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Abstract

Distantly-supervised Relation Extraction (RE)
methods train an extractor by automatically
aligning relation instances in a Knowledge
Base (KB) with unstructured text. In addi-
tion to relation instances, KBs often contain
other relevant side information, such as aliases
of relations (e.g., founded and co-founded are
aliases for the relation founderOfCompany).
RE models usually ignore such readily avail-
able side information. In this paper, we pro-
pose RESIDE, a distantly-supervised neural
relation extraction method which utilizes ad-
ditional side information from KBs for im-
proved relation extraction. It uses entity type
and relation alias information for imposing
soft constraints while predicting relations. RE-
SIDE employs Graph Convolution Networks
(GCN) to encode syntactic information from
text and improves performance even when
limited side information is available. Through
extensive experiments on benchmark datasets,
we demonstrate RESIDE’s effectiveness. We
have made RESIDE’s source code available to
encourage reproducible research.

1 Introduction

The construction of large-scale Knowledge Bases
(KBs) like Freebase (Bollacker et al., 2008) and
Wikidata (Vrandečić and Krötzsch, 2014) has
proven to be useful in many natural language pro-
cessing (NLP) tasks like question-answering, web
search, etc. However, these KBs are not exhaus-
tive. Relation Extraction (RE) attempts to fill this
gap by extracting semantic relationships between
entity pairs from plain text. This task can be mod-
eled as a simple classification problem after the
entity pairs are specified. Formally, given an en-
tity pair (e1,e2) from the KB and an entity anno-
tated sentence (or instance), we aim to predict the
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relation r, from a predefined relation set, that ex-
ists between e1 and e2. If no relation exists, we
simply label it NA.

Most supervised relation extraction methods re-
quire large labeled training data which is expen-
sive to construct. Distant Supervision (DS) (Mintz
et al., 2009) helps with the construction of this
dataset automatically, under the assumption that
if two entities have a relationship in a KB, then
all sentences mentioning those entities express the
same relation. While this approach works well in
generating large amounts of training instances, the
DS assumption does not hold in all cases. Riedel
et al. (2010); Hoffmann et al. (2011); Surdeanu
et al. (2012) propose multi-instance based learn-
ing to relax this assumption. However, they use
NLP tools to extract features, which can be noisy.

Recently, neural models have demonstrated
promising performance on RE. Zeng et al. (2014,
2015) employ Convolutional Neural Networks
(CNN) to learn representations of instances. For
alleviating noise in distant supervised datasets, at-
tention has been utilized by (Lin et al., 2016; Jat
et al., 2018). Syntactic information from depen-
dency parses has been used by (Mintz et al., 2009;
He et al., 2018) for capturing long-range depen-
dencies between tokens. Recently proposed Graph
Convolution Networks (GCN) (Defferrard et al.,
2016) have been effectively employed for en-
coding this information (Marcheggiani and Titov,
2017; Bastings et al., 2017). However, all the
above models rely only on the noisy instances
from distant supervision for RE.

Relevant side information can be effective for
improving RE. For instance, in the sentence, Mi-
crosoft was started by Bill Gates., the type infor-
mation of Bill Gates (person) and Microsoft (or-
ganization) can be helpful in predicting the cor-
rect relation founderOfCompany. This is because
every relation constrains the type of its target en-
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Figure 1: Overview of RESIDE. RESIDE first encodes each sentence in the bag by concatenating em-
beddings (denoted by ⊕) from Bi-GRU and Syntactic GCN for each token, followed by word attention.
Then, sentence embedding is concatenated with relation alias information, which comes from the Side
Information Acquisition Section (Figure 2), before computing attention over sentences. Finally, bag
representation with entity type information is fed to a softmax classifier. Please see Section 5 for more
details.

tities. Similarly, relation phrase “was started
by” extracted using Open Information Extrac-
tion (Open IE) methods can be useful, given that
the aliases of relation founderOfCompany, e.g.,
founded, co-founded, etc., are available. KBs used
for DS readily provide such information which has
not been completely exploited by current models.

In this paper, we propose RESIDE, a novel dis-
tant supervised relation extraction method which
utilizes additional supervision from KB through
its neural network based architecture. RESIDE
makes principled use of entity type and relation
alias information from KBs, to impose soft con-
straints while predicting the relation. It uses en-
coded syntactic information obtained from Graph
Convolution Networks (GCN), along with embed-
ded side information, to improve neural relation
extraction. Our contributions can be summarized
as follows:

• We propose RESIDE, a novel neural method
which utilizes additional supervision from KB
in a principled manner for improving distant su-
pervised RE.
• RESIDE uses Graph Convolution Networks

(GCN) for modeling syntactic information and
has been shown to perform competitively even
with limited side information.
• Through extensive experiments on benchmark

datasets, we demonstrate RESIDE’s effective-
ness over state-of-the-art baselines.

RESIDE’s source code and datasets used in the
paper are available at http://github.com/
malllabiisc/RESIDE.

2 Related Work

Distant supervision: Relation extraction is the
task of identifying the relationship between two
entity mentions in a sentence. In supervised
paradigm, the task is considered as a multi-class
classification problem but suffers from lack of
large labeled training data. To address this limita-
tion, (Mintz et al., 2009) propose distant supervi-
sion (DS) assumption for creating large datasets,
by heuristically aligning text to a given Knowl-
edge Base (KB). As this assumption does not
always hold true, some of the sentences might
be wrongly labeled. To alleviate this shortcom-
ing, Riedel et al. (2010) relax distant supervi-
sion for multi-instance single-label learning. Sub-
sequently, for handling overlapping relations be-
tween entities (Hoffmann et al., 2011; Surdeanu
et al., 2012) propose multi-instance multi-label
learning paradigm.

Neural Relation Extraction: The performance
of the above methods strongly rely on the quality
of hand engineered features. Zeng et al. (2014)

http://github.com/malllabiisc/RESIDE
http://github.com/malllabiisc/RESIDE
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propose an end-to-end CNN based method which
could automatically capture relevant lexical and
sentence level features. This method is further im-
proved through piecewise max-pooling by (Zeng
et al., 2015). Lin et al. (2016); Nagarajan et al.
(2017) use attention (Bahdanau et al., 2014) for
learning from multiple valid sentences. We also
make use of attention for learning sentence and
bag representations.

Dependency tree based features have been
found to be relevant for relation extraction (Mintz
et al., 2009). He et al. (2018) use them for getting
promising results through a recursive tree-GRU
based model. In RESIDE, we make use of recently
proposed Graph Convolution Networks (Deffer-
rard et al., 2016; Kipf and Welling, 2017), which
have been found to be quite effective for modelling
syntactic information (Marcheggiani and Titov,
2017; Nguyen and Grishman, 2018; Vashishth
et al., 2018a).

Side Information in RE: Entity description
from KB has been utilized for RE (Ji et al., 2017),
but such information is not available for all enti-
ties. Type information of entities has been used by
Ling and Weld (2012); Liu et al. (2014) as features
in their model. Yaghoobzadeh et al. (2017) also
attempt to mitigate noise in DS through their joint
entity typing and relation extraction model. How-
ever, KBs like Freebase readily provide reliable
type information which could be directly utilized.
In our work, we make principled use of entity type
and relation alias information obtained from KB.
We also use unsupervised Open Information Ex-
traction (Open IE) methods (Mausam et al., 2012;
Angeli et al., 2015), which automatically discover
possible relations without the need of any prede-
fined ontology, which is used as a side information
as defined in Section 5.2.

3 Background: Graph Convolution
Networks (GCN)

In this section, we provide a brief overview of
Graph Convolution Networks (GCN) for graphs
with directed and labeled edges, as used in
(Marcheggiani and Titov, 2017).

3.1 GCN on Labeled Directed Graph

For a directed graph, G = (V, E), where V and
E represent the set of vertices and edges respec-
tively, an edge from node u to node v with label
luv is represented as (u, v, luv). Since, informa-

tion in directed edge does not necessarily propa-
gate along its direction, following (Marcheggiani
and Titov, 2017) we define an updated edge set E ′
which includes inverse edges (v, u, l−1uv ) and self-
loops (u, u,>) along with the original edge set E ,
where > is a special symbol to denote self-loops.
For each node v in G, we have an initial represen-
tation xv ∈ Rd, ∀v ∈ V . On employing GCN, we
get an updated d-dimensional hidden representa-
tion hv ∈ Rd, ∀v ∈ V , by considering only its im-
mediate neighbors (Kipf and Welling, 2017). This
can be formulated as:

hv = f

 ∑
u∈N (v)

(Wluvxu + bluv)

 .

Here, Wluv ∈ Rd×d and bluv ∈ Rd are label de-
pendent model parameters which are trained based
on the downstream task. N (v) refers to the set of
neighbors of v based on E ′ and f is any non-linear
activation function. In order to capture multi-
hop neighborhood, multiple GCN layers can be
stacked. Hidden representation of node v in this
case after kth GCN layer is given as:

hk+1
v = f

 ∑
u∈N (v)

(
W k

luvh
k
u + bkluv

) .

3.2 Integrating Edge Importance

In automatically constructed graphs, some edges
might be erroneous and hence need to be dis-
carded. Edgewise gating in GCN by (Bastings
et al., 2017; Marcheggiani and Titov, 2017) allows
us to alleviate this problem by subduing the noisy
edges. This is achieved by assigning a relevance
score to each edge in the graph. At kth layer, the
importance of an edge (u, v, luv) is computed as:

gkuv = σ
(
hku · ŵk

luv + b̂kluv

)
, (1)

Here, ŵk
luv
∈ Rm and b̂kluv ∈ R are parameters

which are trained and σ(·) is the sigmoid function.
With edgewise gating, the final GCN embedding
for a node v after kth layer is given as:

hk+1
v = f

 ∑
u∈N (v)

gkuv ×
(
W k

luvh
k
u + bkluv

) .

(2)
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4 RESIDE Overview

In multi-instance learning paradigm, we are given
a bag of sentences (or instances) {s1, s2, ...sn} for
a given entity pair, the task is to predict the relation
between them. RESIDE consists of three compo-
nents for learning a representation of a given bag,
which is fed to a softmax classifier. We briefly
present the components of RESIDE below. Each
component will be described in detail in the sub-
sequent sections. The overall architecture of RE-
SIDE is shown in Figure 1.

1. Syntactic Sentence Encoding: RESIDE uses
a Bi-GRU over the concatenated positional and
word embedding for encoding the local con-
text of each token. For capturing long-range
dependencies, GCN over dependency tree is
employed and its encoding is appended to the
representation of each token. Finally, attention
over tokens is used to subdue irrelevant tokens
and get an embedding for the entire sentence.
More details in Section 5.1.

2. Side Information Acquisition: In this mod-
ule, we use additional supervision from KBs
and utilize Open IE methods for getting rele-
vant side information. This information is later
utilized by the model as described in Section
5.2.

3. Instance Set Aggregation: In this part, sen-
tence representation from syntactic sentence
encoder is concatenated with the matched re-
lation embedding obtained from the previous
step. Then, using attention over sentences,
a representation for the entire bag is learned.
This is then concatenated with entity type em-
bedding before feeding into the softmax classi-
fier for relation prediction. Please refer to Sec-
tion 5.3 for more details.

5 RESIDE Details

In this section, we provide the detailed description
of the components of RESIDE.

5.1 Syntactic Sentence Encoding

For each sentence in the bag si with m tokens
{w1, w2, ...wm}, we first represent each token
by k-dimensional GloVe embedding (Pennington
et al., 2014). For incorporating relative position
of tokens with respect to target entities, we use
p-dimensional position embeddings, as used by

(Zeng et al., 2014). The combined token embed-
dings are stacked together to get the sentence rep-
resentationH ∈ Rm×(k+2p). Then, using Bi-GRU
(Cho et al., 2014) over H, we get the new sen-
tence representationHgru ∈ Rm×dgru , where dgru
is the hidden state dimension. Bi-GRUs have been
found to be quite effective in encoding the context
of tokens in several tasks (Sutskever et al., 2014;
Graves et al., 2013).

Although Bi-GRU is capable of capturing lo-
cal context, it fails to capture long-range depen-
dencies which can be captured through depen-
dency edges. Prior works (Mintz et al., 2009; He
et al., 2018) have exploited features from syntac-
tic dependency trees for improving relation ex-
traction. Motivated by their work, we employ
Syntactic Graph Convolution Networks for en-
coding this information. For a given sentence,
we generate its dependency tree using Stanford
CoreNLP (Manning et al., 2014). We then run
GCN over the dependency graph and use Equa-
tion 2 for updating the embeddings, taking Hgru

as the input. Since dependency graph has 55 dif-
ferent edge labels, incorporating all of them over-
parameterizes the model significantly. Therefore,
following (Marcheggiani and Titov, 2017; Nguyen
and Grishman, 2018; Vashishth et al., 2018a) we
use only three edge labels based on the direction
of the edge {forward (→), backward (←), self-
loop (>)}. We define the new edge label Luv for
an edge (u, v, luv) as follows:

Luv =


→ if edge exists in dependency parse
← if edge is an inverse edge
> if edge is a self-loop

For each token wi, GCN embedding hgcnik+1
∈

Rdgcn after kth layer is defined as:

hgcnik+1
= f

( ∑
u∈N (i)

gkiu ×
(
W k

Liu
hgcnuk

+ bkLiu

))
.

Here, gkiu denotes edgewise gating as defined in
Equation 1 and Liu refers to the edge label defined
above. We use ReLU as activation function f ,
throughout our experiments. The syntactic graph
encoding from GCN is appended to Bi-GRU out-
put to get the final token representation, hconcati

as [hgrui ;hgcn
ik+1 ]. Since, not all tokens are equally

relevant for RE task, we calculate the degree of
relevance of each token using attention as used in
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Figure 2: Relation alias side information extraction for a given sentence. First, Syntactic Context Extrac-
tor identifies relevant relation phrases P between target entities. They are then matched in the embedding
space with the extended set of relation aliasesR from KB. Finally, the relation embedding corresponding
to the closest alias is taken as relation alias information. Please refer Section 5.2.

(Jat et al., 2018). For token wi in the sentence,
attention weight αi is calculated as:

αi =
exp(ui)∑m
j=1 exp(uj)

where, ui = hconcati · r.

where r is a random query vector and ui is the
relevance score assigned to each token. Atten-
tion values {αi} are calculated by taking soft-
max over {ui}. The representation of a sentence
is given as a weighted sum of its tokens, s =∑m

j=1 αih
concat
i .

5.2 Side Information Acquisition

Relevant side information has been found to im-
prove performance on several tasks (Ling and
Weld, 2012; Vashishth et al., 2018b). In distant
supervision based relation extraction, since the en-
tities are from a KB, knowledge about them can be
utilized to improve relation extraction. Moreover,
several unsupervised relation extraction methods
(Open IE) (Angeli et al., 2015; Mausam et al.,
2012) allow extracting relation phrases between
target entities without any predefined ontology and
thus can be used to obtain relevant side informa-
tion. In RESIDE, we employ Open IE methods
and additional supervision from KB for improving
neural relation extraction.

Relation Alias Side Information
RESIDE uses Stanford Open IE (Angeli et al.,
2015) for extracting relation phrases between tar-
get entities, which we denote by P . As shown in
Figure 2, for the sentence Matt Coffin, executive of

lowermybills, a company.., Open IE methods ex-
tract “executive of” between Matt Coffin and low-
ermybills. Further, we extend P by including to-
kens at one hop distance in dependency path from
target entities. Such features from dependency
parse have been exploited in the past by (Mintz
et al., 2009; He et al., 2018). The degree of match
between the extracted phrases in P and aliases of
a relation can give important clues about the rel-
evance of that relation for the sentence. Several
KBs like Wikidata provide such relation aliases,
which can be readily exploited. In RESIDE, we
further expand the relation alias set using Para-
phrase database (PPDB) (Pavlick et al., 2015). We
note that even for cases when aliases for relations
are not available, providing only the names of rela-
tions give competitive performance. We shall ex-
plore this point further in Section 7.3.

For matching P with the PPDB expanded rela-
tion alias setR, we project both in a d-dimensional
space using GloVe embeddings (Pennington et al.,
2014). Projecting phrases using word embeddings
helps to further expand these sets, as semanti-
cally similar words are closer in embedding space
(Mikolov et al., 2013; Pennington et al., 2014).
Then, for each phrase p ∈ P , we calculate its co-
sine distance from all relation aliases inR and take
the relation corresponding to the closest relation
alias as a matched relation for the sentence. We
use a threshold on cosine distance to remove noisy
aliases. In RESIDE, we define a kr-dimensional
embedding for each relation which we call as
matched relation embedding (hrel). For a given
sentence, hrel is concatenated with its representa-
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tion s, obtained from syntactic sentence encoder
(Section 5.1) as shown in Figure 1. For sentences
with |P| > 1, we might get multiple matched re-
lations. In such cases, we take the average of their
embeddings. We hypothesize that this helps in im-
proving the performance and find it to be true as
shown in Section 7.

Entity Type Side Information
Type information of target entities has been shown
to give promising results on relation extraction
(Ling and Weld, 2012; Yaghoobzadeh et al.,
2017). Every relation puts some constraint on the
type of entities which can be its subject and object.
For example, the relation person/place of birth
can only occur between a person and a location.
Sentences in distance supervision are based on en-
tities in KBs, where the type information is readily
available.

In RESIDE, we use types defined by FIGER
(Ling and Weld, 2012) for entities in Freebase. For
each type, we define a kt-dimensional embedding
which we call as entity type embedding (htype).
For cases when an entity has multiple types in dif-
ferent contexts, for instance, Paris may have types
government and location, we take the average over
the embeddings of each type. We concatenate the
entity type embedding of target entities to the final
bag representation before using it for relation clas-
sification. To avoid over-parameterization, instead
of using all fine-grained 112 entity types, we use
38 coarse types which form the first hierarchy of
FIGER types.

5.3 Instance Set Aggregation

For utilizing all valid sentences, following (Lin
et al., 2016; Jat et al., 2018), we use attention over
sentences to obtain a representation for the entire
bag. Instead of directly using the sentence repre-
sentation si from Section 5.1, we concatenate the
embedding of each sentence with matched relation
embedding hreli as obtained from Section 5.2. The
attention score αi for ith sentence is formulated
as:

αi =
exp(ŝi · q)∑n
j=1 exp(ŝj · q)

where, ŝi = [si;h
rel
i ].

here q denotes a random query vector. The bag
representation B, which is the weighted sum of
its sentences, is then concatenated with the entity
type embeddings of the subject (htypesub ) and object

Datasets Split # Sentences # Entity-pairs

Riedel
(# Relations: 53)

Train 455,771 233,064
Valid 114,317 58,635
Test 172,448 96,678

GIDS
(# Relations: 5)

Train 11,297 6,498
Valid 1,864 1,082
Test 5,663 3,247

Table 1: Details of datasets used. Please see Sec-
tion 6.1 for more details.

(htypeobj ) from Section 5.2 to obtain B̂.

B̂ = [B;htypesub ;h
type
obj ] where, B =

n∑
i=1

αiŝi.

Finally, B̂ is fed to a softmax classifier to get the
probability distribution over the relations.

p(y) = Softmax(W · B̂ + b).

6 Experimental Setup

6.1 Datasets
In our experiments, we evaluate the models on
Riedel and Google Distant Supervision (GIDS)
dataset. Statistics of the datasets is summarized
in Table 1. Below we described each in detail1.

1. Riedel: The dataset is developed by (Riedel
et al., 2010) by aligning Freebase relations with
New York Times (NYT) corpus, where sen-
tences from the year 2005-2006 are used for
creating the training set and from the year 2007
for the test set. The entity mentions are anno-
tated using Stanford NER (Finkel et al., 2005)
and are linked to Freebase. The dataset has
been widely used for RE by (Hoffmann et al.,
2011; Surdeanu et al., 2012) and more recently
by (Lin et al., 2016; Feng et al.; He et al., 2018).

2. GIDS: Jat et al. (2018) created Google Dis-
tant Supervision (GIDS) dataset by extending
the Google relation extraction corpus2 with ad-
ditional instances for each entity pair. The
dataset assures that the at-least-one assumption
of multi-instance learning, holds. This makes
automatic evaluation more reliable and thus re-
moves the need for manual verification.

1Data splits and hyperparameters are in supplementary.
2https://research.googleblog.com/2013/04/50000-

lessons-on-how-to-read-relation.html

https://research.googleblog.com/2013/04/50000-lessons-on-how-to-read-relation.html
https://research.googleblog.com/2013/04/50000-lessons-on-how-to-read-relation.html
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Figure 3: Comparison of Precision-recall curve. RESIDE achieves higher precision over the entire range
of recall than all the baselines on both datasets. Please refer Section 7.1 for more details.

6.2 Baselines

For evaluating RESIDE, we compare against the
following baselines:

• Mintz: Multi-class logistic regression model
proposed by (Mintz et al., 2009) for distant su-
pervision paradigm.
• MultiR: Probabilistic graphical model for multi

instance learning by (Hoffmann et al., 2011)
• MIMLRE: A graphical model which jointly

models multiple instances and multiple labels.
More details in (Surdeanu et al., 2012).
• PCNN: A CNN based relation extraction model

by (Zeng et al., 2015) which uses piecewise
max-pooling for sentence representation.
• PCNN+ATT: A piecewise max-pooling over

CNN based model which is used by (Lin et al.,
2016) to get sentence representation followed
by attention over sentences.
• BGWA: Bi-GRU based relation extraction

model with word and sentence level attention
(Jat et al., 2018).
• RESIDE: The method proposed in this paper,

please refer Section 5 for more details.

6.3 Evaluation Criteria

Following the prior works (Lin et al., 2016; Feng
et al.), we evaluate the models using held-out eval-
uation scheme. This is done by comparing the re-
lations discovered from test articles with those in
Freebase. We evaluate the performance of models
with Precision-Recall curve and top-N precision
(P@N) metric in our experiments.

7 Results

In this section we attempt to answer the following
questions:

Q1. Is RESIDE more effective than existing ap-
proaches for distant supervised RE? (7.1)

Q2. What is the effect of ablating different com-
ponents on RESIDE’s performance? (7.2)

Q3. How is the performance affected in the ab-
sence of relation alias information? (7.3)

7.1 Performance Comparison

For evaluating the effectiveness of our proposed
method, RESIDE, we compare it against the base-
lines stated in Section 6.2. We use only the neural
baselines on GIDS dataset. The Precision-Recall
curves on Riedel and GIDS are presented in Figure
3. Overall, we find that RESIDE achieves higher
precision over the entire recall range on both the
datasets. All the non-neural baselines could not
perform well as the features used by them are
mostly derived from NLP tools which can be er-
roneous. RESIDE outperforms PCNN+ATT and
BGWA which indicates that incorporating side in-
formation helps in improving the performance of
the model. The higher performance of BGWA
and PCNN+ATT over PCNN shows that attention
helps in distant supervised RE. Following (Lin
et al., 2016; Liu et al., 2017), we also evaluate our
method with different number of sentences. Re-
sults summarized in Table 2, show the improved
precision of RESIDE in all test settings, as com-
pared to the neural baselines, which demonstrates



1264

One Two All

P@100 P@200 P@300 P@100 P@200 P@300 P@100 P@200 P@300

PCNN 73.3 64.8 56.8 70.3 67.2 63.1 72.3 69.7 64.1
PCNN+ATT 73.3 69.2 60.8 77.2 71.6 66.1 76.2 73.1 67.4
BGWA 78.0 71.0 63.3 81.0 73.0 64.0 82.0 75.0 72.0
RESIDE 80.0 75.5 69.3 83.0 73.5 70.6 84.0 78.5 75.6

Table 2: P@N for relation extraction using variable number of sentences in bags (with more than one
sentence) in Riedel dataset. Here, One, Two and All represents the number of sentences randomly
selected from a bag. RESIDE attains improved precision in all settings. More details in Section 7.1

Figure 4: Performance comparison of different ab-
lated version of RESIDE on Riedel dataset. Over-
all, GCN and side information helps RESIDE im-
prove performance. Refer Section 7.2.

the efficacy of our model.

7.2 Ablation Results

In this section, we analyze the effect of various
components of RESIDE on its performance. For
this, we evaluate various versions of our model
with cumulatively removed components. The ex-
perimental results are presented in Figure 4. We
observe that on removing different components
from RESIDE, the performance of the model de-
grades drastically. The results validate that GCNs
are effective at encoding syntactic information.
Further, the improvement from side information
shows that it is complementary to the features ex-
tracted from text, thus validating the central thesis
of this paper, that inducing side information leads
to improved relation extraction.

7.3 Effect of Relation Alias Side Information

In this section, we test the performance of the
model in setting where relation alias information is
not readily available. For this, we evaluate the per-
formance of the model on four different settings:
• None: Relation aliases are not available.

Figure 5: Performance on settings defined in Sec-
tion 7.3 with respect to the presence of relation
alias side information on Riedel dataset. RESIDE
performs comparably in the absence of relations
from KB.

• One: The name of relation is used as its alias.
• One+PPDB: Relation name extended using

Paraphrase Database (PPDB).
• All: Relation aliases from Knowledge Base3

The overall results are summarized in Figure 5.
We find that the model performs best when aliases
are provided by the KB itself. Overall, we find
that RESIDE gives competitive performance even
when very limited amount of relation alias infor-
mation is available. We observe that performance
improves further with the availability of more alias
information.

8 Conclusion

In this paper, we propose RESIDE, a novel neural
network based model which makes principled use
of relevant side information, such as entity type
and relation alias, from Knowledge Base, for im-
proving distant supervised relation extraction. RE-
SIDE employs Graph Convolution Networks for

3Each relation in Riedel dataset is manually mapped to
corresponding Wikidata property for getting relation aliases.
Few examples are presented in supplementary material.
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encoding syntactic information of sentences and
is robust to limited side information. Through ex-
tensive experiments on benchmark datasets, we
demonstrate RESIDE’s effectiveness over state-
of-the-art baselines. We have made RESIDE’s
source code publicly available to promote repro-
ducible research.
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