Prior Name model further suggests the addition of lemon and mint, which are reasonably associated with previously consumed recipes like coconut mousse and pork skewers.

\begin{table}[h]
\centering
\begin{tabular}{lcccccccc}
\hline
Model & BPE PPL & BLEU-1 & BLEU-4 & ROUGE-L & D-1 (%) & D-2 (%) & UMA & MRR & PP (%) \\
\hline
NN & – & 20.279 & 0.465 & 16.871 & 0.931 & 9.394 & 0.100 & 0.293 & – \\
\hline
Enc-Dec & 9.611 & 28.391 & \textbf{3.385} & \textbf{25.001} & 0.220 & 1.928 & 0.100 & 0.293 & – \\
Prior Tech & 9.572 & \textbf{28.864} & 3.312 & 24.920 & 0.233 & \textbf{2.158} & 0.128 & 0.319 & 62.821 \\
Prior Recipe & 9.551 & 27.858 & 3.215 & 24.822 & 0.231 & 2.062 & 0.302 & 0.412 & \textbf{66.026} \\
Prior Name & \textbf{9.516} & 28.046 & 3.211 & 24.794 & \textbf{0.233} & 2.080 & 0.505 & 0.628 & 61.165 \\
\hline
\end{tabular}
\caption{Metrics on generated recipes from test set. D-1/2 = Distinct-1/2, UMA = User Matching Accuracy, MRR = Mean Reciprocal Rank, PP = Pairwise preference over baseline (evaluated for 310 recipe pairs per model).}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{l}
\hline
Input Name: Pomberrytini; Ingredients: pomegranate-blueberry juice, cranberry juice, vodka; Calorie: Low \\
\hline
Gold & Place everything except the orange slices in a cocktail shaker. Shake until well mixed and well chilled. Pour into martini glasses and float an orange slice in each glass. \\
Enc-Dec & Combine all ingredients. Cover and refrigerate. Serve with whipped topping. \\
Prior Tech & Combine all ingredients. Store in refrigerator. Serve over ice. Enjoy! \\
Prior Recipe & Pour the ice into a cocktail shaker. Pour in the vodka and vodka. Add a little water and shake to mix. Pour into the glass and garnish with a slice of orange slices. Enjoy! \\
Prior Name & Combine all ingredients except for the ice in a blender or food processor. Process to make a smooth paste and then add the remaining vodka and blend until smooth. Pour into a chilled glass and garnish with a little lemon and fresh mint. \\
\hline
\end{tabular}
\caption{Sample generated recipe. Emphasis on personalization and explicit ingredient mentions via \textbf{highlights}.}
\end{table}
Personalization: To measure personalization, we evaluate how closely the generated text corresponds to a particular user profile. We compute the likelihood of generated recipes using identical input specifications but conditioned on ten different user profiles—one 'gold' user who consumed the original recipe, and nine randomly generated user profiles. Following Fan et al. (2018), we expect the highest likelihood for the recipe conditioned on the gold user. We measure user matching accuracy (UMA)—the proportion where the gold user is ranked highest—and Mean Reciprocal Rank (MRR) (Radev et al., 2002) of the gold user. All personalized models beat baselines in both metrics, showing our models personalize generated recipes to the given user profiles. The Prior Name model achieves the best UMA and MRR by a large margin, revealing that prior recipe names are strong signals for personalization. Moreover, the addition of attention mechanisms to capture these signals improves language modeling performance over a strong non-personalized baseline.

Recipe Level Coherence: A plausible recipe should possess a coherent step order, and we evaluate this via a metric for recipe-level coherence. We use the neural scoring model from Bosselut et al. (2018a) to measure recipe-level coherence for each generated recipe. Each recipe step is encoded by BERT (Devlin et al., 2019). Our scoring model is a GRU network that learns the overall recipe step ordering structure by minimizing the cosine similarity of recipe step hidden representations presented in the correct and reverse orders. Once pretrained, our scorer calculates the similarity of a generated recipe to the forward and backwards ordering of its corresponding gold label, giving a score equal to the difference between the former and latter. A higher score indicates better step ordering (with a maximum score of 2). Table 4 shows that our personalized models achieve average recipe-level coherence scores of 1.78-1.82, surpassing the baseline at 1.77.

Recipe Step Entailment: Local coherence is also crucial to a user following a recipe: it is crucial that subsequent steps are logically consistent with prior ones. We model local coherence as an entailment task: predicting the likelihood that a recipe step follows the preceding. We sample several consecutive (positive) and non-consecutive (negative) pairs of steps from each recipe. We train a BERT (Devlin et al., 2019) model to predict the entailment score of a pair of steps separated by a \[\text{SEP}\] token, using the final representation of the \[\text{CLS}\] token. The step entailment score is computed as the average of scores for each set of consecutive steps in each recipe, averaged over every generated recipe for a model, as shown in Table 4.

Human Evaluation: We presented 310 pairs of recipes for pairwise comparison (Fan et al., 2018) (details in appendix) between baseline and each personalized model, with results shown in Table 2. On average, human evaluators preferred personalized model outputs to baseline 63% of the time, confirming that personalized attention improves the semantic plausibility of generated recipes. We also performed a small-scale human coherence survey over 90 recipes, in which 60% of users found recipes generated by personalized models to be more coherent and preferable to those generated by baseline models.

6 Conclusion

In this paper, we propose a novel task: to generate personalized recipes from incomplete input specifications and user histories. On a large novel dataset of 180K recipes and 700K reviews, we show that our personalized generative models can generate plausible, personalized, and coherent recipes preferred by human evaluators for consumption. We also introduce a set of automatic coherence measures for instructional texts as well as personalization metrics to support our claims. Our future work includes generating structured representations of recipes to handle ingredient properties, as well as accounting for references to collections of ingredients (e.g. "dry mix").

Acknowledgements

This work is partly supported by NSF #1750063. We thank all reviewers for their constructive suggestions, as well as Rei M., Sujoy P., Alicia L., Eric H., Tim S., Kathy C., Allen C., and Micah I. for their feedback.
References

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. 2018. Personalizing dialogue agents: I have a dog, do you have pets too? In *ACL*.