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Abstract
Many efforts have been made to facilitate natu-
ral language processing tasks with pre-trained
language models (LMs), and brought signifi-
cant improvements to various applications. To
fully leverage the nearly unlimited corpora and
capture linguistic information of multifarious
levels, large-size LMs are required; but for a
specific task, only parts of these information
are useful. Such large-sized LMs, even in the
inference stage, may cause heavy computation
workloads, making them too time-consuming
for large-scale applications. Here we propose
to compress bulky LMs while preserving use-
ful information with regard to a specific task.
As different layers of the model keep differ-
ent information, we develop a layer selec-
tion method for model pruning using sparsity-
inducing regularization. By introducing the
dense connectivity, we can detach any layer
without affecting others, and stretch shallow
and wide LMs to be deep and narrow. In
model training, LMs are learned with layer-
wise dropouts for better robustness. Experi-
ments on two benchmark datasets demonstrate
the effectiveness of our method.

1 Introduction

Benefited from the recent advances in neural net-
works (NNs) and the access to nearly unlim-
ited corpora, neural language models are able to
achieve a good perplexity score and generate high-
quality sentences. These LMs automatically cap-
ture abundant linguistic information and patterns
from large text corpora, and can be applied to fa-
cilitate a wide range of NLP applications (Rei,
2017; Liu et al., 2018; Peters et al., 2018).

Recently, efforts have been made on learning
contextualized representations with pre-trained
language models (LMs) (Peters et al., 2018).
These pre-trained layers brought significant im-
provements to various NLP benchmarks, yielding
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low RNNs with deep and narrow ones.

up to 30% relative error reductions. However, due
to high variability of language, gigantic NNs (e.g.,
LSTMs with 8,192 hidden states) are preferred to
construct informative LMs and extract multifar-
ious linguistic information (Peters et al., 2017).
Even though these models can be integrated with-
out retraining (using their forward pass only), they
still result in heavy computation workloads during
inference stage, making them prohibitive for real-
world applications.

In this paper, we aim to compress LMs for
the end task in a plug-in-and-play manner. Typ-
ically, NN compression methods require the re-
training of the whole model (Mellempudi et al.,
2017). However, neural language models are usu-
ally composed of RNNs, and their backpropaga-
tions require significantly more RAM than their
inference. It would become even more cumber-
some when the target task equips the coupled LMs
to capture information in both directions. There-
fore, these methods do not fit our scenario very
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well. Accordingly, we try to compress LMs while
avoiding costly retraining.

Intuitively, layers of different depths would
capture linguistic information of different lev-
els. Meanwhile, since LMs are trained in a task-
agnostic manner, not all layers and their extracted
information are relevant to the end task. Hence,
we propose to compress the model by layer se-
lection, which retains useful layers for the target
task and prunes irrelevant ones. However, for the
widely-used stacked-LSTM, directly pruning any
layers will eliminate all subsequent ones. To over-
come this challenge, we introduce the dense con-
nectivity. As shown in Fig. 1, it allows us to detach
any layers while keeping all remaining ones, thus
creating the basis to avoid retraining. Moreover,
such connectivity can stretch shallow and wide
LMs to be deep and narrow (Huang et al., 2017),
and enable a more fine-grained layer selection.

Furthermore, we try to retain the effective-
ness of the pruned model. Specifically, we mod-
ify the L1 regularization for encouraging the se-
lection weights to be not only sparse but bi-
nary, which protects the retained layer connections
from shrinkage. Besides, we design a layer-wise
dropout to make LMs more robust and better pre-
pared for the layer selection.

We refer to our model as LD-Net, since the
layer selection and the dense connectivity form the
basis of our pruning methods. For evaluation, we
apply LD-Net on two sequence labeling bench-
mark datasets, and demonstrated the effectiveness
of the proposed method. In the CoNLL03 Named
Entity Recognition (NER) task, the F1 score in-
creases from 90.78±0.24% to 91.86±0.15% by
integrating the unpruned LMs. Meanwhile, after
pruning over 90% calculation workloads from the
best performing model1 (92.03%), the resulting
model still yields 91.84±0.14%. Our implemen-
tations and pre-trained models would be released
for futher study2.

2 LD-Net

Given a input sequence of T word-level tokens,
{x1, x2, · · · , xT }, we use xt to denote the embed-
ding of xt. For a L-layers NN, we mark the input
and output of the lth layer at the tth time stamp as
xl,t and hl,t.

1Based on their performance on the development sets
2 https://github.com/LiyuanLucasLiu/

LD-Net.

2.1 RNN and Dense Connectivity
We represent one RNN layer as a function:

hl,t = Fl(xl,t,hl,t−1) (1)

where Fl is the recurrent unit of lth layer, it could
be any RNNs variants, and the vanilla LSTMs is
used in our experiments.

As deeper NNs usually have more representa-
tion power, RNN layers are often stacked together
to form the final model by setting xl,t = hl−1,t.
These vanilla stacked-RNN models, however, suf-
fer from problems like the vanishing gradient, and
it’s hard to train very deep models.

Recently, the dense connectivity and residual
connectivity have been proposed to handle these
problems (He et al., 2016; Huang et al., 2017).
Specifically, dense connectivity refers to adding
direct connections from any layer to all its subse-
quent layers. As illustrated in Figure 1, the input
of lth layer is composed of the original input and
the output of all preceding layers as follows.

xl,t = [xt,h1,t, · · · ,hl−1,t]

Similarly, the final output of the L-layer RNN is
ht = [xt,h1,t, · · · ,hL,t]. With dense connectiv-
ity, we can detach any single layer without elim-
inating its subsequent layers (as in Fig. 1). Also,
existing practices in computer vision demonstrate
that such connectivities can lead to deep and nar-
row NNs and distribute parameters into different
layers. Moreover, different layers in LMs usually
capture linguistic information of different levels.
Hence, we can compress LMs for a specific task
by pruning unrelated or unimportant layers.

2.2 Language Modeling
Language modeling aims to describe the sequence
generation. Normally, the generation probability
of the sequence {x1, · · · , xT } is defined in a “for-
ward” manner:

p(x1, · · · , xT ) =
T∏
t=1

p(xt|x1, · · · , xt−1) (2)

Where p(xt|x1, · · · , xt−1) is computed based on
the output of RNN, ht. Due to the dense con-
nectivity, ht is composed of outputs from different
layers, which are designed to capture linguistic in-
formation of different levels. Similar to the bot-
tleneck layers employed in the DenseNet (Huang
et al., 2017), we add additional layers to unify such

https://github.com/LiyuanLucasLiu/LD-Net
https://github.com/LiyuanLucasLiu/LD-Net
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information. Accordingly, we add an projection
layer with the ReLU activation function:

h∗t = ReLU(Wproj · ht + bproj) (3)

Based on h∗t , it’s intuitive to calculate
p(xt|x1, · · · , xt−1) by the softmax function,
i.e., softmax(Wout · h∗t + b).

Since the training of language models needs
nothing but the raw text, it has almost unlimited
corpora. However, conducting training on ex-
tensive corpora results in a huge dictionary, and
makes calculating the vanilla softmax intractable.
Several techniques have been proposed to handle
this problem, including adaptive softmax (Grave
et al., 2017), slim word embedding (Li et al.,
2018), the sampled softmax and the noise con-
trastive estimation (Józefowicz et al., 2016). Since
the major focus of our paper does not lie in the
language modeling task, we choose the adaptive
softmax because of its practical efficiency when
accelerated with GPUs.

2.3 Contextualized Representations
As pre-trained LMs can describe the text genera-
tion accurately, they can be utilized to extract in-
formation and construct features for other tasks.
These features, referred as contextualized repre-
sentations, have been demonstrated to be essen-
tially useful (Peters et al., 2018). To capture in-
formation from both directions, we utilized not
only forward LMs, but also backward LMs. Back-
ward LMs are based on Eqn. 4 instead of Eqn. 2.
Similar to forward LMs, backward LMs approach
p(xt|xt+1, · · · , xT ) with NNs. For reference, the
output of the RNN in backward LMs for xt is
recorded as hrt .

p(x1, · · · , xn) =
T∏
t=1

p(xt|xt+1, · · · , xT ) (4)

Ideally, the final output of LMs (e.g., h∗t ) would
be the same as the representation of the target
word (e.g., xt+1); therefore, it may not contain
much context information. Meanwhile, the output
of the densely connected RNN (e.g., ht) includes
outputs from every layer, thus summarizing all ex-
tracted features. Since the dimensions of ht could
be too large for the end task, we add a non-linear
transformation to calculate the contextualized rep-
resentation (rt):

rt = ReLU(Wcr · [ht,hrt ] + bcr) (5)

Our proposed method bears the same intuition
as the ELMo (Peters et al., 2018). ELMo is de-
signed for the vanilla stacked-RNN, and tries to
calculate a weighted average of different layers’
outputs as the contextualized representation. Our
method, benefited from the dense connectivity and
its narrow structure, can directly combine the out-
puts of different layers by concatenation. It does
not assume the outputs of different layers to be in
the same vector space, thus having more potential
for transferring the constructed token representa-
tions. More discussions are available in Sec. 4.

2.4 Layer Selection
Typical model compression methods require re-
training or gradient calculation. For the coupled
LMs, these methods require even more computa-
tion resources compared to the training of LMs,
thus not fitting our scenario very well.

Benefited from the dense connectivity, we are
able to train deep and narrow networks. Moreover,
we can detach one of its layer without eliminating
all subsequent layers (as in Fig. 1). Since different
layers in NNs could capture different linguistic in-
formation, only a few of them would be relevant
or useful for a specific task. As a result, we try
to compress these models by the task-guided layer
selection. For i-th layer, we introduce a binary
mask zi ∈ {0, 1} and calculate hl,t with Eqn. 6
instead of Eqn. 1.

hl,t = zi · Fl(xl,t,hl,t−1) (6)

With this setting, we can conduct a layer selection
by optimizing the regularized empirical risk:

minL+ λ0 · R (7)

where L is the empirical risk for the sequence la-
beling task andR is the sparse regularization.

The ideal choice for R would be the L0 regu-
larization of z, i.e., R0(z) = |z|0. However, it
is not continuous and cannot be efficiently opti-
mized. Hence, we relax zi from binary to a real
value (i.e., 0 ≤ zi ≤ 1) and replaceR0 by:

R1 = |z|1

Despite the sparsity achieved by R1, it could
hurt the performance by shifting all zi far away
from 1. Such shrinkage introduces additional
noise in hl,t and xl,t, which may result in inef-
fective pruned LMs. Since our goal is to conduct
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Figure 2: Penalty values of variousR for z with three dimensions. λ1 has been set to 2 forR2 andR3.

pruning without retraining, we further modify the
L1 regularization to achieve sparsity while allevi-
ating its shrinkage effect. As the target of R is to
make z sparse, it can be “turned-off” after achiev-
ing a satisfying sparsity. Therefore, we extendR1

to a margin-based regularization:

R2 = δ(|z|0 > λ1)|z|1

In addition, we also want to make up the re-
laxation made on z, i.e., relaxing its values from
binary to [0, 1]. Accordingly, we add the penalty
|z(1 − z)|1 to encourage z to be binary (Murray
and Ng, 2010) and modifyR2 intoR3:

R3 = δ(|z|0 > λ1)|z|1 + |z(1− z)|1

To compare R1, R2 and R3, we visualize their
penalty values in Fig. 2. The visualization is
generated for a 3-dimensional z while the tar-
geted sparsity, λ1, is set to 2. Comparing to
R1, we can observe that R2 enlarges the optimal
point set from 0 to all z with a satisfying spar-
sity, thus avoiding the over-shrinkage. To better
demonstrate the effect of R3, we further visualize
its penalties after achieving a satisfying sparsity
(w.l.o.g., assuming z3 = 0). One can observe that
it penalizes non-binary z and favors binary values.

2.5 Layer-wise Dropout
So far, we’ve customized the regularization term
for the layer-wise pruning, which protects the re-
tained connections among layers from shrinking.
After that, we try to further retain the effective-
ness of the compressed model. Specifically, we
choose to prepare the LMs for the pruned inputs,
thus making them more robust to pruning.

Accordingly, we conduct the training of LMs
with a layer-wise dropout. As in Figure 3, a
random part of layers in the LMs are randomly
dropped during each batch. The outputs of the
dropped layers will not be passed to their subse-
quent recurrent layers, but will be sent to the pro-
jection layer (Eqn. 3) for predicting the next word.

the Recurrent Unit:

(b)

the Input of the 
Recurrent Unit:

input

output

(a)

input

output

Layer-wise

 

Dropout

the Dropped
Recurrent Unit:

Figure 3: Layer-wise dropout conducted on a 4-layer
densely connected RNN. (a) is the remained RNN. (b)
is the original densely connected RNN.

In other words, this dropout is only applied to the
input of recurrent layers, which aims to imitate the
pruned input without totally removing any layers.

3 Sequence Labeling

In this section, we will introduce our sequence la-
beling architecture, which is augmented with the
contextualized representations.

3.1 Neural Architecture
Following the recent studies (Liu et al., 2018;
Kuru et al., 2016), we construct the neural archi-
tecture as in Fig. 4. Given the input sequence
{x1, x2, · · · , xT }, for tth token (xt), we assume
its word embedding is wt, its label is yt, and its
character-level input is {ci,1, ci,2, · · · , ci, }, where
ci, is the space character following xt.

The character-level representations have be-
come the required components for most of the
state-of-the-art. Following the recent study (Liu
et al., 2018), we employ LSTMs to take the
character-level input in a context-aware manner,
and mark its output for xt as ct. Similar to the
contextualized representation, ct usually has more
dimensions than wt. To integrate them together,
we set the output dimension of Eqn. 5 as the di-
mension of wt, and project ct to a new space with
the same dimension number. We mark the pro-
jected character-level representation as c∗t .
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Figure 4: The proposed sequence labeling architecture
with contextualized representations.

After projections, these vectors are concate-
nated as vt = [c∗t ; rt;wt],∀i ∈ [1, T ] and fur-
ther fed into the word-level LSTMs. We refer to
their output as U = {u1, · · · ,uT }. To ensure
the model to predict valid label sequences, we ap-
pend a first-order conditional random field (CRF)
layer to the model (Lample et al., 2016). Specifi-
cally, the model defines the generation probability
of y = {y1, · · · , yT } as

p(y|U) =

∏T
t=1 φ(yt−1, yt,ut)∑

ŷ∈Y(U)

∏T
t=1 φ(ŷt−1, ŷt,ut)

(8)

where ŷ = {ŷ1, . . . , ŷT } is a generic label se-
quence, Y(U) is the set of all generic label se-
quences for U and φ(yt−1, yt,ut) is the potential
function. In our model, φ(yt−1, yt,ut) is defined
as exp(Wytut + byt−1,yt), where Wyt and byt−1,yt

are the weight and bias parameters.

3.2 Model Training and Inference

We use the following negative log-likelihood as
the empirical risk.

L = −
∑
U

log p(y|U) (9)

For testing or decoding, we want to find the op-
timal sequence y∗ that maximizes the likelihood.

y∗ = argmax
y∈Y(U)

p(y|U) (10)

Although the denominator of Eq. 8 is complicated,
we can calculate Eqs. 9 and 10 efficiently by the
Viterbi algorithm.

For optimization, we decompose it into two
steps, i.e., model training and model pruning.
Model training. We set λ0 to 0 and optimize
the empirical risk without any regularization, i.e.,
minL. In this step, we conduct optimization with

the stochastic gradient descent with momentum.
Following (Peters et al., 2018), dropout would be
added to both the coupled LMs and the sequence
labeling model.
Model pruning. We conduct the pruning based
on the checkpoint which has the best performance
on the development set during the model train-
ing. We set λ0 to non-zero values and optimize
minL + λ0R3 by the projected gradient descent
with momentum. Any layer i with zi = 0 would
be deleted in the final model to complete the prun-
ing. To get a better stability, dropout is only added
to the sequence labeling model.

4 Experiments

We will first discuss the capability of the LD-Net
as language models, then explore the effectiveness
of its contextualized representations.

4.1 Language Modeling

For comparison, we conducted experiments on the
one billion word benchmark dataset (Chelba et al.,
2013) with both LD-Net (with 1,600 dimensional
projection) and the vanilla stacked-LSTM. Both
kinds of models use word embedding (random ini-
tialized) of 300 dimension as input and use the
adaptive softmax (with default setting) as an ap-
proximation of the full softmax. Additionally,
as preprocessing, we replace all tokens occurring
equal or less than 3 times with as UNK, which
shrinks the dictionary from 0.79M to 0.64M.

The optimization is performed by the Adam al-
gorithm (Kingma and Ba, 2014), the gradient is
clipped at 5.0 and the learning rate is set to start
from 0.001. The layer-wise dropout ratio is set
to 0.5, the RNNs are unrolled for 20 steps with-
out resetting the LSTM states, and the batch size
is set to 128. Their performances are summa-
rized in Table 1, together with several LMs used in
our sequence labeling baselines. For models with-
out official reported parameter numbers, we esti-
mate their values (marked with†) by assuming they
adopted the vanilla LSTM. Note that, for models
3, 5, 6, 7, 8, and 9, PPL refers to the averaged per-
plexity of the forward and the backward LMs.

We can observe that, for those models tak-
ing word embedding as the input, embedding
composes the vast majority of model parame-
ters. However, embedding can be embodied as a
“sparse” layer which is computationally efficient.
Instead, the intense calculations are conducted in
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Network Ind. # Hid. # Layer #
Param.# (·107)

PPL
RNN Others

8192-1024 (Józefowicz et al., 2016) 1 8192 2 15.1] 163] 30.6

CNN-8192-1024 (Józefowicz et al., 2016) 2 8192 2 15.1] 89] 30.0

CNN-4096-512 (Peters et al., 2018) 3 4096 2 3.8] 40.6] 39.7

2048-512 (Peters et al., 2017) 4 2048 1 0.9] 40.6] 47.50

2048-Adaptive (Grave et al., 2017) 5 2048 2 5.2† 26.5† 39.8

vanilla LSTM
6 2048 2 5.3† 25.6† 40.27
7 1600 2 3.2† 24.2† 48.85

LD-Net without Layer-wise Dropout 8 300 10 2.3† 24.2† 45.14

LD-Net with Layer-wise Dropout 9 300 10 2.3† 24.2† 50.06

Table 1: Performance comparison of language models. Models marked with† adopted adaptive softmax and the
vanilla LSTMs, which has less softmax parameters. Models marked with] employed sampled softmax LSTMs w.
projection, which results in less RNN parameters w.r.t. the size of hidden states.

RNN layers and softmax layer for language mod-
eling, or RNN layers for contextualized represen-
tations. At the same time, comparing the model
8192-1024 and CNN-8192-1024, their only differ-
ence is the input method. Instead of taking word
embedding as the input, CNN-8192-1024 utilizes
CNN to compose word representation from the
character-level input. Despite the greatly reduced
parameter number, the perplexity of the resulting
models remains almost unchanged. Since replac-
ing embedding layer with CNN would make the
training slower, we only conduct experiments with
models taking word embedding as the input.

Comparing LD-Net with other baselines, we
think it achieves satisfactory performance with re-
gard to the size of hidden states. It demonstrates
the LD-Net’s capability of capturing the underly-
ing structure of natural language. Meanwhile, we
find that the layer-wise dropout makes it harder
to train LD-Net and its resulting model achieves
less competitive results. However, as would be
discussed in the next section, layer-wise dropout
allows the resulting model to generate better con-
textualized representations and be more robust to
pruning, even with a higher perplexity.

4.2 Sequence Labeling

Following TagLM (Peters et al., 2017), we eval-
uate our methods in two benchmark datasets,
the CoNLL03 NER task (Tjong Kim Sang and
De Meulder, 2003) and the CoNLL00 Chunking
task (Tjong Kim Sang and Buchholz, 2000).
CoNLL03 NER has four entity types and includes

the standard training, development and test sets.
CoNLL00 chunking defines eleven syntactic
chunk types (e.g., NP and VP) in addition to
Other. Since it only includes training and test
sets, we sampled 1000 sentences from training set
as a held-out development set (Peters et al., 2017).

In both cases, we use the BIOES labeling
scheme (Ratinov and Roth, 2009) and use the
micro-averaged F1 as the evaluation metric. Based
on the analysis conducted in the development set,
we set λ0 = 0.05 for the NER task, and λ0 = 0.5
for the Chunking task. As discussed before, we
conduct optimization with the stochastic gradient
descent with momentum. We set the batch size,
the momentum, and the learning rate to 10, 0.9,
and ηt = η0

1+ρt respectively. Here, η0 = 0.015 is
the initial learning rate and ρ = 0.05 is the de-
cay ratio. Dropout is applied in our model, and its
ratio is set to 0.5. For a better stability, we use gra-
dient clipping of 5.0. Furthermore, we employ the
early stopping in the development set and report
averaged score across five different runs.

Regarding the network structure, we use the
30-dimension character-level embedding. Both
character-level and word-level RNNs are set to
one-layer LSTMs with 150-dimension hidden
states in each direction. The GloVe 100-dimension
pre-trained word embedding3 is used as the initial-
ization of word embedding wt, and will be fine-
tuned during the training. The layer selection vari-
ables zi are initialized as 1, remained unchanged

3 https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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Network Avg. #FLOPs F1 score
(LMs Ind.#) ppl (·106) (avg±std)

NoLM (/) / 3 94.42±0.08

R-ELMo (6) 40.27 108 96.19±0.07

R-ELMo (7) 48.85 68 95.86±0.04

LD-Net ∗ (8) 45.14 51 96.01±0.07

LD-Net ∗ (9) 50.06 51 96.05±0.08

LD-Net (8)
origin 51 96.13
pruned 13 95.46±0.18

LD-Net (9)
origin 51 96.15
pruned 10 95.66±0.04

Table 2: Performance comparisons in the CoNLL00
Chunking task. LD-Net maked with ∗ are trained with-
out pruning (layer selection).

during the model training and only be updated dur-
ing the model pruning. All other variables are ran-
domly initialized (Glorot and Bengio, 2010).
Compared methods. The first baseline, referred
as NoLM, is our sequence labeling model with-
out the contextualized representations, i.e., calcu-
lating vt as [c∗t ;wt] instead of [c∗t ; rt;wt]. Be-
sides, ELMo (Peters et al., 2018) is the major base-
line. To make comparison more fair, we imple-
mented the ELMo model and use it to calculate
the rt in Eqn. 5 instead of [ht,hrt ]. Results of re-
implemented models are referred with R-ELMo
(λ is set to the recommended value, 0.1) and the
results reported in its original paper are referred
with O-ELMo. Additionally, since TagLM (Peters
et al., 2017) with one-layer NNs can be viewed as
a special case of ELMo, we also include its results.
Sequence labeling results. Table 2 and 3 sum-
marizes the results of LD-Net and baselines. Be-
sides the F1 score and averaged perplexity, we
also estimate FLOPs (i.e., the number of floating-
point multiplication-adds) for the efficiency evalu-
ation. Since our model takes both word-level and
character-level inputs, we estimated the FLOPs
value for a word-level input with 4.39 character-
level inputs, while 4.39 is the averaged length of
words in the CoNLL03 dataset.

Before the model pruning, LD-Net achieves a
96.05±0.08 F1 score in the CoNLL00 Chunking
task, yielding nearly 30% error reductions over the
NoLM baseline. Also, it scores 91.86±0.15 F1 in
the CoNLL03 NER task with over 10% error re-
ductions. Similar to the language modeling, we

Network Avg. #FLOPs F1 score
(LMs Ind.#) ppl (·106) (avg±std)

NoLM (/) / 3 90.78±0.24

O-ELMo (3) 39.70 79] 92.22±0.10

TagLM (4) 47.50 22] 91.62±0.23

R-ELMo (6) 40.27 108 91.99±0.24

R-ELMo (7) 48.85 68 91.54±0.10

LD-Net ∗ (8) 45.14 98 91.76±0.18

LD-Net ∗ (9) 50.06 98 91.86±0.15

LD-Net (8)
origin 51 91.95
pruned 5 91.55±0.06

LD-Net (9)
origin 51 92.03
pruned 5 91.84±0.14

Table 3: Performance comparison in the CoNLL03
NER task. Models marked with† employed LSTMs
with projection, which is more efficient than the vanilla
LSTMs. LD-Net maked with ∗ are trained without
pruning (layer selection).

observe that the most complicated models achieve
the best perplexity and provide the most improve-
ments in the target task. Still, considering the
number of model parameters and the resulting per-
plexity, our model demonstrates its effectiveness
in generating contextualized representations. For
example, comparing to our methods, R-ELMo (7)
leverages LMs with the similar perplexity and pa-
rameter number, but cannot get the same improve-
ments with our method on both datasets.

Actually, contextualized representations have
strong connections with the skip-thought vec-
tors (Kiros et al., 2015). Skip-thought models try
to embed sentences and are trained by predict-
ing the previous and afterwards sentences. Sim-
ilarly, LMs encode a specific context as the hid-
den states of RNNs, and use them to predict fu-
ture contexts. Specifically, we recognize the cell
states of LSTMs are more like to be the sentence
embedding (Radford et al., 2017), since they are
only passed to the next time stamps. At the same
time, because the hidden states would be passed to
other layers, we think they are more like to be the
token representations capturing necessary signals
for predicting the next word or updating context
representations4. Hence, LD-Net should be more

4We tried to combine the cell states with the hidden states
to construct the contextualized representations by concatena-
tion or weighted average, but failed to get better performance.
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Network (LMs Ind.#) FLOPs Batch size Peak RAM Time (s)
Speed

103words/s 103sents/s

R-ELMo (6) 108 200 8Gb 32.88 22 0.4

LD-Net (9, origin) 51 80 8Gb 25.68 26 0.5

LD-Net (9, pruned) 5
80 4Gb 6.90 98 2.0
500 8Gb 4.86 (5X) 166 (6X) 2.9 (5X)

Table 4: Speed comparison in the CoNLL03 NER task. We can observe that LD-Net (9, pruned) achieved about 5
times speed up on the wall-clock time over LD-Net (9, origin).

effective then ELMo, as concatenating could pre-
serve all extracted signals while weighted average
might cause information loss.

Although the layer-wise dropout makes the
model harder to train, their resulting LMs generate
better contextualized representations, even with-
out the same perplexity. Also, as discussed in (Pe-
ters et al., 2018, 2017), the performance of the
contextualized representation can be further im-
proved by training larger models or using the CNN
to represent words.

For the pruning, we started from the model with
the best performance on the development set (re-
ferred with “origin”), and refer the performances
of pruned models with “pruned” in Table 2 and 3.
Essentially, we can observe the pruned models get
rid of the vast majority of calculation while still re-
taining a significant improvement. We will discuss
more on the pruned models in Sec. 4.4.

4.3 Speed Up Measurements
We use FLOPs for measuring the inference ef-
ficiency as it reflects the time complexity (Han
et al., 2015), and thus is independent of spe-
cific implementations. For models with the same
structure, improvements in FLOPs would result in
monotonically decreasing inference time. How-
ever, it may not reflect the actual efficiency of
models due to the model differences in paral-
lelism. Accordingly, we also tested wall-clock
speeds of our implementations.

Our implementations are based on the PyTorch
0.3.15, and all experiments are conducted on the
CoNLL03 dataset with the Nvidia GTX 1080
GPU. Specifically, due to the limited size of
CoNLL03 test set, we measure such speeds on the
training set. As in Table 4, we can observe that,
the pruned model achieved about 5 times speed
up. Although there is still a large margin between

We think it implies that ELMo works as token representations
instead of sentence representations

5http://pytorch.org/

F1 F1

(a) ConNLL00 Chunking (b) ConNLL03 NER

Figure 5: The performance of pruned models in two
tasks w.r.t. their efficiency (FLOPs).

the actual speed-up and the FLOPs speed-up, we
think the resulting decode speed (166K words/s) is
sufficient for most real-world applications.

4.4 Case Studies
Effect of the pruning ratio. To explore the effect
of the pruning ratio, we adjust λ1 and visualize the
performance of pruned models v.s. their FLOPs #
in Fig 5. We can observe that LD-Net outperforms
its variants and demonstrates its effectiveness.

As the pruning ratio becoming larger, we can
observe the performance of LD-Net first increases
a little, then starts dropping. Besides, in the
CoNLL03 NER task, LMs can be pruned to a rel-
atively small size without much loss of efficiency.
As in Table 3, we can observe that, after prun-
ing over 90% calculations, the error of the re-
sulting model only increases about 2%, yielding
a competitive performance. As for the CoNLL00
Chunking task, the performance of LD-Net decays
in a faster rate than that in the NER task. For ex-
ample, after pruning over 80% calculations, the
error of the resulting model increases about 13%.
Considering the fact that this corpus is only half
the size of the CoNLL03 NER dataset, we can ex-
pect the resulting models have more dependencies
on the LMs. Still, the pruned model achieves a
25% error reduction over the NoLM baseline.

http://pytorch.org/
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Figure 6: The performance of pruned models in two
tasks w.r.t. their efficiency (FLOPs).

Layer selection pattern. We further studied the
layer selection patterns. Specifically, we use the
same setting of LD-Net (9) in Table 3, conduct
model pruning using for 50 times, and summa-
rize the statics in Figure 6. We can observe that
network layers formulate two clear clusters, one
is likely to be preserved during the selection, and
the other is likely to be pruned. This is consistent
with our intuition that some layers are more impor-
tant than others and the layer selection algorithm
would pick up layers meaningfully.

However, there is some randomness in the se-
lection result. We conjugate that large networks
trained with dropout can be viewed as a ensem-
ble of small sub-networks (Hara et al., 2016), also
there would be several sub-networks having the
similar function. Accordingly, we think the ran-
domness mainly comes from such redundancy.
Effectiveness of model pruning. Zhu and Gupta
(2017) observed pruned large models consistently
outperform small models on various tasks (includ-
ing LM). These observations are consistent with
our experiments. For example, LD-Net achieves
91.84 after pruning on the CoNLL03 dataset. It
outperforms TagLM (4) and R-ELMo (7), whose
performances are 91.62 and 91.54. Besides, we
trained small LMs of the same size as the pruned
LMs (1-layer densely connected LSTMs). Its per-
plexity is 69 and its performance on the CoNLL03
dataset is 91.55± 0.19.

5 Related Work

Sequence labeling. Linguistic sequence labeling
is one of the fundamental tasks in NLP, encom-
passing various applications including POS tag-
ging, chunking, and NER. Many attempts have
been made to conduct end-to-end learning and
build reliable models without handcrafted fea-
tures (Chiu and Nichols, 2016; Lample et al.,
2016; Ma and Hovy, 2016).

Language modeling. Language modeling is a
core task in NLP. Many attempts have been paid to
develop better neural language models (Zilly et al.,
2017; Inan et al., 2016; Godin et al., 2017; Melis
et al., 2017). Specifically, with extensive corpora,
language models can be well trained to generate
high-quality sentences from scratch (Józefowicz
et al., 2016; Grave et al., 2017; Li et al., 2018;
Shazeer et al., 2017). Meanwhile, initial attempts
have been made to improve the performance of
other tasks with these methods. Some methods
treat the language modeling as an additional su-
pervision, and conduct co-training for knowledge
transfer (Dai and Le, 2015; Liu et al., 2018; Rei,
2017). Others, including this paper, aim to con-
struct additional features (referred as contextual-
ized representations) with the pre-trained language
models (Peters et al., 2017, 2018).
Neural Network Acceleration. There are mainly
three kinds of NN acceleration methods, i.e.,
prune network into smaller sizes (Han et al.,
2015; Wen et al., 2016), converting float operation
into customized low precision arithmetic (Hubara
et al., 2018; Courbariaux et al., 2016), and using
shallower networks to mimic the output of deeper
ones (Hinton et al., 2015; Romero et al., 2014).
However, most of them require costly retraining.

6 Conclusion

Here, we proposed LD-Net, a novel framework
for efficient contextualized representation. As
demonstrated on two benchmarks, it can conduct
the layer-wise pruning for a specific task. More-
over, it requires neither the gradient oracle of LMs
nor the costly retraining. In the future, we plan to
apply LD-Net to other applications.
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