MultiFiT: Efficient Multi-lingual Language Model Fine-tuning

Julian Eisenschlos\(^1\)*
Marcin Kardas\(^4\)*

Sebastian Ruder\(^2\),\(^3\)*
Sylvain Gugger\(^5\)

Piotr Czapla\(^4\)*
Jeremy Howard\(^5\),\(^6\)

\(^1\)ASAPP, Inc.
\(^2\)National University of Ireland
\(^3\)Aylien Ltd., Dublin
\(^4\)n-waves, Wrocław
\(^5\)fast.ai
\(^6\)University of San Francisco

Abstract

Pretrained language models are promising particularly for low-resource languages as they only require unlabelled data. However, training existing models requires huge amounts of compute, while pretrained cross-lingual models often underperform on low-resource languages. We propose Multi-lingual language model Fine-Tuning (MultiFiT) to enable practitioners to train and fine-tune language models efficiently in their own language. In addition, we propose a zero-shot method using an existing pretrained cross-lingual model. We evaluate our methods on two widely used cross-lingual classification datasets where they outperform models pretrained on orders of magnitude more data and compute. We release all models and code\(^1\).

1 **Introduction**

Pretrained language models (LMs) have shown striking improvements on a range of natural language processing (NLP) tasks (Peters et al., 2018a; Howard and Ruder, 2018; Devlin et al., 2018). These models only require unlabelled data for training and are thus particularly useful in scenarios where labelled data is scarce. As much of NLP research has focused on the English language, the larger promise of these models is to bridge the digital language divide\(^2\) and enable the application of NLP methods to many of the world’s other 6,000 languages where labelled data is less plentiful.

Recently, cross-lingual extensions of these LMs have been proposed that train on multiple languages jointly (Artetxe and Schwenk, 2018; Lample and Conneau, 2019). These models are able to perform zero-shot learning, only requiring labelled data in the source language. However, source data in another language may often not be available, whereas obtaining a small number of labels is typically straightforward.

Furthermore such models have several downsides: a) some variants rely on large amounts of parallel data, which may not be available for truly low-resource languages; b) they require a huge amount of compute for training\(^3\); and c) cross-lingual models underperform on low-resource languages—precisely the setting where they would be most useful. We are aware of two possible reasons for this: 1) Languages that are less frequently seen during training are underrepresented in the embedding space.\(^4\) 2) In-frequent scripts are over-segmented in the shared word piece vocabulary (Wang et al., 2019).

In this work, we show that small monolingual LMs are able to outperform expensive cross-lingual models both in the zero-shot and the supervised setting. We propose Multi-lingual language model Fine-tuning (MultiFiT) to enable practitioners to train and fine-tune language models efficiently.\(^5\) Our model combines universal language model fine-tuning (ULMFiT; Howard and Ruder, 2018) with the quasi-recurrent neural network (QRNN; Bradbury et al., 2017) and subword tokenization (Kudo, 2018) and can be pretrained on a single Tesla V100 GPU in a few hours. In addition, we propose to use a pretrained cross-lingual model’s predictions as pseudo labels to adapt the

\(^1\)The first four authors contributed equally.
\(^2\)Corresponding author: eisenjulian@gmail.com
\(^3\)Sebastian is now affiliated with DeepMind.
\(^4\)http://labs.theguardian.com/digital-language-divide/
\(^5\)http://nlp.fast.ai
\(^6\)This is similar to how word embeddings are known to underperform on low-frequency tokens (Gong et al., 2018).
\(^7\)We use ‘multilingual’ as referring to training independent models in multiple languages. We use ‘cross-lingual’ to refer to training a joint model across multiple languages.
monolingual language model to the zero-shot setting. We evaluate our models on two widely used cross-lingual classification datasets, MLDoc (Schwenk and Li, 2018) and CLS (Prettenhofer and Stein, 2010) where we outperform the state-of-the-art zero-shot model LASER (Artetxe and Schwenk, 2018) and multi-lingual BERT (Devlin et al., 2018) in the supervised setting—even without any pretraining. In the zero-shot setting, we outperform both models using pseudo labels—and report significantly higher performance with as little as 100 examples. We finally show that information from monolingual and cross-lingual language models is complementary and that pretraining makes models robust to noise.

2 Related work

Pretrained language models Pretrained language models based on an LSTM (Peters et al., 2018a; Howard and Ruder, 2018) and a Transformer (Radford et al., 2018; Devlin et al., 2018) have been proposed. Recent work (Peters et al., 2018b) suggests that—all else being equal—an LSTM outperforms the Transformer in terms of downstream performance. For this reason, we use a variant of the LSTM as our language model.

Cross-lingual pretrained language models The multi-lingual BERT model is pretrained on the Wikipedias of 104 languages using a shared word piece vocabulary. LASER (Artetxe and Schwenk, 2018) is trained on parallel data of 93 languages with a shared BPE vocabulary. XLM (Lample and Conneau, 2019) additionally pretrains BERT with parallel data. These models enable zero-shot transfer, but achieve lower results than monolingual models. In contrast, we focus on making the training of monolingual language models more efficient in a multi-lingual context. Concurrent work (Mulcaire et al., 2019) pretrains on English and another language, but shows that cross-lingual pretraining only helps sometimes.

Multi-lingual language modeling Training language models in non-English languages has only recently received some attention. Kawakami et al. (2017) evaluate on seven languages. Cotterell et al. (2018) study 21 languages. Gerz et al. (2018) create datasets for 50 languages. All of these studies, however, only create small datasets, which are inadequate for pretraining language models. In contrast, we are among the first to report the performance of monolingual language models on downstream tasks in multiple languages.

3 Our method

3.1 Multi-lingual Fine-Tuning

We propose Multi-lingual Fine-tuning (MultiFit). Our method uses the ULMFiT model (Howard and Ruder, 2018) with discriminative fine-tuning as foundation. ULMFiT is based on a 3-layer AWD-LSTM (Mer, 2017) language model. The AWD-LSTM is a regular LSTM (Hochreiter and Schmidhuber, 1997) with tuned dropout hyperparameters. To enable faster training and fine-tuning of the model, we replace it with a QRNN (Bradbury et al., 2017). The QRNN alternates convolutional layers, which are parallel across timesteps, and a recurrent pooling function, which is parallel across channels. It has been shown to outperform LSTMs, while being up to 16× faster at train and test time. ULMFiT in addition is restricted to words as input. To make our model
more robust across languages, we use subword
tokenization based on a unigram language model
(Kudo, 2018), which is more flexible compared to
byte-pair encoding (Sennrich et al., 2016). We ad-
ditionally employ label smoothing (Szegedy et al.,
2016) and a novel cosine variant of the one-cycle
policy (Smith, 2018), which we found to outper-
form ULMFiT’s slanted triangular learning rate
schedule and gradual unfreezing. The full model
can be seen in Figure 1.

3.2 Cross-lingual Bootstrapping
Prior methods have employed cross-lingual train-
ing strategies relying on parallel data and a shared
BPE vocabulary. These can be combined with
our language model, but increase its training com-
plexity. For the case where an existing pre-
trained cross-lingual model and source language
data are available, we propose a bootstrapping
method (Ruder and Plank, 2018) that uses the pre-
trained model’s zero-shot predictions as pseudo la-
bels to fine-tune the monolingual model on target
language data.

The steps of the method can be seen in Figure 2.
Specifically, we first fine-tune a linear classifi-
cation layer on top of pretrained cross-lingual rep-
resentations on source language training data. We
then apply this cross-lingual classifier to the target
language data and store its predicted label for ev-
ery example. We now fine-tune our pretrained LM
on the target language data and these pseudo la-
bels. Importantly, this method enables our mono-
lingual LM to significantly outperform its cross-
lingual teacher in the zero-shot setting (§5).

4 Experimental setup
This section provides an overview of our experi-
mental setup; see the appendix for full details.

Data We evaluate our models on the Multiling-
ual Document Classification Corpus (MLDoc;
Schwenk and Li, 2018)—a new subset of Reuters
Corpus Volume 2 (Lewis et al., 2004) with bal-
anced class priors for eight languages—and on the Cross-Lingual Sentiment dataset (CLS;
Prettenhofer and Stein, 2010) consisting of Amazon

<table>
<thead>
<tr>
<th>Domain</th>
<th>Languages</th>
<th>Train</th>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLDoc</td>
<td>News</td>
<td>EN, DE, ES, FR, IT, JA, RU, ZH</td>
<td>1k / 2k / 5k / 10k</td>
<td>2k</td>
</tr>
<tr>
<td>CLS</td>
<td>Product reviews</td>
<td>EN, DE, FR, JA</td>
<td>2k</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: The domain, languages, and number of training, development, and test examples in each dataset.

<table>
<thead>
<tr>
<th>DE</th>
<th>ES</th>
<th>FR</th>
<th>IT</th>
<th>JA</th>
<th>RU</th>
<th>ZH</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.90</td>
<td>89.00</td>
<td>85.03</td>
<td>80.12</td>
<td>80.55</td>
<td>73.55</td>
<td>88.02</td>
</tr>
<tr>
<td>95.00</td>
<td>94.00</td>
<td>93.00</td>
<td>88.50</td>
<td>88.80</td>
<td>88.90</td>
<td>88.98</td>
</tr>
<tr>
<td>94.00</td>
<td>94.00</td>
<td>93.00</td>
<td>88.50</td>
<td>88.80</td>
<td>88.80</td>
<td>90.72</td>
</tr>
<tr>
<td>94.00</td>
<td>94.00</td>
<td>93.00</td>
<td>88.50</td>
<td>88.80</td>
<td>88.80</td>
<td>90.72</td>
</tr>
<tr>
<td>95.00</td>
<td>94.00</td>
<td>93.00</td>
<td>88.50</td>
<td>88.80</td>
<td>88.80</td>
<td>90.72</td>
</tr>
</tbody>
</table>

Table 2: Comparison of zero-shot and supervised meth-
ods on MLDoc.

Pretraining We pretrain our models on 100M
tokens extracted from the Wikipedia of the corre-
sponding language for 10 epochs. As fewer to-
kens might be available for some languages, we
also compare against a version (no wiki) that uses
no pretraining. For all models, we fine-tune the
LMs on the target data of the same language for
20 epochs. We perform subword tokenization with
the unigram language model (Kudo, 2018).

Evaluation settings We compare two settings
based on the availability of source and target lan-
guage data: supervised and zero-shot. In the su-
pervised setting, every model is fine-tuned and
evaluated on examples from the target language.
In the zero-shot setting, every model is fine-tuned
on source language examples and evaluated on tar-
get language examples. In all cases, we use En-
glish as the source language.

Baselines We compare against the state-of-the-
art cross-lingual embedding models LASER
(Artetxe and Schwenk, 2018), which uses a large
parallel corpus, multilingual BERT (MultiB-
Table 3: Comparison of zero-shot, translation-based and supervised methods (with 2k training examples) on all domains of CLS. MT-BOW and CL-SCL results are from (Zhou et al., 2016).

<table>
<thead>
<tr>
<th></th>
<th>DE</th>
<th>ES</th>
<th>ZH</th>
<th>JA</th>
<th>DVD</th>
<th>Music</th>
<th>DE</th>
<th>DVD</th>
<th>Music</th>
<th>JA</th>
<th>DVD</th>
<th>Music</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-shot</td>
<td></td>
</tr>
<tr>
<td>LASER, code</td>
<td>84.15</td>
<td>78.00</td>
<td>79.15</td>
<td>83.90</td>
<td>83.40</td>
<td>80.75</td>
<td>74.99</td>
<td>74.55</td>
<td>76.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiBERT</td>
<td>72.15</td>
<td>70.05</td>
<td>73.80</td>
<td>75.50</td>
<td>74.70</td>
<td>76.05</td>
<td>65.41</td>
<td>64.90</td>
<td>70.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiFiT, pseudo</td>
<td>89.60</td>
<td>81.80</td>
<td>84.40</td>
<td>87.84</td>
<td>83.50</td>
<td>85.60</td>
<td>80.45</td>
<td>77.65</td>
<td>81.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation</td>
<td></td>
</tr>
<tr>
<td>MT-BOW</td>
<td>79.68</td>
<td>77.92</td>
<td>77.22</td>
<td>80.76</td>
<td>78.83</td>
<td>75.78</td>
<td>70.22</td>
<td>71.30</td>
<td>72.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL-SCL</td>
<td>79.50</td>
<td>76.92</td>
<td>77.79</td>
<td>78.49</td>
<td>78.80</td>
<td>77.92</td>
<td>73.09</td>
<td>71.07</td>
<td>75.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiDRL</td>
<td>84.14</td>
<td>84.05</td>
<td>84.67</td>
<td>84.39</td>
<td>83.60</td>
<td>82.52</td>
<td>73.15</td>
<td>76.78</td>
<td>78.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervised</td>
<td></td>
</tr>
<tr>
<td>MultiBERT</td>
<td>86.05</td>
<td>84.90</td>
<td>82.00</td>
<td>86.15</td>
<td>86.90</td>
<td>86.65</td>
<td>80.87</td>
<td>82.83</td>
<td>79.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiFiT</td>
<td>93.19</td>
<td>90.54</td>
<td>93.00</td>
<td>91.25</td>
<td>89.55</td>
<td>93.40</td>
<td>86.29</td>
<td>85.75</td>
<td>86.59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Comparison of LSTM and QRNN per-batch training speed on a Tesla V100 (in ms) in MultiFiT.

<table>
<thead>
<tr>
<th></th>
<th>LSTM</th>
<th>QRNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language model pretraining</td>
<td>143</td>
<td>71</td>
</tr>
<tr>
<td>Classifier fine-tuning</td>
<td>467</td>
<td>156</td>
</tr>
</tbody>
</table>

Table 5: Comparison of MultiFiT results with different pretraining corpora and ULMFiT, fine-tuned with 1k labels on MLDoc.

<table>
<thead>
<tr>
<th></th>
<th>DE</th>
<th>ES</th>
<th>ZH</th>
<th>JA</th>
<th>DVD</th>
<th>Music</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULMFiT</td>
<td>94.19</td>
<td>95.23</td>
<td>66.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiFiT, no wiki</td>
<td>95.23</td>
<td>95.07</td>
<td>90.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiFiT, small Wiki</td>
<td>95.37</td>
<td>95.30</td>
<td>89.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiFiT</td>
<td>95.90</td>
<td>96.07</td>
<td>92.52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Results

MLDoc We show results for MLDoc in Table 2. In the zero-shot setting, MultiBERT underper-
forms the comparison methods as the shared embedding space between many languages is overly restrictive. Our monolingual LMs outperform their cross-lingual teacher LASER in almost every setting. When fine-tuned with only 100 target language examples, they are able to outperform all zero-shot approaches except MultiFiT on DE and FR. This calls into question the need for zero-shot approaches, as fine-tuning with even a small number of target examples is able to yield superior performance. When fine-tuning with 1,000 target examples, MultiFiT—even without pretraining—outperforms all comparison methods, including monolingual BERT.

CLS We show results for CLS in Table 3. MultiFiT is able to outperform its zero-shot teacher LASER across all domains. Importantly, the bootstrapped monolingual model also outperforms more sophisticated models that are trained on translations across almost all domains. In the supervised setting, MultiFiT similarly outperforms multilingual BERT. For both datasets, our methods that have been pretrained on 100 million tokens outperform both multilingual BERT and LASER, models that have been trained with orders of magnitude more data and compute.

6 Analysis

Speed We compare the LSTM and QRNN cell in MultiFiT based on the speed for processing a single batch for pretraining and fine-tuning in Table 4. MultiFiT with a QRNN pretrains and fine-tunes about 2× and 3× faster respectively.

MultiFiT vs. ULMFiT We compare MultiFiT pretrained on 100M Wikipedia tokens against

10https://github.com/google-research/bert/blob/master/multilingual.md
11Models are available for English, Chinese, and German (https://deepset.ai/german-bert).
ULMFiT pretrained on the same data using a 3-layer LSTM and spaCy tokenization12 as well as MultiFiT pretrained on 2M Wikipedia tokens, and MultiFiT with no pretraining in Table 5. Pretraining on more data generally helps. MultiFiT outperforms ULMFiT significantly; the performance improvement is particularly pronounced in Chinese where ULMFiT’s word-based tokenization underperformed.

Figure 3: Comparison of MultiFiT’s robustness to label noise on MLDoc with and without pretraining.

<table>
<thead>
<tr>
<th>DE</th>
<th>ES</th>
<th>FR</th>
<th>IT</th>
<th>JA</th>
<th>RU</th>
<th>ZH</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASER, code</td>
<td>87.65</td>
<td>75.48</td>
<td>84.00</td>
<td>71.18</td>
<td>64.58</td>
<td>66.58</td>
</tr>
<tr>
<td>Random init. (1k)</td>
<td>77.80</td>
<td>70.50</td>
<td>75.65</td>
<td>68.52</td>
<td>68.50</td>
<td>61.37</td>
</tr>
<tr>
<td>Random init. (10k)</td>
<td>90.53</td>
<td>69.75</td>
<td>87.40</td>
<td>72.72</td>
<td>67.55</td>
<td>63.67</td>
</tr>
<tr>
<td>MultiFiT, pseudo (1k)</td>
<td>91.34</td>
<td>78.92</td>
<td>89.45</td>
<td>76.00</td>
<td>69.57</td>
<td>68.19</td>
</tr>
</tbody>
</table>

Table 6: Bootstrapping results on MLDoc with and without pretraining, trained on 1k/10k LASER labels.

<table>
<thead>
<tr>
<th>DE</th>
<th>ES</th>
<th>FR</th>
<th>IT</th>
<th>RU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word-based</td>
<td>95.28</td>
<td>95.97</td>
<td>94.72</td>
<td>89.97</td>
</tr>
<tr>
<td>Subword</td>
<td>96.10</td>
<td>96.07</td>
<td>94.75</td>
<td>94.75</td>
</tr>
</tbody>
</table>

Table 7: Comparison of different tokenization strategies for different languages on MLDoc.

Robustness to noise We suspect that MultiFiT is able to outperform its teacher as the information from pretraining makes it robust to label noise. To test this hypothesis, we train MultiFiT and a randomly initialized model with the same architecture on 1k and 10k examples of the Spanish MLDoc. We randomly perturb labels with a probability ranging from 0-0.75 and show results in Figure 3. The pretrained MultiFiT is able to partially ignore the noise, up to 65% of noisy training examples. Without pretraining, the model does not exceed the theoretical baseline (the percentage of correct examples). In addition, we compare MultiFiT with and without pretraining in Table 6. Pretraining enables MultiFiT to achieve much better performance compared to a randomly initialised model. Both results together suggest a) that pretraining increases robustness to noise and b) that information from monolingual and cross-lingual language models is complementary.

Tokenization Subword tokenization has been found useful for language modeling with morphologically rich languages (Czapla et al., 2018; Mielke and Eissner, 2019) and has been used in recent pretrained LMs (Devlin et al., 2018), but its concrete impact on downstream performance has not been observed. We train models with the best performing vocabulary sizes for subword (15k) and regular word-based tokenization (60k) with the Moses tokenizer (Koehn et al., 2007) on German and Russian MLDoc and show results in Table 7. Subword tokenization outperforms word-based tokenization on most languages, while being faster to train due to the smaller vocabulary size.

7 Conclusion

We have proposed novel methods for multilingual fine-tuning of languages that outperform models trained with far more data and compute on two widely studied cross-lingual text classification datasets on eight languages in both the zero-shot and supervised setting.

References

