
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 534–545,
October 25-29, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

NaturalLI: Natural Logic Inference for Common Sense Reasoning

Gabor Angeli
Stanford University
Stanford, CA 94305

angeli@cs.stanford.edu

Christopher D. Manning
Stanford University
Stanford, CA 94305

manning@cs.stanford.edu

Abstract

Common-sense reasoning is important for
AI applications, both in NLP and many
vision and robotics tasks. We propose
NaturalLI: a Natural Logic inference sys-
tem for inferring common sense facts – for
instance, that cats have tails or tomatoes
are round – from a very large database
of known facts. In addition to being able
to provide strictly valid derivations, the
system is also able to produce derivations
which are only likely valid, accompanied
by an associated confidence. We both
show that our system is able to capture
strict Natural Logic inferences on the Fra-
CaS test suite, and demonstrate its ability
to predict common sense facts with 49%
recall and 91% precision.

1 Introduction

We approach the task of database completion:
given a database of true facts, we would like to
predict whether an unseen fact is true and should
belong in the database. This is intuitively cast as
an inference problem from a collection of candi-
date premises to the truth of the query. For exam-
ple, we would like to infer that no carnivores eat
animals is false given a database containing the cat
ate a mouse (see Figure 1).

These inferences are difficult to capture in
a principled way while maintaining high recall,
particularly for large scale open-domain tasks.
Learned inference rules are difficult to general-
ize to arbitrary relations, and standard IR methods
easily miss small but semantically important lex-
ical differences. Furthermore, many methods re-
quire explicitly modeling either the database, the
query, or both in a formal meaning representation
(e.g., Freebase tuples).

Although projects like the Abstract Meaning
Representation (Banarescu et al., 2013) have made

No carnivores
eat animals?

The carnivores
eat animals

The cat
eats animals

The cat
ate an animal

The cat
ate a mouse

w

≡

w

f

No cats
eat animals

No cats
eat mice

w
. . .

w
. . .

Figure 1: Natural Logic inference cast as search.
The path to the boxed premise the cat ate a mouse
disproves the query no carnivores eat animals, as
it passes through the negation relation (f). This
path is one of many candidates taken; the premise
is one of many known facts in the database. The
edge labels denote Natural Logic inference steps.

headway in providing broad-coverage meaning
representations, it remains appealing to use hu-
man language as the vessel for inference. Fur-
thermore, OpenIE and similar projects have been
very successful at collecting databases of natural
language snippets from an ever-increasing corpus
of unstructured text. These factors motivate our
use of Natural Logic – a proof system built on the
syntax of human language – for broad coverage
database completion.

Prior work on Natural Logic has focused on in-
ferences from a single relevant premise, making
use of only formally valid inferences. We improve
upon computational Natural Logic in three ways:
(i) our approach operates over a very large set of
candidate premises simultaneously; (ii) we do not
require explicit alignment between a premise and
the query; and (iii) we allow imprecise inferences
at an associated cost learned from data.

Our approach casts inference as a single uni-
fied search problem from a query to any valid

534

supporting premise. Each transition along the
search denotes a (reverse) inference step in Natu-
ral Logic, and incurs a cost reflecting the system’s
confidence in the validity of that step. This ap-
proach offers two contributions over prior work in
database completion: (i) it allows for unstructured
text as the input database without any assump-
tions about the schema or domain of the text, and
(ii) it proposes Natural Logic for inference, rather
than translating to a formal logic syntax. More-
over, the entire pipeline is implemented in a single
elegant search framework, which scales easily to
large databases.

2 MacCartney’s Natural Logic

Natural Logic aims to capture common logical in-
ferences by appealing directly to the structure of
language, as opposed to running deduction on an
abstract logical form. The logic builds upon tra-
ditional rather than first-order logic: to a first ap-
proximation, Natural Logic can be seen as an en-
hanced version of Aristotle’s syllogistic system
(van Benthem, 2008). A working understanding
of the logic as syllogistic reasoning is sufficient for
understanding the later contributions of the paper.
While some inferences of first-order logic are not
captured by Natural Logic, it nonetheless allows
for a wide range of intuitive inferences in a com-
putationally efficient and conceptually clean way.

We build upon the variant of the logic intro-
duced by the NatLog system (MacCartney and
Manning, 2007; 2008; 2009), based on earlier the-
oretical work on Natural Logic and Monotonicity
Calculus (van Benthem, 1986; Valencia, 1991).
Later work formalizes many aspects of the logic
(Icard, 2012; Djalali, 2013); we adopt the formal
semantics of Icard and Moss (2014), along with
much of their notation.

At a high level, Natural Logic proofs operate by
mutating spans of text to ensure that the mutated
sentence follows from the original – each step is
much like a syllogistic inference. We construct a
complete proof system in three parts: we define
MacCartney’s atomic relations between lexical en-
tries (Section 2.1), the effect these lexical muta-
tions have on the validity of the sentence (Sec-
tion 2.2), and a practical approach for executing
these proofs. We review MacCartney’s alignment-
based approach in Section 2.3, and show that we
can generalize and simplify this system in Sec-
tion 3.

D

ϕ ≡ ψ
(equivalence)

D

ϕ v ψ
(forward entail.)

D

ϕ w ψ
(reverse entail.)

D

ϕf ψ
(negation)

D

ϕ �� ψ
(alternation)

D

ϕ ` ψ
(cover)

Figure 2: The model-theoretic interpretation of the
MacCartney relations. The figure shows the re-
lation between the denotation of ϕ (dark) and ψ
(light). The universe is denoted by D.

2.1 Lexical Relations

MacCartney and Manning (2007) introduce seven
set-theoretic relations between the denotations of
any two lexical items. The denotation of a lexical
item is the set of objects in the domain of discourse
D to which that lexical item refers. For instance,
the denotation of cat would be the set of all cats.
Two denotations can then be compared in terms of
set algebra: if we define the set of cats to be ϕ and
the set of animals to be ψ, we can state that ϕ ⊆ ψ.

The six informative relations are summarized in
Figure 2; a seventh relation (#) corresponds to
to the completely uninformative relation. For in-
stance, the example search path in Figure 1 makes
use of the following relations:

No x y f The x y
cat v carnivore

animal ≡ a animal
animal w mouse

Denotations are not required to be in the
space of predicates (e.g., cat, animal). In
the first example, the denotations of No and
The are in the space of operators p→ (p→ t):
functions from predicates p to truth values
t. The f relation becomes the conjunction
of two claims: ∀x∀y ¬ (no x y ∧ the x y) and
∀x∀y (no x y ∨ the x y). This is analogous to the
construction of the set-theoretic definition of f in
Figure 2: ϕ ∩ ψ = ∅ and ϕ ∪ ψ = D (see Icard
and Moss (2014)).

535

Examples of the last two relations (�� and`) and
the complete independence relation (#) include:

cat �� dog
animal ` nonhuman

cat # friendly

2.2 Monotonicity and Polarity

The previous section details the relation between
lexical items; however, we still need a theory for
how to “project” the relation induced by a lexical
mutation as a relation between the two containing
sentences. For example, cat v animal, and some
cat meowsv some animal meows, but no cat barks
6v no animal barks. Despite differing by the same
lexical relation, the first example describes a valid
entailment, while the second does not.

We appeal to two important concepts: mono-
tonicity as a property of arguments to natural lan-
guage operators, and polarity as a property of lexi-
cal items in a sentence. Much like monotone func-
tions in calculus, an [upwards] monotone operator
has an output truth value which is non-decreasing
(i.e., material implication) as the input “increases”
(i.e., the subset relation). From the example above,
some is upwards monotone in its first argument,
and no is downwards monotone in its first argu-
ment.

Polarity is a property of lexical items in a sen-
tence determined by the operators acting on it. All
lexical items have upward polarity by default; up-
wards monotone operators preserve polarity, and
downwards monotone operators reverse polarity.
For example, mice in no cats eat mice has down-
ward polarity, whereas mice in no cats don’t eat
mice has upward polarity (it is in the scope of two
downward monotone operators). The relation be-
tween two sentences differing by a single lexical
relation is then given by the projection function ρ
in Table 1.1

2.3 Proof By Alignment

MacCartney and Manning (2007) approach the in-
ference task in the context of inferring whether a
single relevant premise entails a query. Their ap-
proach first generates an alignment between the
premise and the query, and then classifies each
aligned segment into one of the lexical relations
in Figure 2. Inference reduces to projecting each

1Note that this table optimistically assumes every operator
is additive and multiplicative, as defined in Icard (2012).

r ≡ v w �� ` f #
ρ(r) ≡ w v ` �� f #

Table 1: The projection function ρ, shown for
downward polarity contexts only. The input r is
the lexical relation between two words in a sen-
tence; the projected relation ρ(r) is the relation
between the two sentences differing only by that
word. Note that ρ is the identity function in up-
ward polarity contexts.

./ ≡ v w f �� ` #
≡ ≡ v w f �� ` #
v v v # �� �� # #
w w # w ` # ` #
f f ` �� ≡ w v #
�� �� # �� v # v #
` ` ` # w w # #
#

Table 2: The join table as shown in Icard (2012).
Entries in the table are the result of joining a row
with a column.

of these relations according to the projection func-
tion ρ (Table 1) and iteratively joining two pro-
jected relations together to get the final entailment
relation. This join relation, denoted as ./, is given
in Table 2.

To illustrate, we can consider MacCartney’s
example inference from Stimpy is a cat to
Stimpy is not a poodle. An alignment of
the two statements would provide three lexical
mutations: r1 := cat→ dog, r2 := · → not, and
r3 := dog→ poodle. Each of these are then pro-
jected with the projection function ρ, and are
joined using the join relation:

r0 ./ ρ(r1) ./ ρ(r2) ./ ρ(r3),

where the initial relation r0 is axiomatically ≡. In
MacCartney’s work this style of proof is presented
as a table. The last column (si) is the relation be-
tween the premise and the ith step in the proof, and
is constructed inductively as si := si−1 ./ ρ(ri):

Mutation ri ρ(ri) si
r1 cat→dog �� �� ��
r2 · →not f f v
r3 dog→poodle w v v

In our example, we would conclude that Stimpy
is a cat v Stimpy is not a poodle since s3 is v;
therefore the inference is valid.

536

≡

w `

f

v ��

f

v
��

w
`

≡

f`

w≡

f��

v≡

f��

v≡
f`

w≡

ϕ⇒ ψ

ϕ ; ψ

ϕ⇒ ¬ψ

f��

w`

≡v

f`

��v

≡w

any

(a) (b)

Figure 3: (a) Natural logic inference expressed as a finite state automaton. Omitted edges go to the
unknown state (#), with the exception of omitted edges from ≡, which go to the state of the edge type.
Green states (≡, v) denote valid inferences; red states (��, f) denote invalid inferences; blue states (w,
`) denote inferences of unknown validity. (b) The join table collapsed into the three meaningful states
over truth values.

3 Inference as a Finite State Machine

We show that the tabular proof formulation from
Section 2.3 can be viewed as a finite state machine,
and present a novel observation that we can loss-
lessly collapse this finite state machine into only
three intuitive inference states. These observations
allow us to formulate our search problem such that
a search path corresponds to an input to (i.e., path
through) this collapsed state machine.

Taking notation from Section 2.3, we construct
a finite state machine over states s ∈ {v,w, . . . }.
A machine in state si corresponds to relation si
holding between the initial premise and the de-
rived fact so far. States therefore correspond to
states of logical validity. The start state is ≡. Out-
going transitions correspond to inference steps.
Each transition is labeled with a projected relation
ρ(r) ∈ {v,w, . . . }, and spans from a source state
s to a target s′ according to the join table. That is,

the transition s
ρ(r)−−→ s′ exists iff s′ = s ./ ρ(r).

For example, the path in Figure 1 yields the tran-
sitions ≡ f−→f w−→�� ≡−→�� w−→��. Figure 3a shows the
automaton, with trivial edges omitted for clarity.

Our second contribution is collapsing this au-
tomaton into the three meaningful states we use as
output: valid (ϕ ⇒ ψ), invalid (ϕ ⇒ ¬ψ), and
unknown validity (ϕ ; ψ). We can cluster states
in Figure 3a into these three categories. The rela-
tions ≡ and v correspond to valid inferences; f
and �� correspond to invalid inferences; w, ` and
correspond to unknown validity. This cluster-
ing mirrors that used by MacCartney for his tex-

tual entailment experiments.

Collapsing the FSA into the form in Figure 3b
becomes straightforward from observing the reg-
ularities in Figure 3a. Nodes in the valid cluster
transition to invalid nodes always and only on the
relations f and ��. Symmetrically, invalid nodes
transition to valid nodes always and only onf and
`. A similar pattern holds for the other transitions.

Formally, for every relation r and nodes a1

and a2 in the same cluster, if we have transitions
a1

r−→ b1 and a2
r−→ b2 then b1 and b2 are neces-

sarily in the same cluster. As a concrete example,
we can take r = f and the two states in the in-
valid cluster: a1 = f, a2 =��. Although f f−→≡
and �� f−→v, both ≡ and v are in the same cluster
(valid). It is not trivial a priori that the join table
should have this regularity, and it certainly simpli-
fies the logic for inference tasks.

A few observations deserve passing remark.
First, even though the states w and ` appear
meaningful, in fact there is no “escaping” these
states to either a valid or invalid inference. Sec-
ond, the hierarchy over relations presented in Icard
(2012) becomes apparent – in particular,f always
behaves as negation, whereas its two “weaker”
versions (�� and `) only behave as negation in cer-
tain contexts. Lastly, with probabilistic inference,
transitioning to the unknown state can be replaced
with staying in the current state at a (potentially
arbitrarily large) cost to the confidence of valid-
ity. This allows us to make use of only two states:
valid and invalid.

537

4 Inference As Search

Natural Logic allows us to formalize our approach
elegantly as a single search problem. Given a
query, we search over the space of possible facts
for a valid premise in our database. The nodes in
our search problem correspond to candidate facts
(Section 4.1); the edges are mutations of these
facts (Section 4.2); the costs over these edges en-
code the confidence that this edge maintains an
informative inference (Section 4.5). This mirrors
the automaton defined in Section 3, except impor-
tantly we are constructing a reversed derivation,
and are therefore “traversing” the FSA backwards.

This approach is efficient over a large database
of 270 million entries without making use of ex-
plicit queries over the database; nor does the
approach make use of any sort of approximate
matching against the database, beyond lemmatiz-
ing individual lexical items. The motivation in
prior work for approximate matches – to improve
the recall of candidate premises – is captured ele-
gantly by relaxing Natural Logic itself. We show
that allowing invalid transitions with appropriate
costs generalizes JC distance (Jiang and Conrath,
1997) – a common thesaurus-based similarity met-
ric (Section 4.3). Importantly, however, the entire
inference pipeline is done within the framework of
weighted lexical transitions in Natural Logic.

4.1 Nodes

The space of possible nodes in our search is the
set of possible partial derivations. To a first ap-
proximation, this is a pair (w, s) of a surface form
w tagged with word sense and polarity, and an in-
ference state s ∈ {valid, invalid} in our collapsed
FSA (Figure 3b). For example, the search path in
Figure 1 traverses the nodes:

(No carnivores eat animals, valid)
(The carnivores eat animals, invalid)
(The cat eats animals, invalid)
(The cat eats an animal, invalid)
(The cat ate a mouse, invalid)

During search, we assume that the validity
states s are reversible – if we know that the cat ate
a mouse is true, we can infer that no carnivores
eat animals is false. In addition, our search keeps
track of some additional information:

Mutation Index Edges between sentences are
most naturally defined to correspond to mutations
of individual lexical items. We therefore maintain

an index of the next item to mutate at each search
state. Importantly, this enforces that each deriva-
tion orders mutations left-to-right; this is compu-
tationally efficient, at the expense of rare search
errors. A similar observation is noted in MacCart-
ney (2009), where prematurely collapsing to # oc-
casionally misses inferences.

Polarity Mutating operators can change the po-
larity on a span in the fact. Since we do not have
the full parse tree at our disposal at search time,
we track a small amount of metadata to guess the
scope of the mutated operator.

4.2 Transitions
We begin by introducing some terminology. A
transition template is a broad class of transitions;
for instance WordNet hypernymy. A transition
(or transition instance) is a particular instantiation
of a transition template. For example, the tran-
sition from cat to feline. Lastly, an edge in the
search space connects two nodes, which are sep-
arated by a single transition instance. For exam-
ple, an edge exists between some felines have tails
and some cats have tails. Transition [instances]
are stored statically in memory, whereas edges are
constructed on demand.

Transition templates provide a means of defin-
ing transitions and subsequently edges in our
search space using existing lexical resources (e.g.,
WordNet, distributional similarity, etc.). We can
then define a mapping from these templates to
Natural Logic lexical relations. This allows us
to map every edge in our search graph back to
the Natural Logic relation it instantiates. The
full table of transition templates is given in Ta-
ble 3, along with the Natural Logic relation that
instances of the template introduce. We include
most relations in WordNet as transitions, and
parametrize insertions and deletions by the part of
speech of the token being inserted/deleted.

Once we have an edge defining a lexical mu-
tation with an associated Natural Logic relation
r, we can construct the corresponding end node
(w′, s′) such that w′ is the sentence with the lex-
ical mutation applied, and s′ is the validity state
obtained from the FSA in Section 3. For instance,
if our edge begins at (w, s), and there exists a tran-
sition in the FSA from s′ r−→ s, then we define the
end point of the edge to be (w′, s′). To illustrate
concretely, suppose our search state is:

(some felines have tails, valid)

538

Transition Template Relation
WordNet hypernym v
WordNet hyponym w
WordNet antonym† ��
WordNet synonym/pertainym† ≡
Distributional nearest neighbor ≡
Delete word† v
Add word† w
Operator weaken v
Operator strengthen w
Operator negate f
Operator synonym ≡
Change word sense ≡

Table 3: The edges allowed during inference.
Entries with a dagger (†) are parametrized by
their part-of-speech tag, from the restricted list of
{noun,adjective,verb,other}. The first column de-
scribes the type of the transition. The set-theoretic
relation introduced by each relation is given in the
second column.

The transition template for WordNet hyper-
nymy gives us a transition instance from feline
to cat, corresponding to the Natural Logic infer-
ence cat

v−→ feline. Recall, we are constructing
the inference in reverse, starting from the conse-
quent (query). We then notice that the transition
valid

v−→ valid in the FSA ends in our current
inference state (valid), and set our new inference
state to be the start state of the FSA transition – in
this case, we maintain validity.

Note that negation is somewhat subtle, as the
transitions are not symmetric from valid to in-
valid and visa versa, and we do not know our true
inference state with respect to the premise yet.
In practice, the search procedure treats all three
of {f, ��,`} as negation, and re-scores complete
derivations once their inference states are known.

It should be noted that the mapping from transi-
tion templates to relation types is intentionally im-
precise. For instance, clearly nearest neighbors do
not preserve equivalence (≡); more subtly, while
all cats like milk �� all cats hate milk, it is not
the case that some cats like milk �� some cats hate
milk.2 We mitigate this imprecision by introducing
a cost for each transition, and learning the appro-
priate value for this cost (see Section 5). The cost
of an edge from fact (w, v) with surface form w

2The latter example is actually a consequence of the pro-
jection function in Table 1 being overly optimistic.

and validity v to a new fact (w′, v′), using a transi-
tion instance ti of template t and mutating a word
with polarity p, is given by fti · θt,v,p. We define
this as:

fti : A value associated with every transition
instance ti, intuitively corresponding to how
“far” the endpoints of the transition are.
θt,v,p: A learned cost for taking a transition of
template t, if the source of the edge is in a in-
ference state of v and the word being mutated
has polarity p.

The notation for fti is chosen to evoke an anal-
ogy to features. We set fti to be 1 in most cases;
the exceptions are the edges over the WordNet hy-
pernym tree and the nearest neighbors edges. In
the first case, taking the hypernymy relation from
w to w′ to be ↑w→w′ , we set:

f↑w→w′ = log
p(w′)
p(w)

= log p(w′)− log p(w).

The value f↓w→w′ is set analogously. We define
p(w) to be the “probability” of a concept – that
is, the normalized frequency of a word w or any
of its hyponyms in the Google N-Grams corpus
(Brants and Franz, 2006). Intuitively, this ensures
that relatively long paths through fine-grained sec-
tions of WordNet are not unduly penalized. For
instance, the path from cat to animal traverses six
intermediate nodes, naı̈vely yielding a prohibitive
search depth of 6. However, many of these tran-
sitions have low weight: for instance f↑cat→feline is
only 0.37.

For nearest neighbors edges, we take Neu-
ral Network embeddings learned in Huang et al.
(2012) corresponding to each vocabulary entry.
We then define fNNw→w′ to be the arc cosine of
the cosine similarity (i.e., the angle) between word
vectors associated with lexical items w and w′:

fNNw→w′ = arccos
(

w · w′
‖w‖‖w′‖

)
.

For instance, fNNcat→dog = 0.43. In practice, we
explore the 100 nearest neighbors of each word.

We can express fti as a feature vector by rep-
resenting it as a vector with value fti at the index
corresponding to (t, v, p) – the transition template,
the validity of the inference, and the polarity of
the mutated word. Note that the size of this vector
mirrors the number of cost parameters θt,v,p, and

539

is in general smaller than the number of transition
instances.

A search path can then be parametrized by a
sequence of feature vectors f1, f2, . . . , fn, which
in turn can be collapsed into a single vector f =∑

i fi. The cost of a path is defined as θ · f , where
θ is the vector of θt,v,p values. Both f and θ are
constrained to be non-negative, or else the search
problem is misspecified.

4.3 Generalizing Similarities
An elegant property of our definitions of fti is its
ability to generalize JC distance. Let us assume we
have lexical itemsw1 andw2, with a least common
subsumer lcs. The JC distance distjc(w1, w2) is:

distjc(w1, w2) = log
p(lcs)2

p(w1) · p(w2)
. (1)

For simplicity, we simplify θ↑,v,p and θ↓,v,p as
simply θ↑ and θ↓. Without loss of generality, we
also assume that a path in our search is only modi-
fying a single lexical item w1, eventually reaching
a mutated form w2.

We can factorize the cost of a path, θ · f , along
the path fromw1 tow2 through its lowest common
subsumer (lcs), [w1, w

(1)
1 , . . . , lcs, . . . , w(1)

2 , w2],
as follows:

θ · φ = θ↑
([

log p(w(1)
1)− log p(w1)

]
+ . . .

)
+

θ↓
([

log p(lcs)− log p(w(n)
1)
]

+ . . .
)

= θ↑
(

log
p(lcs)
p(w1)

)
+ θ↓

(
log

p(lcs)
p(w2)

)
= log

p(lcs)θ↑+θ↓

p(w1)θ↑ · p(w2)θ↓
.

Note that setting both θ↑ and θ↓ to 1 exactly
yields Formula (1) for JC distance. This, in addi-
tion to the inclusion of nearest neighbors as tran-
sitions, allows the search to capture the intuition
that similar objects have similar properties (e.g.,
as used in Angeli and Manning (2013)).

4.4 Deletions in Inference
Although inserting lexical items in a derivation
(deleting words from the reversed derivation) is
trivial, the other direction is not. For brevity, we
refer to a deletion in the derivation as an insertion,
since from the perspective of search we are insert-
ing lexical items.

Naı̈vely, at every node in our search we must
consider every item in the vocabulary as a possi-
ble insertion. We can limit the number of items we
consider by storing the database as a trie. Since
the search mutates the fact left-to-right (as per
Section 4.1), we can consider children of a trie
node as candidate insertions. To illustrate, given
a search state with fact w0w1 . . . wn and mutation
index i, we would look up completions wi+1 for
w0w1 . . . wi in our trie of known facts.

Although this approach works well when i is
relatively large, there are too many candidate in-
sertions for small i. We special case the most ex-
treme example for this, where i = 0 – that is,
when we are inserting into the beginning of the
fact. In this case, rather than taking all possible
lexical items that start any fact, we take all items
which are followed by the first word of our current
fact. To illustrate, given a search state with fact
w0w1 . . . wn, we would propose candidate inser-
tions w−1 such that w−1w0w

′
1 . . . w

′
k is a known

fact for some w′1 . . . w′k. More concretely, if we
know that fluffy cats have tails, and are at a node
corresponding to cats like boxes, we propose fluffy
as a possible insertion: fluffy cats like boxes.

4.5 Confidence Estimation
The last component in inference is translating a
search path into a probability of truth. We notice
from Section 4.2 that the cost of a path can be rep-
resented as θ · f . We can normalize this value by
negating every element of the cost vector θ and
passing it through a sigmoid:

confidence =
1

1 + e−(−θ·f) .

Importantly, note that the cost vector must be
non-negative for the search to be well-defined, and
therefore the confidence value will be constrained
to be between 0 and 1

2 .
At this point, we have a confidence that the

given path has not violated strict Natural Logic.
However, to translate this value into a probability
we need to incorporate whether the inference path
is confidently valid, or confidently invalid. To il-
lustrate, a fact with a low confidence should trans-
late to a probability of 1

2 , rather than a probability
of 0. We therefore define the probability of valid-
ity as follows: We take v to be 1 if the query is in
the valid state with respect to the premise, and −1
if the query is in the invalid state. For complete-
ness, if no path is given we can set v = 0. The

540

probability of validity becomes:

p(valid) =
v

2
+

1
1 + evθ·f

. (2)

Note that in the case where v = −1, the above
expression reduces to 1

2 − confidence; in the case
where v = 0 it reduces to simply 1

2 . Furthermore,
note that the probability of truth makes use of the
same parameters as the cost in the search.

5 Learning Transition Costs

We describe our procedure for learning the transi-
tion costs θ. Our training data D consists of query
facts q and their associated gold truth values y.
Equation (2) gives us a probability that a partic-
ular inference is valid; we axiomatically consider
a valid inference from a known premise to be justi-
fication for the truth of the query. This is at the ex-
pense of the (often incorrect) assumption that our
database is clean and only contains true facts.

We optimize the likelihood of our gold annota-
tions according to this probability, subject to the
constraint that all elements in our cost vector θ
be non-negative. We run the search algorithm de-
scribed in Section 4 on every query qi ∈ D. This
produces the highest confidence path x1, along
with its inference state vi. We now have annotated
tuples: ((xi, vi), yi) for every element in our train-
ing set. Analogous to logistic regression, the log
likelihood of our training data D, subject to costs
θ, is:

lθ(D) =
∑

0≤i<|D|

[
yi log

(
vi
2

+
1

1 + eviθ·f(xi)

)

+ (1− yi) log
(−vi

2
+

1
1 + e−viθ·f(xi)

)]
,

where yi is 1 if the example is annotated true and
0 otherwise, and f(xi) are the features extracted
for path xi. The objective function is the negative
log likelihood with an L2 regularization term and
a log barrier function to prohibit negative costs:

O(D) = −lθ(D) +
1

2σ2
‖θ‖22 − ε log(θ).

We optimize this objective using conjugate gra-
dient descent. Although the objective is non-
convex, in practice we can find a good initializa-
tion of weights to reduce the risk of arriving at lo-
cal optima.

An elegant property of this formulation is that
the weights we are optimizing correspond directly

§ Category Count Precision Recall Accuracy
N M08 N M08 N M07 M08

1 Quantifiers 44 91 95 100 100 95 84 97
2 Plurals 24 80 90 29 64 38 42 75
3 Anaphora 6 100 100 20 60 33 50 50
4 Ellipses 25 100 100 5 5 28 28 24
5 Adjectives 15 80 71 66 83 73 60 80
6 Comparatives 16 90 88 100 89 87 69 81
7 Temporal 36 75 86 53 71 52 61 58
8 Verbs 8 − 80 0 66 25 63 62
9 Attitudes 9 − 100 0 83 22 55 89
Applicable (1,5,6) 75 89 89 94 94 89 76 90

Table 4: Results on the FraCaS textual entailment
suite. N is this work; M07 refers to MacCartney
and Manning (2007); M08 refers to MacCartney
and Manning (2008). The relevant sections of the
corpus intended to be handled by this system are
sections 1, 5, and 6 (although not 2 and 9, which
are also included in M08).

to the costs used during search. This creates a pos-
itive feedback loop – as better weights are learned,
the search algorithm is more likely to find con-
fident paths, and more data is available to train
from. We therefore run this learning step for mul-
tiple epochs, re-running search after each epoch.
The weights for the first epoch are initialized to
an approximation of valid Natural Logic weights.
Subsequent epochs initialize their weights to the
output of the previous epoch.

6 Experiments

We evaluate our system on two tasks: the Fra-
CaS test suite, used by MacCartney and Manning
(2007; 2008), evaluates the system’s ability to cap-
ture Natural Logic inferences even without the ex-
plicit alignments of these previous systems. In
addition, we evaluate the system’s ability to pre-
dict common-sense facts from a large corpus of
OpenIE extractions.

6.1 FraCaS Entailment Corpus

The FraCaS corpus (Cooper et al., 1996) is a small
corpus of entailment problems, aimed at provid-
ing a comprehensive test of a system’s handling of
various entailment patterns. We process the cor-
pus following MacCartney and Manning (2007).
It should be noted that many of the sections of
the corpus are not directly applicable to Natu-
ral Logic inferences; MacCartney and Manning
(2007) identify three sections which are in the
scope of their system, and consequently our sys-
tem as well.

Results on the dataset are given in Table 4.

541

System P R F1 Accuracy
Lookup 100.0 12.1 21.6 56.0
NaturalLI Only 88.8 40.1 55.2 67.5
NaturalLI + Lookup 90.6 49.1 63.7 72.0

Table 5: Accuracy inferring common-sense facts
on a balanced test set. Lookup queries the lem-
matized lower-case fact directly in the 270M fact
database. NaturalLI Only disallows such lookups,
and infers every query from only distinct premises
in the database. NaturalLI + Lookup takes the
union of the two systems.

Since the corpus is not a blind test set, the re-
sults are presented less as a comparison of perfor-
mance, but rather to validate the expressive power
of our search-based approach against MacCart-
ney’s align-and-classify approach. For the exper-
iments, costs were set to express valid Natural
Logic inference as a hard constraint.

The results show that the system is able to cap-
ture Natural Logic inferences with similar accu-
racy to the state-of-the-art system of MacCartney
and Manning (2008). Note that our system is com-
paratively crippled in this framework along at least
two dimensions: It cannot appeal to the premise
when constructing the search, leading to the intro-
duction of a class of search errors which are en-
tirely absent from prior work. Second, the deriva-
tion process itself does not have access to the full
parse tree of the candidate fact.

Although precision is fairly high even on the
non-applicable sections of FraCaS, recall is sig-
nificantly lower than prior work. This is a direct
consequence of not having alignments to appeal
to. For instance, we can consider two inferences:

Jack saw Jill is playing ?=⇒ Jill is playing
Jill saw Jack is playing ?=⇒ Jill is playing

It is clear from the parse of the sentence that
the first is valid and the second is not; however,
from the perspective of the search algorithm both
make the same two edits: inserting Jack and saw.
In order to err on the side of safety, we disallow
deleting the verb saw.

6.2 Common Sense Reasoning
We validate our system’s ability to infer unseen
common sense facts from a large database of
such facts. Whereas evaluation on FraCaS shows
that our search formulation captures applicable in-
ferences as well as prior work, this evaluation

presents a novel use-case for Natural Logic infer-
ence.

For our database of facts, we run the Ol-
lie OpenIE system (Mausam et al., 2012) over
Wikipedia,3 Simple Wikipedia,4 and a random 5%
of CommonCrawl. Extractions with confidence
below 0.25 or which contained pronouns were
discarded. This yielded a total of 305 million
unique extractions composed entirely of lexical
items which mapped into our vocabulary (186 707
items). Each of these extracted triples (e1, r, e2)
was then flattened into a plain-text fact e1 r e2 and
lemmatized. This yields 270 million unique lem-
matized premises in our database. In general, each
fact in the database could be arbitrary unstructured
text; our use of Ollie extractions is motivated only
by a desire to extract short, concise facts.

For our evaluation, we infer the top 689 most
confident facts from the ConceptNet project (Tan-
don et al., 2011). To avoid redundancy with Word-
Net, we take facts from eight ConceptNet rela-
tions: MemberOf, HasA, UsedFor, CapableOf,
Causes, HasProperty, Desires, and CreatedBy. We
then treat the surface text field of these facts as
our candidate query. This yields queries like the
following:

not all birds can fly
noses are used to smell
nobody wants to die
music is used for pleasure

For negative examples, we take the 689 ReVerb
extractions (Fader et al., 2011) judged as false
by Mechanical Turk workers (Angeli and Man-
ning, 2013). This provides a set of plausible but
nonetheless incorrect examples, and ensures that
our recall is not due to over-zealous search. Search
costs are tuned from an additional set of 540 true
ConceptNet and 540 false ReVerb extractions.

Results are shown in Table 5. We compare
against the baseline of looking up each fact verba-
tim in the fact database. Note that both the query
and the facts in the database are short snippets, al-
ready lemmatized and lower-cased; therefore, it is
not in principle unreasonable to expect a database
of 270 million extractions to contain these facts.
Nonetheless, only 12% of facts were found via a
direct lookup. We show that NaturalLI (allowing
lookups) improves this recall four-fold, at only an
9.4% drop in precision.

3http://wikipedia.org/ (2013-07-03)
4http://simple.wikipedia.org/ (2014-03-25)

542

7 Related Work

A large body of work is devoted to compiling
open-domain knowledge bases. For instance,
OpenIE systems (Yates et al., 2007; Fader et al.,
2011) extract concise facts via surface or depen-
dency patterns. In a similar vein, NELL (Carlson
et al., 2010; Gardner et al., 2013) continuously
learns new high-precision facts from the internet.

Many NLP applications query large knowl-
edge bases. Prominent examples include ques-
tion answering (Voorhees, 2001), semantic pars-
ing (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2007; Kwiatkowski et al., 2013; Berant
and Liang, 2014), and information extraction sys-
tems (Hoffmann et al., 2011; Surdeanu et al.,
2012). A goal of this work is to improve accuracy
on these downstream tasks by providing a proba-
bilistic knowledge base for likely true facts.

A natural alternative to the approach taken in
this paper is to extend knowledge bases by in-
ferring and adding new facts directly. For in-
stance, Snow et al. (2006) present an approach to
enriching the WordNet taxonomy; Tandon et al.
(2011) extend ConceptNet with new facts; Soder-
land et al. (2010) use ReVerb extractions to enrich
a domain-specific ontology. Chen et al. (2013) and
Socher et al. (2013) use Neural Tensor Networks
to predict unseen relation triples in WordNet and
Freebase, following a line of work by Bordes et
al. (2011) and Jenatton et al. (2012). Yao et al.
(2012) and Riedel et al. (2013) present a related
line of work, inferring new relations between Free-
base entities via inference over both Freebase and
OpenIE relations. In contrast, this work runs infer-
ence over arbitrary text, without restricting itself to
a particular set of relations, or even entities.

The goal of tackling common-sense reasoning
is by no means novel in itself. Work by Reiter
and McCarthy (Reiter, 1980; McCarthy, 1980) at-
tempts to reason about the truth of a consequent in
the absence of strict logical entailment. Similarly,
Pearl (1989) presents a framework for assigning
confidences to inferences which can be reason-
ably assumed. Our approach differs from these at-
tempts in part in its use of Natural Logic as the un-
derlying inference engine, and more substantially
in its attempt at creating a broad-coverage sys-
tem. More recently, work by Schubert (2002) and
Van Durme et al. (2009) approach common sense
reasoning with episodic logic; we differ in our fo-
cus on inferring truth from an arbitrary query, and

in making use of longer inferences.
This work is similar in many ways to work

on recognizing textual entailment – e.g., Schoen-
mackers et al. (2010), Berant et al. (2011). Work
by Lewis and Steedman (2013) is particularly rele-
vant, as they likewise evaluate on the FraCaS suite
(Section 1; 89% accuracy with gold trees). They
approach entailment by constructing a CCG parse
of the query, while mapping questions which are
paraphrases of each other to the same logical form
using distributional relation clustering. However,
their system is unlikely to scale to either our large
database of premises, or our breadth of relations.

Fader et al. (2014) propose a system for ques-
tion answering based on a sequence of paraphrase
rewrites followed by a fuzzy query to a structured
knowledge base. This work can be thought of as
an elegant framework for unifying this two-stage
process, while explicitly tracking the “risk” taken
with each paraphrase step. Furthermore, our sys-
tem is able to explore mutations which are only
valid in one direction, rather than the bidirectional
entailment of paraphrases, and does not require a
corpus of such paraphrases for training.

8 Conclusion

We have presented NaturalLI, an inference system
over unstructured text intended to infer common
sense facts. We have shown that we can run infer-
ence over a large set of premises while maintain-
ing Natural Logic semantics, and that we can learn
how to infer unseen common sense facts.

Future work will focus on enriching the class
of inferences we can make with Natural Logic.
For example, extending the approach to handle
meronymy and relation entailments. Furthermore,
we hope to learn richer lexicalized parameters, and
use the syntactic structure of a fact during search.

Acknowledgements

We thank the anonymous reviewers for their
thoughtful comments. We gratefully acknowl-
edge the support of the Defense Advanced Re-
search Projects Agency (DARPA) Deep Explo-
ration and Filtering of Text (DEFT) Program un-
der Air Force Research Laboratory (AFRL) con-
tract no. FA8750-13-2-0040. Any opinions,
findings, and conclusion or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect the view of the DARPA,
AFRL, or the US government.

543

References
Gabor Angeli and Christopher Manning. 2013.

Philosophers are mortal: Inferring the truth of un-
seen facts. In CoNLL.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. Proc. Linguistic Annotation Work-
shop.

J. Berant and P. Liang. 2014. Semantic parsing via
paraphrasing. In Association for Computational
Linguistics (ACL).

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2011. Global learning of typed entailment rules. In
Proceedings of ACL, Portland, OR.

Antoine Bordes, Jason Weston, Ronan Collobert,
Yoshua Bengio, et al. 2011. Learning structured
embeddings of knowledge bases. In AAAI.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-
gram version 1. Linguistic Data Consortium.

Andrew Carlson, Justin Betteridge, Bryan Kisiel,
Burr Settles, Estevam R Hruschka Jr, and Tom M
Mitchell. 2010. Toward an architecture for never-
ending language learning. In AAAI.

Danqi Chen, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2013. Learning new
facts from knowledge bases with neural tensor net-
works and semantic word vectors. arXiv preprint
arXiv:1301.3618.

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris
Fox, Johan Van Genabith, Jan Jaspars, Hans Kamp,
David Milward, Manfred Pinkal, Massimo Poesio,
et al. 1996. Using the framework. Technical report,
The FraCaS Consortium.

Alex J Djalali. 2013. Synthetic logic. Linguistic Issues
in Language Technology, 9:1–18.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In EMNLP.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and
extracted knowledge bases. In KDD.

Matt Gardner, Partha Pratim Talukdar, Bryan Kisiel,
and Tom Mitchell. 2013. Improving learning and
inference in a large knowledge-base using latent
syntactic cues. EMNLP.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In ACL-HLT.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. ACL.

Thomas Icard, III and Lawrence Moss. 2014. Recent
progress on monotonicity. Linguistic Issues in Lan-
guage Technology.

Thomas Icard, III. 2012. Inclusion and exclusion in
natural language. Studia Logica.

Rodolphe Jenatton, Nicolas L Roux, Antoine Bordes,
and Guillaume R Obozinski. 2012. A latent factor
model for highly multi-relational data. In NIPS.

Jay J Jiang and David W Conrath. 1997. Semantic
similarity based on corpus statistics and lexical tax-
onomy. Proceedings of the 10th International Con-
ference on Research on Computational Linguistics.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching.

Mike Lewis and Mark Steedman. 2013. Combined
distributional and logical semantics. TACL, 1:179–
192.

Bill MacCartney and Christopher D Manning. 2007.
Natural logic for textual inference. In ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing.

Bill MacCartney and Christopher D Manning. 2008.
Modeling semantic containment and exclusion in
natural language inference. In Coling.

Bill MacCartney and Christopher D Manning. 2009.
An extended model of natural logic. In Proceedings
of the eighth international conference on computa-
tional semantics.

Bill MacCartney. 2009. Natural Language Inference.
Ph.D. thesis, Stanford.

Mausam, Michael Schmitz, Robert Bart, Stephen
Soderland, and Oren Etzioni. 2012. Open language
learning for information extraction. In EMNLP.

John McCarthy. 1980. Circumscription—a form of
non-monotonic reasoning. Artificial intelligence.

Judea Pearl. 1989. Probabilistic semantics for non-
monotonic reasoning: A survey. Principles of
Knowledge Representation and Reasoning.

Raymond Reiter. 1980. A logic for default reasoning.
Artificial intelligence, 13(1):81–132.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In
NAACL-HLT.

Stefan Schoenmackers, Oren Etzioni, Daniel S Weld,
and Jesse Davis. 2010. Learning first-order horn
clauses from web text. In EMNLP.

544

Lenhart Schubert. 2002. Can we derive general world
knowledge from texts? In HLT.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2006.
Semantic taxonomy induction from heterogenous
evidence. In ACL.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
NIPS.

Stephen Soderland, Brendan Roof, Bo Qin, Shi Xu,
Oren Etzioni, et al. 2010. Adapting open infor-
mation extraction to domain-specific relations. AI
Magazine.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallap-
ati, and Christopher D. Manning. 2012. Multi-
instance multi-label learning for relation extraction.
In EMNLP.

Niket Tandon, Gerard de Melo, and Gerhard Weikum.
2011. Deriving a web-scale common sense fact
database. In AAAI.

Vı́ctor Manuel Sánchez Valencia. 1991. Studies on
natural logic and categorial grammar. Ph.D. thesis,
University of Amsterdam.

Johan van Benthem. 1986. Essays in logical seman-
tics. Springer.

Johan van Benthem. 2008. A brief history of natural
logic. Technical Report PP-2008-05, University of
Amsterdam.

Benjamin Van Durme, Phillip Michalak, and Lenhart K
Schubert. 2009. Deriving generalized knowledge
from corpora using wordnet abstraction. In EACL.

Ellen M Voorhees. 2001. Question answering in
TREC. In Proceedings of the tenth international
conference on Information and knowledge manage-
ment.

Limin Yao, Sebastian Riedel, and Andrew McCal-
lum. 2012. Probabilistic databases of universal
schema. In Proceedings of the Joint Workshop on
Automatic Knowledge Base Construction and Web-
scale Knowledge Extraction.

Alexander Yates, Michael Cafarella, Michele Banko,
Oren Etzioni, Matthew Broadhead, and Stephen
Soderland. 2007. TextRunner: Open information
extraction on the web. In ACL-HLT.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In AAAI/IAAI, Portland, OR.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for parsing
to logical form. In EMNLP-CoNLL.

545

