
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1466–1477
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

1466

Dynamic Meta-Embeddings for Improved Sentence Representations

Douwe Kiela†, Changhan Wang† and Kyunghyun Cho†‡?
† Facebook AI Research; ‡ New York University; ? CIFAR Global Scholar

{dkiela,changhan,kyunghyuncho}@fb.com

Abstract
While one of the first steps in many NLP sys-
tems is selecting what pre-trained word em-
beddings to use, we argue that such a step is
better left for neural networks to figure out
by themselves. To that end, we introduce
dynamic meta-embeddings, a simple yet ef-
fective method for the supervised learning of
embedding ensembles, which leads to state-
of-the-art performance within the same model
class on a variety of tasks. We subsequently
show how the technique can be used to shed
new light on the usage of word embeddings in
NLP systems.

1 Introduction

It is no exaggeration to say that word embed-
dings have revolutionized NLP. From early dis-
tributional semantic models (Turney and Pantel,
2010; Erk, 2012; Clark, 2015) to deep learning-
based word embeddings (Bengio et al., 2003; Col-
lobert and Weston, 2008; Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2016),
word-level meaning representations have found
applications in a wide variety of core NLP tasks,
to the extent that they are now ubiquitous in the
field (Goldberg, 2016).

A sprawling literature has emerged about what
types of embeddings are most useful for which
tasks. For instance, there has been extensive work
on understanding what word embeddings learn
(Levy and Goldberg, 2014b), evaluating their per-
formance (Milajevs et al., 2014; Schnabel et al.,
2015; Bakarov, 2017), specializing them for cer-
tain tasks (Maas et al., 2011; Faruqui et al., 2014;
Kiela et al., 2015; Mrkšić et al., 2016; Vulić and
Mrkšić, 2017), learning sub-word level represen-
tations (Wieting et al., 2016; Bojanowski et al.,
2016; Lee et al., 2016), et cetera.

One of the first steps in designing many NLP
systems is selecting what kinds of word embed-

dings to use, with people often resorting to freely
available pre-trained embeddings. While this is of-
ten a sensible thing to do, the usefulness of word
embeddings for downstream tasks tends to be hard
to predict, as downstream tasks can be poorly cor-
related with word-level benchmarks. An alter-
native is to try to combine the strengths of dif-
ferent word embeddings. Recent work in so-
called “meta-embeddings”, which ensembles em-
bedding sets, has been gaining traction (Yin and
Schütze, 2015; Bollegala et al., 2017; Muromägi
et al., 2017; Coates and Bollegala, 2018). Meta-
embeddings are usually created in a separate pre-
processing step, rather than in a process that is dy-
namically adapted to the task. In this work, we ex-
plore the supervised learning of task-specific, dy-
namic meta-embeddings, and apply the technique
to sentence representations.

The proposed approach turns out to be highly
effective, leading to state-of-the-art performance
within the same model class on a variety of tasks,
opening up new areas for exploration and yielding
insights into the usage of word embeddings.

Why Is This a Good Idea? Our technique
brings several important benefits to NLP applica-
tions. First, it is embedding-agnostic, meaning
that one of the main (and perhaps most important)
hyperparameters in NLP pipelines is made obso-
lete. Second, as we will show, it leads to improved
performance on a variety of tasks. Third, and per-
haps most importantly, it allows us to overcome
common pitfalls with current systems:

• Coverage One of the main problems
with NLP systems is dealing with out-of-
vocabulary words: our method increases
lexical coverage by allowing systems to take
the union over different embeddings.

• Multi-domain Standard word embeddings
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are often trained on a single domain, such as
Wikipedia or newswire. With our method,
embeddings from different domains can be
combined, optionally while taking into ac-
count contextual information.

• Multi-modality Multi-modal information
has proven useful in many tasks (Baroni,
2016; Baltrušaitis et al., 2018), yet the ques-
tion of multi-modal fusion remains an open
problem. Our method offers a straight-
forward solution for combining information
from different modalities.

• Evaluation While it is often unclear how
to evaluate word embedding performance,
our method allows for inspecting the weights
that networks assign to different embeddings,
providing a direct, task-specific, evaluation
method for word embeddings.

• Interpretability and Linguistic Analysis
Different word embeddings work well on dif-
ferent tasks. This is well-known in the field,
but knowing why this happens is less well-
understood. Our method sheds light on which
embeddings are preferred in which linguistic
contexts, for different tasks, and allows us to
speculate as to why that is the case.

Outline In what follows, we explore dynamic
meta-embeddings and show that this method out-
performs the naive concatenation of various word
embeddings, while being more efficient. We apply
the technique in a BiLSTM-max sentence encoder
(Conneau et al., 2017) and evaluate it on well-
known tasks in the field: natural language infer-
ence (SNLI and MultiNLI; §4), sentiment analysis
(SST; §5), and image-caption retrieval (Flickr30k;
§6). In each case we show state-of-the-art per-
formance within the class of single sentence en-
coder models. Furthermore, we include an exten-
sive analysis (§7) to highlight the general useful-
ness of our technique and to illustrate how it can
lead to new insights.

2 Related Work

Thanks to their widespread popularity in NLP,
a sprawling literature has emerged about learn-
ing and applying word embeddings—much too
large to fully cover here, so we focus on previ-
ous work that combines multiple embeddings for
downstream tasks.

Maas et al. (2011) combine unsupervised em-
beddings with supervised ones for sentiment clas-
sification. Yang et al. (2016) and Miyamoto
and Cho (2016) learn to combine word-level and
character-level embeddings. Contextual represen-
tations have been used in neural machine trans-
lation as well, e.g. for learning contextual word
vectors and applying them in other tasks (McCann
et al., 2017) or for learning context-dependent rep-
resentations to solve disambiguation problems in
machine translation Choi et al. (2016).

Neural tensor skip-gram models learn to com-
bine word, topic and context embeddings (Liu
et al., 2015); context2vec (Melamud et al., 2016)
learns a more sophisticated context representation
separately from target embeddings; and Li et al.
(2016) learn word representations with distributed
word representation with multi-contextual mixed
embedding. Recent work in “meta-embeddings”,
which ensembles embedding sets, has been gain-
ing traction (Yin and Schütze, 2015; Bollegala
et al., 2017; Muromägi et al., 2017; Coates and
Bollegala, 2018)—here, we show that the idea can
be applied in context, and to sentence represen-
tations. Furthermore, these works obtain meta-
embeddings as a preprocessing step, rather than
learning them dynamically in a supervised set-
ting, as we do here. Similarly to Peters et al.
(2018), who proposed deep contextualized word
representations derived from language models and
which led to impressive performance on a variety
of tasks, our method allows for contextualization,
in this case of embedding set weights.

There has also been work on learning multi-
ple embeddings per word (Chen et al., 2014; Nee-
lakantan et al., 2015; Vu and Parker, 2016), includ-
ing a lot of work in sense embeddings where the
senses of a word have their own individual embed-
dings (Iacobacci et al., 2015; Qiu et al., 2016), as
well as on how to apply such sense embeddings in
downstream NLP tasks (Pilehvar et al., 2017).

The question of combining multiple word em-
beddings is related to multi-modal and multi-view
learning. For instance, combining visual features
from convolutional neural networks with word
embeddings has been examined (Kiela and Bottou,
2014; Lazaridou et al., 2015), see Baltrušaitis et al.
(2018) for an overview. In multi-modal semantics,
for instance, word-level embeddings from differ-
ent modalities are often mixed via concatenation
r = [αu, (1− α)v] (Bruni et al., 2014). Here, we
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dynamically learn the weights to combine repre-
sentations. Recently, related dynamic multi-modal
fusion methods have also been explored (Wang
et al., 2018; Kiros et al., 2018). There has also
been work on unifying multi-view embeddings
from different data sources (Luo et al., 2014).

The usefulness of different embeddings as ini-
tialization has been explored (Kocmi and Bojar,
2017), and different architectures and hyperpa-
rameters have been extensively examined (Levy
et al., 2015). Problems with evaluating word em-
beddings intrinsically are well known (Faruqui
et al., 2016), and various alternatives for evaluat-
ing word embeddings in downstream tasks have
been proposed (e.g., Tsvetkov et al., 2015; Schn-
abel et al., 2015; Ettinger et al., 2016). For more
related work with regard to word embeddings and
their evaluation, see Bakarov (2017).

Our work can be seen as an instance of the well-
known attention mechanism (Bahdanau et al.,
2014), and its recent sentence-level incarnations of
self-attention (Lin et al., 2017) and inner-attention
(Cheng et al., 2016; Liu et al., 2016), where the at-
tention mechanism is applied within the same sen-
tence instead of for aligning multiple sentences.
Here, we learn (optionally contextualized) atten-
tion weights for different embedding sets and
apply the technique in sentence representations
(Kiros et al., 2015; Wieting et al., 2015; Hill et al.,
2016; Conneau et al., 2017).

3 Dynamic Meta-Embeddings

Commonly, NLP systems use a single type of
word embedding, e.g., word2vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) or Fast-
Text (Bojanowski et al., 2016). We propose giving
networks access to multiple types of embeddings,
allowing a network to learn which embeddings it
prefers by predicting a weight for each embedding
type, optionally depending on the context.

For a sentence of s tokens {tj}sj=1, we have
n word embedding types, leading to sequences
{wi,j}sj=1 ∈ Rdi (i = 1, 2, . . . , n). We center
each type of word embedding to zero mean.

Naive baseline We compare to naive concate-
nation as a baseline. Concatenation is a sensible
strategy for combining different embedding sets,
because it provides the sentence encoder with all
of the information in the individual embeddings:

wCAT
j = [w1,j ,w2,j , . . . ,wn,j ].

The downside of concatenating embeddings and
giving that as input to an RNN encoder, however,
is that the network then quickly becomes ineffi-
cient as we combine more and more embeddings.

DME For dynamic meta-embeddings, we
project the embeddings into a common d′-
dimensional space by learned linear functions
w′i,j = Piwi,j + bi (i = 1, 2, . . . , n) where
Pi ∈ Rd′×di and bi ∈ Rd′ . We then combine the
projected embeddings by taking the weighted sum

wDME
j =

n∑
i=1

αi,jw
′
i,j

where αi,j = g({w′i,j}sj=1) are scalar weights
from a self-attention mechanism:

αi,j = g(w′i,j) = φ(a ·w′i,j + b) (1)

where a ∈ Rd′ and b ∈ R are learned parame-
ters and φ is a softmax (or could be a sigmoid or
tanh, for gating). We also experiment with an Un-
weighted variant of this approach, that just sums
up the projections.

CDME Alternatively, we can make the self-
attention mechanism context-dependent, leading
to contextualized DME (CDME):

αi,j = g({w′i,j}sj=1) = φ(a · hj + b) (2)

where hj ∈ R2m is the jth hidden state of a BiL-
STM taking {w′i,j}sj=1 as input, a ∈ R2m and
b ∈ R. We set m = 2, which makes the contextu-
alization very efficient.

Sentence encoder We use a standard bidi-
rectional LSTM encoder with max-pooling
(BiLSTM-Max), which computes two sets of s
hidden states, one for each direction:

−→
hj =

−−−−→
LSTMj(w1,w2, . . . ,wj)

←−
hj =

←−−−−
LSTMj(wj ,wj+1, . . . ,ws)

The hidden states are subsequently concatenated
for each timestep to obtain the final hidden states,
after which a max-pooling operation is applied
over their components to get the final sentence rep-
resentation:

h = max({[
−→
hj ,
←−
hj ]}j=1,2,...,s)
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Model SNLI MNLI

InferSent (Conneau et al., 2017) 84.5 -
NSE (Munkhdalai and Yu, 2017) 84.6 -
G-TreeLSTM (Choi et al., 2017) 86.0 -
SSE (Nie and Bansal, 2017) 86.1 73.6
ReSan (Shen et al., 2018) 86.3 -

GloVe BiLSTM-Max (8.6M) 85.2±.3 70.0±.5
FastText BiLSTM-Max (8.6M) 85.2±.2 70.3±.3
Naive baseline (9.8M) 85.6±.3 71.1±.2
Naive baseline (61.3M) 86.0±.5 73.0±.2

Unweighted DME (8.6M) 86.3±.4 74.4±.2
DME (8.6M) 86.2±.2 74.4±.2
CDME (8.6M) 86.4±.3 74.1±.2

DME* (9.0M) 86.7±.2 74.3±.4
CDME* (9.0M) 86.5±.2 74.9±.5

Table 1: Accuracy scores on the Stanford Natural Lan-
guage Inference (SNLI) and MultiNLI Mismatched
(MNLI) tasks. DME=Dynamic Meta-Embeddings;
CDME=Contextualized Dynamic Meta-Embeddings;
*=multiple different embedding sets (see Section 4).
Number of parameters included in parenthesis. Results
averaged over five runs with different random seeds,
using a BiLSTM-Max sentence encoder.

4 Natural Language Inference

Natural language inference, also known as recog-
nizing textual entailment (RTE), is the task of clas-
sifying pairs of sentences according to whether
they are neutral, entailing or contradictive. In-
ference about entailment and contradiction is fun-
damental to understanding natural language, and
there are two established datasets to evaluate se-
mantic representations in that setting: SNLI (Bow-
man et al., 2015) and the more recent MultiNLI
(Williams et al., 2017).

The SNLI dataset consists of 570k human-
generated English sentence pairs, manually la-
beled for entailment, contradiction and neutral.
The MultiNLI dataset can be seen as an extension
of SNLI: it contains 433k sentence pairs, taken
from ten different genres (e.g. fiction, government
text or spoken telephone conversations), with the
same entailment labeling scheme.

We train sentence encoders with dynamic meta-
embeddings using two well-known and often-used
embedding types: FastText (Mikolov et al., 2018;
Bojanowski et al., 2016) and GloVe (Pennington
et al., 2014). Specifically, we make use of the
300-dimensional embeddings trained on a simi-
lar WebCrawl corpus, and compare three scenar-
ios: when used individually, when naively con-
catenated or in the dynamic meta-embedding set-
ting (unweighted, context-independent DME and

contextualized CDME). We also compare our ap-
proach against other models in the same class—in
this case, models that encode sentences individ-
ually and do not allow attention across the two
sentences.1 We include InferSent (Conneau et al.,
2017), which also makes use of a BiLSTM-Max
sentence encoder.

In addition, we include a setting where we
combine not two, but six different embedding
types, adding FastText wiki-news embeddings2,
English-German and English-French embeddings
from Hill et al. (2014), as well as the BOW2 em-
beddings from Levy and Goldberg (2014a) trained
on Wikipedia.

4.1 Implementation Details

The two sentences are represented individually us-
ing the sentence encoder. As is standard in the
literature, the sentence representations are subse-
quently combined using m = [u,v,u∗v, |u−v|].
We train a two-layer classifier with rectifiers on
top of the combined representation. Notice that
there is no interaction (e.g., attention) between the
representations of u and v for this class of model.

We use 256-dimensional embedding projec-
tions, 512-dimensional BiLSTM encoders and an
MLP with 1024-dimensional hidden layer in the
classifier. The initial learning rate is set to 0.0004
and dropped by a factor of 0.2 when dev accuracy
stops improving, dropout to 0.2, and we use Adam
for optimization (Kingma and Ba, 2014). The loss
is standard cross-entropy.

For MultiNLI, which has no designated valida-
tion set, we use the in-domain matched set for vali-
dation and report results on the out-of-domain mis-
matched set.

4.2 Results

Table 1 shows the results. We report accuracy
scores averaged over five runs with different ran-
dom seeds, together with their standard deviation,
for the SNLI and MultiNLI datasets. We include
two versions of the naive baseline: one with a 512-
dimensional BiLSTM encoder; and a bigger one
with 2048 dimensions. Both naive baseline mod-
els outperform the single encoders that have only
GloVe or FastText embeddings. This shows how

1This is a common distinction, see e.g. the SNLI leader-
board at https://nlp.stanford.edu/projects/
snli/.

2See https://fasttext.cc/

https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://fasttext.cc/
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Model SST

Const. Tree LSTM (Tai et al., 2015) 88.0
DMN (Kumar et al., 2016) 88.6
DCG (Looks et al., 2017) 89.4
NSE (Munkhdalai and Yu, 2017) 89.7

GloVe BiLSTM-Max (4.1M) 88.0±.1
FastText BiLSTM-Max (4.1M) 86.7±.3
Naive baseline (5.4M) 88.5±.4

Unweighted DME (4.1M) 89.0±.2
DME (4.1M) 88.7±.6
CDME (4.1M) 89.2±.4

CDME*-Softmax (4.6M) 89.3±.5
CDME*-Sigmoid (4.6M) 89.8±.4

Table 2: Sentiment classification accuracy results on
the binary SST task. For DCG we compare against
their best single sentence model (Looks et al., 2017).
*=multiple different embedding sets (see Section 4).
Number of parameters included in parenthesis. Results
averaged over ten runs with different random seeds.

including more than one embeddings can help per-
formance. Next, we observe that the DME embed-
dings outperform the naive concatenation base-
lines, while having fewer parameters. Differences
between the three DME variants are small and not
significant, although we do note that we found the
highest maximum performance for the contextual-
ized version, which adds very few additional pa-
rameters. It is important to note that the imposi-
tion of weighting thus is not detrimental to perfor-
mance, which means that DME and CDME pro-
vide additional interpretability without sacrificing
performance.

Finally, we obtain results for using the six dif-
ferent embedding types (marked *), and show
that adding in more embeddings increases perfor-
mance further. To our knowledge, these numbers
constitute the state of the art within the model class
of single sentence encoders on these tasks.

5 Sentiment

To showcase the general applicability of the pro-
posed approach, we also apply it to a case where
we have to classify a single sentence, namely, sen-
timent classification. Sentiment analysis and opin-
ion mining have become important applications
for NLP research. We evaluate on the binary SST
task (Socher et al., 2013), consisting of 70k sen-
tences with a corresponding binary (positive or

Image Caption
Model | R@: 1 10 1 10

VSE++ 32.3 72.1 43.7 82.1

FastText (15M) 35.6 74.7 47.1 82.7
ImageNet (29M) 25.6 63.1 36.6 72.2
Naive (32M) 34.4 73.9 46.4 82.2

Unweighted DME (15M) 35.9 75.0 48.9 83.7
DME (15M) 36.5 75.5 49.7 83.6
CDME (15M) 36.5 75.6 49.0 83.8

Table 3: Image and caption retrieval results (R@1
and R@10) on Flickr30k dataset, compared to VSE++
baseline (Faghri et al., 2017). VSE++ numbers in the
table are with ResNet features and random cropping,
but no fine-tuning. Number of parameters included in
parenthesis; averaged over five runs with std omitted
for brevity.

negative) sentiment label.

5.1 Implementation Details

We use 256-dimensional embedding projections,
512-dimensional BiLSTM encoders and an MLP
with 512-dimensional hidden layer in the clas-
sifier. The initial learning rate is set to 0.0004
and dropped by a factor of 0.2 when dev accu-
racy stops improving, dropout to 0.5, and we use
Adam for optimization. The loss is standard cross-
entropy. We calculate the mean accuracy and stan-
dard deviation based on ten random seeds.

5.2 Results

Table 2 shows a similar pattern as we observed
with NLI: the naive baseline outperforms the
single-embedding encoders; the DME methods
outperform the naive baseline, with the contex-
tualized version appearing to work best. Finally,
we experiment with replacing φ in Eq. 1 and 2
with a sigmoid gate instead of a softmax, and ob-
serve improved performance on this task, outper-
forming the comparable models listed in the table.
These results further strengthen the point that hav-
ing multiple different embeddings helps, and that
we can learn to combine those different embed-
dings efficiently, in interpretable ways.

6 Image-Caption Retrieval

An advantage of the proposed approach is that it
is inherently capable of dealing with multi-modal
information. Multi-modal semantics (Bruni et al.,
2014) often combines linguistic and visual repre-
sentations via concatenation with a global weight
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α, i.e., v = [αvling, (1− α)vvis]. In DME we in-
stead learn to combine embeddings dynamically,
optionally based on context. The representation
for a word then becomes grounded in the visual
modality, and we encode on the word-level what
things look like.

We evaluate this idea on the Flickr30k image-
caption retrieval task: given an image, retrieve the
correct caption; and vice versa. The intuition is
that knowing what something looks like makes it
easier to retrieve the correct image/caption. While
this work was under review, a related method was
published by Kiros et al. (2018), which takes a
similar approach but evaluates its effectiveness on
COCO and uses Google images. We obtain word-
level visual embeddings by retrieving relevant im-
ages for a given label from ImageNet in the same
manner as Kiela and Bottou (2014), taking the im-
ages’ ResNet-152 features (He et al., 2016) and
subsequently averaging those. We then learn to
combine textual (FastText) and visual (ImageNet)
word representations in the caption encoder used
for retrieving relevant images.

6.1 Implementation Details
Our loss is a max-margin rank loss as in VSE++
(Faghri et al., 2017), a state-of-the-art method
on this task. The network architecture is al-
most identical to that system, except that we use
DME (with 256-dimensional embedding projec-
tion) and a 1024-dimensional caption encoder. For
the Flickr30k images that we do retrieval over, we
use random cropping during training for data aug-
mentation and use a ResNet-152 for feature ex-
traction. We tune the sizes of the encoders and
use a learning rate of 0.0003 and a dropout rate of
0.1.

6.2 Results
Table 3 shows the results, comparing against
VSE++. First, note that the ImageNet-only em-
beddings don’t work as well as the FastText
ones, which is most likely due to poorer cover-
age. We observe that DME outperforms naive and
FastText-only, and outperforms VSE++ by a large
margin. These findings confirm the intuition that
knowing what things look like (i.e., having a word-
level visual representation) improves performance
in visual retrieval tasks (i.e., where we need to
find relevant images for phrases or sentences)—
something that sounds obvious but has not really
been explored before, to our knowledge. This

showcases DME’s usefulness for fusing embed-
dings in multi-modal tasks.

7 Discussion & Analysis

Aside from improved performance, an additional
benefit of learning dynamic meta-embeddings is
that they enable inspection of the weights that the
network has learned to assign to the respective em-
beddings. In this section, we perform a variety
of smaller experiments in order to highlight the
usefulness of the technique for studying linguis-
tic phenomena, determining appropriate training
domains and evaluating word embeddings. We
compute the contribution of each word embedding
type as follows:

βi,j =
‖αi,jw

′
i,j‖2∑n

k=1 ‖αk,jw′k,j‖2

7.1 Visualizing Attention
Figure 1 shows the attention weights for a CDME
model trained on SNLI, using the aforementioned
six embedding sets. The sentence is from the
SNLI validation set. We observe that different em-
beddings are preferred for different words. The
figure is meant to illustrate possibilities for analy-
sis, which we turn to in the next section.

7.2 Linguistic Analysis
We perform a fine-grained analysis of the behav-
ior of DME on the validation set of SNLI. Fig-
ure 3 shows a breakdown of the average atten-
tion weights per part of speech. Figure 4 shows
a similar breakdown for open versus closed class.
The analysis allows us to make several interest-
ing observations: it appears that this model prefers
GloVe embeddings, followed by the two FastText
embeddings (trained on Wikipedia and Common
Crawl). For open class words (e.g., nouns, verbs,
adjectives and adverbs), those three embedding
types are strongly preferred, while closed class
words get more evenly divided attention. The em-
beddings from Levy and Goldberg (2014a) get low
weights, possibly because the method is comple-
mentary with FastText-wiki, which was trained on
a more recent version of Wikipedia.

We can further examine the attention weights
by analyzing them in terms of frequency and con-
creteness. We use Norvig’s Google N-grams cor-
pus frequency counts3 to divide the words into fre-

3http://norvig.com/mayzner.html

http://norvig.com/mayzner.html
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Figure 1: Example visualization of a sentence from the SNLI dev set.

Figure 2: Concreteness weights (left) for Flickr30k model and Frequency weights (right) for SNLI model with
multiple embeddings. Visual ImageNet embeddings are preferred for more concrete words. GloVe is strongly
preferred for low-frequency words.

Figure 3: Pos tags and weights by embedding type.

quency bins. Figure 2 (right) shows the average
attention weights per frequency bin, ranging from
low to high. We observe a clear preference for
GloVe, in particular for low-frequency words. For
concreteness, we use the concreteness ratings from
Brysbaert et al. (2014). Figure 2 (left) shows the
average weights per concreteness bin for a model
trained on Flickr30k. We can clearly see that vi-
sual embeddings get higher weights as the words

Figure 4: Weights for open/closed class words.

become more and more concrete.
There are of course intricate relationships be-

tween concreteness, frequency, POS tags and
open/closed class words: closed class words are
often frequent and abstract, while open class
words could be more concrete, etc. It is beyond the
scope of the current work to explore these further,
but we hope that others will pursue this direction
in future work.

7.3 Multi-domain Embeddings
The MultiNLI dataset consists of various gen-
res. This allows us to inspect the applicability of
source domain data for a specific genre. We train
embeddings on three kinds of data: Wikipedia, the
Toronto Books Corpus (Zhu et al., 2015) and the
English OpenSubtitles4. We examine the atten-

4http://opus.nlpl.eu/OpenSubtitles.php

http://opus.nlpl.eu/OpenSubtitles.php
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Figure 5: Multi-domain weights on MultiNLI.

Model Levy LEAR SNLI

CDME 0.33 0.67 85.3±.9

Model GloVe Refined SST

CDME 0.59 0.41 89.0±.4

Table 4: Accuracy and learned weights on SNLI
using LEAR (Vulić and Mrkšić, 2017) or SST using
sentiment-refined embeddings using the specialization
method from Yu et al. (2017).

tion weights on the five genres in the in-domain
(matched) set, consisting of fiction; transcrip-
tions of spoken telephone conversations; govern-
ment reports, speeches, letters and press releases;
popular culture articles from the Slate Magazine
archive; and travel guides.

Figure 5 shows the average attention weights
for the three embedding types over the five gen-
res. We observe that Toronto Books, which con-
sists of fiction, is very appropriate for the fiction
genre, while Wikipedia is highly preferred for the
travel genre, perhaps because it contains a lot of
factual information about geographical locations.
The government genre makes more use of Open-
Subtitles. The spoken telephone genre does not
appear to prefer OpenSubtitles, which we might
have expected given that that corpus would con-
tain spoken dialogue, but Toronto books, which
does include written dialogue.

7.4 Specialization

The above shows that we can use DME to ana-
lyze different embeddings on a task. Given the
recent interest in the community in specializing,
retro-fitting and counter-fitting word embeddings
for given tasks, we examine whether the lexical-

level benefits of specialization extend to sentence-
level downstream tasks. After all, one of the
main motivations behind work on lexical entail-
ment is that it allows for better downstream tex-
tual entailment. Hence, we take the LEAR embed-
dings by Vulić and Mrkšić (2017), which do very
well on the HyperLex lexical entailment evalua-
tion dataset (Vulić et al., 2017). We compare their
best-performing embeddings against the original
embeddings that were used for specialization, de-
rived from the BOW2 embeddings of Levy and
Goldberg (2014a). Similarly, we use the technique
of Yu et al. (2017) for refining GloVe embeddings
for sentiment, and evaluate model performance on
the SST task.

Table 4 shows that LEAR embeddings get
high weights compared to the original source
embeddings (“Levy” in the table). Our analy-
sis showed that LEAR was particularly favored
for verbs (with average weights of 0.75). The
sentiment-refined embeddings were less useful,
with the original GloVe embeddings receiving
higher weights. These preliminary experiments
show how DME models can be used for analyz-
ing the performance of specialized embeddings in
downstream tasks.

Note that different weighting mechanisms
might give different results—we found that the
normalization strategy and the depth of the net-
work significantly influenced weight assignments
in our experiments with specialized embeddings.

7.5 Examining Contextualization

We examined models trained on SNLI and looked
at the variance of the attention weights per word
in the dev set. If contextualization is important
for getting the classification decision correct, then
we would expect big differences in the attention
weights per word depending on the context. Upon
examination, we only found relatively few differ-
ences. In part, this may be explained by the small
size of the dev set, but for the Glove+FastText
model we inspected there were only around twenty
words with any variance at all, which suggests that
the field needs to work on more difficult seman-
tic benchmark tasks. The words, however, where
characterized by their polysemy, in particular by
having both noun and verb senses. The follow-
ing words were all in the top 20 most context-
dependent words: mob, boards, winds, trains,
pitches, camp.
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8 Conclusion

We argue that the decision of which word em-
beddings to use in what setting should be left to
the neural network. While people usually pick
one type of word embeddings for their NLP sys-
tems and then stick with it, we find that dynami-
cally learned meta-embeddings lead to improved
results. In addition, we showed that the pro-
posed mechanism leads to better interpretability
and insightful linguistic analysis. We showed that
the network learns to select different embeddings
for different data, different domains and different
tasks. We also investigated embedding specializa-
tion and examined more closely whether contextu-
alization helps. To our knowledge, this work con-
stitutes the first effort to incorporate multi-modal
information on the language side of image-caption
retrieval models; and the first attempt at incorpo-
rating meta-embeddings into large-scale sentence-
level NLP tasks.

In future work, it would be interesting to ap-
ply this idea to different tasks, in order to explore
what kinds of embeddings are most useful for core
NLP tasks, such as tagging, chunking, named en-
tity recognition, parsing and generation. It would
also be interesting to further examine specializa-
tion and how it transfers to downstream tasks. Us-
ing this method for evaluating word embeddings
in general, and how they relate to sentence repre-
sentations in particular, seems a fruitful direction
for further exploration. In addition, it would be
interesting to explore how the attention weights
change during training, and if, e.g., introducing
entropy regularization (or even negative entropy)
might improve results or interpretability further.
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