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Abstract

Nilsson and Nivre (2009) introduced a tree-
based model of persons’ eye movements in
reading. The individual variation between
readers reportedly made application across
readers impossible. While a tree-based model
seems plausible for eye movements, we show
that competitive results can be obtained with
a linear CRF model. Increasing the inductive
bias also makes learning across readers pos-
sible. In fact we observe next-to-no perfor-
mance drop when evaluating models trained
on gaze records of multiple readers on new
readers.

1 Introduction

When we read a text, our gaze does not move
smoothly and continuously along its lines. Rather,
our eyes fixate at a word, then skip a few words,
to jump to a new fixation point. Such rapid eye
movements are calledsaccades. Sometimes we even
jump backwards. Backward saccades are calledre-
gressions. Gaze can be recorded using eye track-
ing devices (Starr and Rayner, 2001). Since eye
movements in reading give us important information
about what readers find complicated in a text, and
what readers find completely predictable, predicting
eye movements on new texts has many practical ap-
plications in text-to-text generation and human com-
puter interaction, for example.

The problem of predicting eye movements in
reading is, for a readerri and a given sequence of
word tokensw1 . . . wn, to predict a set of fixation
pointsF ⊆ {w1, . . . , wn}, i.e., the fixation points of
ri’s gaze. For each tokenwj, the readerri may skip

wj or fixate atwj. Models are evaluated on record-
ings of human reading obtained using eye tracking
devices. The supervised prediction problem that we
consider in this paper, also uses eye tracking data for
learning models of eye movement.

Nilsson and Nivre (2009) first introduced this su-
pervised learning task and used the Dundee corpus
to train and evaluate a tree-based model, essentially
treating the problem of predicting eye movements in
reading as transition-based dependency parsing.

We follow Hara et al. (2012) in modeling only
forward saccades andnot regressions and refix-
ations. While Nilsson and Nivre (2009) try to
model a subset of regressions and refixations, they
do not evaluate this part of their model focusing
only on fixation accuracy and distribution accuracy,
i.e., they evaluate how well they predicta set
of fixation points rather than a sequence of points in
order. This enables us to model eye movements in
reading as a sequential problem of determining the
length of forward saccades, increasing the inductive
bias of our learning algorithm in a motivated way.
Note that because we work with visual input, we
do not tokenize our input in our experiments, i.e.,
punctuation does not count as input tokens.

Example Figure 1 presents an example sentence
and gaze records from the Dundee corpus. The
Dundee corpus contains gaze records of 10 readers
in total. Note that there is little consensus on what
words are skipped. 5/10 readers skip the first word.
Generally, closed class items (prepositions, copulae,
quantifiers) seem to be skipped more open, but we
do see a lot of individual variation. While others for
this reason have refrained from evaluation across
readers (Nilsson and Nivre, 2009; Hara et al., 2012),
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Sentence
Are tourists enticed by these attractions threathening their very existence?

r1 Fixate Fixate Fixate Skip Fixate Fixate Fixate Skip Fixate Fixate
r2 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate
r3 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Skip Fixate
r4 Skip Fixate Fixate Skip Fixate Fixate Fixate Fixate Fixate Fixate
r5 Skip Fixate Fixate Skip Fixate Fixate Fixate Skip Fixate Fixate
r6 Skip Fixate Fixate Skip Fixate Fixate Fixate Fixate Skip Fixate
r7 Skip Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate
r8 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate
r9 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate
r10 Skip Fixate Fixate Fixate Fixate Fixate Fixate Fixate Skip Fixate
# skips 5 0 0 4 0 0 0 2 3 0

Figure 1: The gaze records of the three first readers for the first sentence in the Dundee corpus.

we show that our model predicts gaze betteracross
readers than a previously proposed model (Nilsson
and Nivre, 2009) does training and evaluating on the
same readers. A final observation is that fixations
are very frequent at the word level – in fact, even
skilled readers make 94 fixations per 100 words
(Starr and Rayner, 2001) – which motivates using
F1-score of skips as metric. We follow Nilsson and
Nivre (2009) in reporting word-level accuracy, but
find it particularly interesting that the simple model
proposed here outperforms previous models by a
large margin in F1-score over skips.

Related work Below we use a sequential model
rather than a tree-based model to bias our model
toward predicting forward saccades. Nilsson and
Nivre (2009), in contrast, present a more expressive
tree-based model for modeling eye movements, with
some constraints on the search space. The transition-
based model uses consecutive classification rather
than structured prediction. The features used in their
model are very simple. In particular, they use use
word lengths and frequencies, like us, as well as
distances between tokens (important in a transition-
based model), and, finally, the history of previous
decisions.

Hara et al. (2012) use a linear CRF model for the
same problem, like us, but they consider a slightly
different problem, namely that of predicting eye
movement when reading text on a specific screen.
They therefore use screen position as a feature. In
addition, they use word forms, POS, various mea-
sures of surprise of word length, as well as per-

plexity of bi- and trigrams. The features relating to
screen position were the most predictive ones.

2 Our approach

We use linear CRFs to model eye movements in
reading. We follow Hara et al. (2012) in using small
window sizes (at most five words) for extracting fea-
tures. Rather than using word forms, POS, etc.,
we use only word length and the log probability of
words – both known to correlate well with likeli-
hood of fixation, as well as fixation times (McDon-
ald and Shillcock, 2012; Kliegl et al., 2004; Rein-
gold et al., 2012). The model thus reflects a hy-
pothesis that eye movements are largely unaffected
by semantic content, that eye movements depend on
the physical properties and frequency of words, and
that there is a sequential dependence between fixa-
tion times. Tabel 1 gives the complete set of fea-
tures. We also evaluated using word forms and POS
on held-out data, but this did not lead to improve-
ments. There is evidence for the impact of mor-
phology on eye movements (Liversedge and Blythe,
2007; Bertram, 2011), but we did not incorporate
this into our model. Finally, we did not incorporate
predictability of tokens, although this is also known
to correlate with fixation times (Kliegl et al., 2004).
Hara et al. (2012) use perplexity features to capture
this.

We use a publicly available implementation of lin-
ear CRFs1 with default parameters (L2-regularized,
C = 1).

1https://code.google.com/p/crfpp/
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3 Predicting a reader’s eye movements

In this experiment we consider exactly the same set-
up as Nilsson and Nivre (2009) considered. In the
Dundee corpus, we have gaze data for 10 persons.
The corpus consists of 2,379 sentences, 56,212 to-
kens and 9,776 types. The gaza data was recorded
using a Dr. Bouis Oculometer Eyetracker, sampling
the position of the right eye every millisecond. We
use texts 1–16 (1911 sentences) for training, 17–
18 (237 sentences) for development and 19–20 (231
sentences) for testing.

Results are presented in Table 2 and are slightly
better than Nilsson and Nivre (2009), mainly be-
cause of better predictions of skips. Our error re-
duction over their model in terms of F1 over skips
is 9.4%. The baseline model used in Nilsson and
Nivre (2009), the E-Z Reader (Reichle et al., 1998),
obtained a fixation accuracy of 57.7%.

4 Predicting across readers

Hara et al. (2012) consider the problem of learning
from the concatenation of the gaze data from the 10
persons in the Dundee corpus, but they also evalu-
ate on data from these persons. In our second ex-
periment, we consider the more difficult problem of
learning from one person’s gaze data, but evaluat-
ing on gaze data from another test person. This is a
more realistic scenario if we want to use our model
to predict eye movements in reading on anyone but
our test persons. This has been argued to be impossi-
ble in previous work (Nilsson and Nivre, 2009; Hara
et al., 2012).

Our results are presented in Table 3. Interestingly,
results are very robust across reader pairs. In fact,
only in 4/10 cases do we get the best results training
on gaze data from the reader we evaluate on. Note
also that the readers seem to form two groups – (a, b,
h, i, j) and (c, d, e, f, g) – that provide good training
material for each other. Training on concatenated
data from all members in each group may be benefi-
cial.

5 Learning from multiple readers

In our final experiment, we learn from the gaze
records of nine readers and evaluate on the tenth.
This is a realistic evaluation of our ability to predict

fixations for new, previously unobserved readers. In-
terestingly we can predict the fixations of new read-
ers better than Nilsson and Nivre (2009) predict fix-
ations when the training and test data are produced
by the same reader. The results are presented in Ta-
ble 4. In fact our skip F1 score is actually better than
in our first experiments. As already mentioned, this
result can probably be improved by using a subset of
readers or by weighting training examples, e.g., by
importance weighting (Shimodaira, 2000). For now,
this is left for future work.

6 Discussion

Our contributions in this paper are: (i) a model for
predicting a reader’s eye movements that is compet-
itive to state-of-the-art, but simpler, with a smaller
search space than Nilsson and Nivre (2009) and a
smaller feature model than Hara et al. (2012), (ii)
showing that the simpler model is robust enough to
model eye movements across readers, and finally,
(iii) showing that even better models can be obtained
training on records from multiple readers.

It is interesting that a model without lexical infor-
mation is more robust across readers. This suggests
that deep processing has little impact on eye move-
ments. See Starr and Rayner (2001) for discussion.
The features used in this study are well-motivated
and account as well for the phenomena as previously
proposed models. It would be interesting to incor-
porate morphological features and perplexity-based
features, but we leave this for future work.

7 Conclusion

This study is, to the best of our knowledge, the first
to consider the problem of learning to predict eye
movements in reading across readers. We present
a very simple model of eye movements in read-
ing that performs a little better than Nilsson and
Nivre (2009) in terms of fixation accuracy, evaluated
on one reader at a time, but predicts skips signifi-
cantly better. The true merit of the approach, how-
ever, is its ability to predict eye movements across
readers. In fact, it predicts the eye movements of
new readers better than Nilsson and Nivre (2009) do
when the training and test data are produced by the
same reader.
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Feature Description
WordLength {L

−2, L
−1, L0, L1, L2} The number of letters for a token

WordProbability {P
−1, P0, P1} The log probability of a word (rounded) as

given in the Dundee data

Table 1: Feature template

Fixation Accuracy Fixations (F1) Skips (F1)
Reader N&N Model N&N Model N&N Model

a 70.0 70.2 71.8 70.0 67.4 70.3
b 66.5 66.2 74.1 71.2 75.0 58.8
c 70.9 70.4 77.3 74.7 59.4 64.4
d 78.9 76.5 84.7 81.3 65.9 68.5
e 71.8 70.5 73.5 69.9 69.9 71.0
f 67.9 66.4 76.8 72.8 47.7 55.8
g 56.6 65.1 61.7 61.8 49.9 67.8
h 66.9 67.7 72.7 70.3 58.2 64.6
i 69.1 71.5 74.1 73.9 60.7 68.8
j 76.3 74.6 82.0 77.3 65.2 71.1

average 69.5 69.9 75.2 72.3 62.6 66.1

Table 2: Comparison between NN09 and our model.

train/test a b c d e f g h i j
a - 67.2 67.6 71.5 69.7 63.4 64.9 66.9 70.7 72.6
b 67.7 - 70.1 76.9 68.0 65.7 62.9 67.1 69.1 72.8
c 69.3 67.3 - 76.5 69.7 65.1 64.3 67.4 71.0 74.2
d 69.0 67.2 70.0 - 69.1 65.1 63.9 67.3 70.1 73.9
e 70.1 66.6 67.5 71.2 - 63.8 64.7 66.9 70.9 72.6
f 66.5 65.9 69.1 76.7 66.5 - 62.4 66.8 68.6 71.4
g 69.7 67.1 67.2 69.5 69.6 61.6 - 67.8 70.3 70.3
h 70.5 67.5 69.3 74.7 70.5 64.2 64.5 - 70.8 74.2
i 70.9 68.1 69.6 74.4 70.7 64.0 64.6 68.0 - 74.2
j 70.7 68.0 69.5 74.7 70.4 64.1 64.7 68.2 71.5 -

Table 3: Results learning across readers. Bold-faced numbers better than when training on same reader

Fixation Accuracy Fixations (F1) Skips (F1)
Reader N&N Model N&N Model N&N Model

a 70.0 70.3 71.8 72.1 67.4 68.2
b 66.5 67.9 74.1 70.6 75.0 64.6
c 70.9 69.8 77.3 73.1 59.4 65.6
d 78.9 75.5 84.7 79.5 65.9 69.5
e 71.8 70.6 73.5 72.0 69.9 69.0
f 67.9 64.5 76.8 68.6 47.7 59.2
g 56.6 64.7 61.7 65.0 49.9 64.5
h 66.9 68.1 72.7 70.9 58.2 64.8
i 69.1 71.3 74.6 74.1 60.7 67.9
j 76.3 74.2 82.0 77.2 65.2 70.4

average 69.5 69.7 75.2 72.3 62.6 66.4

Table 4: Comparison of NN09 and our cross-reader model trained on nine readers
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