
Proceedings of the 27th International Conference on Computational Linguistics, pages 2277–2287
Santa Fe, New Mexico, USA, August 20-26, 2018.

2277

Who is Killed by Police: Introducing Supervised Attention for
Hierarchical LSTMs

Minh Nguyen† and Thien Huu Nguyen#‡

† Hanoi University of Science and Technology, Hanoi, Vietnam
# Montreal Institute for Learning Algorithms, University of Montreal, Canada

‡ Department of Computer and Information Science, University of Oregon, USA
minh.nv142950@sis.hust.edu.vn,thien@cs.uoregon.edu

Abstract

Finding names of people killed by police has become increasingly important as police shootings
get more and more public attention (police killing detection). Unfortunately, there has been
not much work in the literature addressing this problem. The early work in this field (Keith et
al., 2017) proposed a distant supervision framework based on Expectation Maximization (EM)
to deal with the multiple appearances of the names in documents. However, such EM-based
framework cannot take full advantages of deep learning models, necessitating the use of hand-
designed features to improve the detection performance. In this work, we present a novel deep
learning method to solve the problem of police killing recognition. The proposed method relies
on hierarchical LSTMs to model the multiple sentences that contain the person names of interests,
and introduce supervised attention mechanisms based on semantical word lists and dependency
trees to upweight the important contextual words. Our experiments demonstrate the benefits of
the proposed model and yield the state-of-the-art performance for police killing detection.

1 Introduction

We study the problem of police killing detection from text. The key challenge is to be able to take a per-
son name in the pool of documents (corpus) and automatically decide whether the corresponding person
is killed by police or not based on the textual evidences in the corpus. For instance, the following sen-
tence describes the police-caused death of “Micah Jester”: “Old Micah Jester was fatally shot by APD
officers.”. This problem has drawn much public attention recently; however, it has not been investigated
adequately by the natural language processing (NLP) community. To our knowledge, the only NLP work
for police killing recognition so far is by (Keith et al., 2017) who rely on machine learning models to
perform the automatic detection.

It is challenging to apply the machine learning models in this case as identifying police killings from
text is a relatively new problem in machine learning research with no available training datasets to super-
vise the models. The only sources of supervision on which we can rely for this problem are the current
databases that record the names of the police-killed victims in the past. Among these databases, the
Fatal Encounters1 (FE) database has emerged as the most comprehensive database with a relatively large
number of recorded victims (over 23,000 victims). In order to take advantage of this database, (Keith
et al., 2017) employs distant supervision (Craven et al., 1999; Mintz et al., 2009) that extracts person
names from a corpus and aligns them with the victim names in the database. The matched names are
considered as corresponding to people killed by police (positive entities) while the non-matched names
constitute the negative examples in a binary classification problem for names in police killing detection.
As the name itself does not carry much information, each extracted name is associated with the set of
sentences in which the name appears in the corpus. This set of sentences is called the sentence container
for the corresponding name (person). The sentence containers along with the distant supervision labels

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1This database has been produced by D. Brian Burghart and colleagues by manually reading millions of news headlines and
ledes.
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(i.e, positive or negative) of the corresponding names would serve as the training data for the binary name
classification problem.

An important characteristic of the sentence containers is that they might contain multiple sentences
corresponding to the multiple appearances of the names in the corpus. Although all of these sentences
mention the names of interests, some of them might not express police killing incidents. Consequently,
it is crucial for the systems to be able to model the multiple sentences in the containers appropriately
so that the correct sentences for police killing events can be captured to perform classification for the
sentence containers of names. (Keith et al., 2017) solves this problem by introducing a latent variable for
each sentence in the container of a name to predict whether the sentence describes the person as having
been killed by police or not. Such latent variables are then modeled by sentence level classifiers (i.e,
logistic regressions and convolutional neural networks) and aggregated for the final prediction for the
name. (Keith et al., 2017) learns the parameters for the sentence classifiers via an Expectation Maxi-
mization (EM) based framework that alternates between estimating the latent variables and updating the
model parameters. In (Keith et al., 2017), the authors demonstrate that the EM-based framework works
well when the sentence level classifiers involve logistic regression with hand-crafted features. However,
when deep learning models (i.e, convolutional neural networks) are employed for the sentence level clas-
sifiers, the performance of the EM-based framework drops significantly. We attribute this problem to the
limitation of the EM-based framework to train the non-convex classifiers of deep learning, causing the
inability to exploit the automatically learnt representations from deep learning and necessitating the use
of complicated and laborious feature engineering.

In order to overcome this problem, we propose a novel deep learning framework for the problem
of police killing recognition via hierarchical long short-term memory networks (LSTM) (Hochreiter
and Schmidhuber, 1997; Yang et al., 2016). Our model does not make individual predictions on each
sentence with the latent variables but involves a direct prediction to the name of interest based on its
sentence container. Two layers of LSTMs are applied to model the sentence containers. The first LSTM
layer learns the representations for the sentences in the containers by recurring over their words (the word
level). The second LSTM layer, on the other hand, consumes the sentence representations (the sentence
level) to produce container representations for police killing predictions. Attention mechanisms are then
introduced into both LSTM layers to appropriately quantify the contribution of each word and sentence
in the containers for the final predictions. This approach facilitates the modeling of multiple sentences
in the containers, leading to the effective training of the deep learning models in a single framework and
alleviating the reliance on manually designed features for this problem.

In the previous hierarchical LSTM models, attention scores are computed and normalized using the
hidden representations of words and sentences generated by LSTMs (Yang et al., 2016). Unfortunately,
for our problem of police killing recognition, this traditional attention computation tends to assign very
high weight to the words in the names of interests and relatively low weights to the other important
context words in the sentences. Such failure to adequately capture those context words would poten-
tially lead to incorrect predictions for the containers. This problem is stem from the use of the position
embeddings to specify the names of interests that might put too much emphasis on the current names.
In order to solve this problem, we propose to integrate the supervised attention mechanisms into the
hierarchical LSTM model that help to bias the attention scores toward the heuristically important words
in the sentences (supervised attention) (Mi et al., 2016). In particular, we rely on linguistic intuitions
to heuristically select the informative context words for the problem of police killing detection. These
words are then used to guide the attention computation via penalizing the model parameters that generate
low attention scores for such guidance words. We investigate several heuristics to choose the guidance
words based on semantical word lists and dependency trees. The experiments show that the supervised
attention mechanism with those heuristics helps to improve the performance of the hierarchical LSTM
model and yield the state-of-the-art performance for the problem of detecting police killings. To the best
of our knowledge, this is the first work that introduces supervised attention into the hierarchical LSTM
models and employs semantical word lists and dependency trees to select guidance words.
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2 Related Work

Although police killing recognition is a new task, it has some elements with the information extraction
(IE) research of NLP that can be used to solve the task with some modifications. The most related IE
task for police killing detection is event extraction that aims to detect events (i.e, marriage, attack, die
etc.) in text (Li and Ji, 2014; Nguyen and Grishman, 2015b; Chen et al., 2015; Nguyen and Grishman,
2016b). Killings is one of the event types that the current event extraction systems can identify (Das et
al., 2014; Li and Ji, 2014; Nguyen et al., 2016c), allowing the detection of police killing incidents when
appropriate adaptations are introduced. Unfortunately, such adaptations result in poor performance for
police killing recognition as shown in (Keith et al., 2017).

Distant supervision is another element of IE that is employed in this research to generate training data
for police killing detection. In particular, distant supervision has been used to produce training data for
relation extraction (Craven et al., 1999; Bunescu and Mooney, 2007; Mintz et al., 2009; Riedel et al.,
2010; Surdeanu et al., 2012) and event extraction (Reschke et al., 2014).

Hierarchical deep learning techniques that model both the word and sentence levels have been em-
ployed for several NLP tasks, including relation extraction (Lin et al., 2016), question answering (Choi
et al., 2017) and extractive summarization (Cheng and Lapata, 2016). Such work often uses convolu-
tional neural networks to operate at the work level. This is different from our proposed model for police
killing detection that employs LSTMs and supervised attentions to acquire sentence representations for
police killing recognition. Perhaps the most related model to ours is (Yang et al., 2016) that utilizes
hierarchical LSTMs for text categorization. Our model also relies on hierarchical LSTMs, but it is de-
signed for police killing detection, characterizing position embeddings and supervised attentions to inject
external knowledge (i.e, the heuristics for guidance words).

Finally, supervised attention mechanisms have been used recently for several natural language tasks.
For machine translation, the attention guidance is based on word alignment (Mi et al., 2016; Liu et al.,
2016) while entity mentions are chosen as the guidance words for event detection (Liu et al., 2017a).
Our work in this paper is different as we consider supervised attention for police killing recognition
using semantical word lists and dependency parsing trees (Schuster and Manning, 2016) to guide the
attention components. Our model features hierarchical LSTMs to tackle distant supervision data that
does not emerge in such prior work.

3 Model

We formalize the problem of finding people killed by police as follows.
LetD be a set of documents (corpus), E = {ei}Ni=1 be the set of entities (people) whose names appear

in D (N is the number of the entities in E), and C = {ci}Ni=1 be the set of sentence containers for the
entities in E (i.e, ci is the set of sentences that contain the name of the entity ei in D).

Each entity ei in E has a label yei ∈ {0, 1}, denoting whether ei has been killed by police or not
based on the distant supervision procedure (yei is set to 1 if ei is deemed to be killed by police via distant
supervision and 0 otherwise). For convenience, let Y = {yei}

N
i=1. Our goal is to use E, C and Y as

training data to generate a model that can predict whether a new entity e is a victim of a police killing
incident or not, given its sentence container c in some corpus. In machine learning, this essentially
amounts to building models to estimate the probability P (ye = 1|c).

We will first introduce the hierarchical LSTM model for this problem, and then describe the supervised
attention mechanisms with semantical word lists and dependency trees.

3.1 Hierarchical LSTMs
Each entity ei ∈ E along with its container ci ∈ C constitute an example for the model. Let
ci = (si,1, si,2, . . . , si,L) be the list of sentences in ci where L is the number of sentences and
si,j is the j-th sentence in the container ci. Each sentence si,j is in turn a word/token sequence:
si,j = (ti,j,1, ti,j,2, . . . , ti,j,K) with K as the number of the tokens and ti,j,k as the k-th token in the
sentence si,j . For each sentence si,j , let ki,j be the index of the name of the entity ei (i.e, the token
ti,j,ki,j ). Note that the order of the sentences si,j in ci is obtained by sorting the sentences according to
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Figure 1: Hierarchical LSTMs with Supervised Attention for Police Killing Detection.

the download time of their corresponding documents in D2. This helps to partially retain information
about the order of being mentioned of the entities in the sentence containers in the corpus.

The hierarchical LSTM model in this work processes one entity ei and its corresponding sentence
container ci at a time. For each entity ei, the operation of the model can be divided into two main
components: Embedding and Attention. Figure 1 shows an overview of the proposed model.

Embedding
In this component, each token ti,j,k of a sentence si,j in ci is transformed into an embedding vector
xi,j,k = [qi,j,k, pi,j,k], which is the concatenation of the word embedding vector qi,j,k and the position
embedding vector pi,j,k (Nguyen and Grishman, 2015a). These vectors are obtained as follows:

Word embedding vector: qi,j,k is obtained by taking the column vector corresponding to ti,j,k in the
pre-trained word embedding matrix We (i.e, word2vec in our case): qi,j,k =We[ti,j,k].

Position embedding vector: pi,j,k captures the relative distance k − ki,j from the token ti,j,k to the
entity name token ti,j,ki,j in the sentence: pi,j,k =Wd[k−ki,j ], the (k−ki,j)− th column in the position
embedding matrix Wd (Wd is randomly initialized in this work) (Nguyen and Grishman, 2018).

Once each token ti,j,k has been transformed into a vector, the corresponding input sentence si,j would
become a sequence of vector (xi,j,1, xi,j,2, . . . , xi,j,K). This allows us to view the container ci as an
ordered list of vector sequences for its sentences (si,1, si,2, . . . , si,L).

Attention
The attention component processes the list of vector sequences produced in the previous step for ci at
two levels (i.e, the word level and the sentence level) to produce a single representation vector for ci.

The word level component consumes each vector sequence of ci once at a time to compute the repre-
sentation vector for the corresponding sentence. For a vector sequence (xi,j,1, xi,j,2, . . . , xi,j,K) of si,j ,
the model architecture consists of two LSTMs (Hochreiter and Schmidhuber, 1997) (i.e, the forward
LSTM and the backward LSTM) that operate over two different directions of the vector sequence (bidi-
rectional LSTMs) (Cho et al., 2014; Nguyen et al., 2016a). The resulting hidden vector sequences of the
forward and backward LSTMs are concatenated at each position, generating the hidden vector sequence
(hi,j,1, hi,j,2, . . . , hi,j,K) for the input vector sequence of si,j .

In order to combine the hidden vectors hi,j,k, the attention mechanism computes the weighted sum of
the hidden vectors to obtain a single representation vector for the input sentence si,j (Bahdanau et al.,
2015). Specifically, each hidden vector hi,j,k is given a weight αi,j,k to estimate its contribution for the
final representation of the container ci for the problem of police killing recognition. In this work, the
weight αi,j,k is computed by:

αi,j,k =
exp(a>i,j,kwa)∑
k′ exp(a

>
i,j,k′wa)

(1)

where:
ai,j,k = tanh(Watthi,j,k + batt) (2)

2Such documents are retrieved via running pre-defined search queries once per hour throughout 2016 (Keith et al., 2017).
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In such equations, Watt, batt and wa are the attention parameters at the word level that are learnt in the
training process. Eventually, the representation vector ui,j of the sentence si,j is:

ui,j =
∑
k

αi,j,khi,j,k (3)

Once the word level component has been completed, every sentence si,j in the container ci would
have a corresponding representation vector ui,j . Such sentence representation vectors ui,j alto-
gether form a new sequence of vector (ui,1, ui,2, . . . , ui,L) to represent the container ci. At the
sentence level, (ui,1, ui,2, . . . , ui,L) is processed in the same way we process the vector sequence
(xi,j,1, xi,j,2, . . . , xi,j,K) at the word level to produce the sentence representation vector ui,j . In par-
ticular, (ui,1, ui,2, . . . , ui,L) would be first passed to a bidirectional LSTM model to obtain the hidden
vector sequence (hi,1, hi,2, . . . , hi,L). This is in turn fed into the attention component to obtain the at-
tention weights (βi,1, βi,2, . . . , βi,L) (i.e, similar to Equations 1 and 2). Finally, we compute the vector
representation vi for the sentence container ci via the weighted sum: vi =

∑
j βi,jhi,j . As the sentences

in ci are sorted by their appearance time, the attentional bidirectional LSTMs at the sentence level at-
tempt to estimate the contribution of each sentence si,j in ci for the representation vector vi with respect
to its past and future context information (i.e, the sentences before and after si,j in ci).

The container representation vector vi for ci allows us to compute the probability Pi of ei being killed
by police: Pi = P (yei = 1 | ci) = σ(Woutvi + bout) where Wout and bout are the model parameters,
and σ is the logistic function. In order to train the hierarchical LSTM model in this section, we use the
cross-entropy between the predicted labels and the golden labels as the loss function:

Lc = −
∑
ei

yei log(Pi) + (1− yei) log(1− Pi) (4)

3.2 Supervised Attention
The position embeddings pi,j,k in the initial representation vectors of the tokens is crucial to the hierar-
chical LSTM model as it helps to indicate the positions of the entity names of interests in the sentences.
Technically, the position embeddings would tell the model to pay more attention to the words in the
entity names by assigning higher attention weights to the representation vectors of the entity name to-
kens hi,j,ki,j at the word level. Unfortunately, in the experiments, we find that this procedure might lead
to extremely high weights for the tokens of the entity names, leaving essentially negligible weights for
the other important context words in the sentences. The consequence is the incorrect predictions of the
model for the entities in such situations. In order to solve this problem, in this work, we seek to use lin-
guistic intuitions to obtain the rough estimations of the attention weights for the words in the sentences
(intuitive attention weights), quantifying our belief about the importance of the words in the sentences
for the problem of police killing recognition. The intuitive attention weights would then be used to guide
the attention weights computed by the hierarchical LSTM model at the word level (i.e, Equation 1),
penalizing the model parameters with significant difference between the two types of attention weights.

Formally, for an entity ei with the sentence container ci, suppose that we can obtain the intuitive
attention weights (gi,j,1, gi,j,2, . . . , gi,j,K) for the tokens of every sentence si,j = (ti,j,1, ti,j,2, . . . , ti,j,K)
in ci (

∑
k gi,j,k = 1∀i, j). The difference between the intuitive attention weights and the model attention

weights in Equation 1 for ei can be computed via the sum of the squared element difference: Li =∑
j,k(gi,j,k − αi,j,k)

2.
Our goal is to minimize this difference so that the model attention weights can encode our intuition

about the importance of the words in the sentences. This essentially translates into an integrated loss
function to train the hierarchical LSTM model, attempting to minimize the loss function in Equation 4
and the attention weight difference simultaneously: L = Lc + λ

∑
i Li where λ is a penalty coefficient

to control the effect of the attention difference.

Generating Intuitive Attention Weights
The previous section has described the supervised attention mechanism for the hierarchical LSTM model.
It remains to investigate the methods to obtain the intuitive attention weights. An important characteris-
tics of the intuitive attention weights is that they should assign high weights to the linguistically important
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words for police killing recognition. In this work, we first start by selecting the important words in the
sentences based on our intuition. Afterward, non-negative scores are given to the selected words and
their neighbors in the sentences, leaving zero scores for other words. These scores are then normalized
to ensure a sum of 1. In order to generate the non-negative scores for the selected words and their neigh-
bors, we employ a Gaussian distribution N (µ, σ2)(Mi et al., 2016; Liu et al., 2017b) with the mean µ
and the standard deviation σ so that the closer neighboring words would receive higher scores.

Selecting Important Words
This section presents two methods to select important words in the sentences of the containers for the
problem of police killing detection. The first method relies on the semantical aspect while the second
method concerns the syntactical heuristics. We will compare these methods in the experiments.

Semantical Aspect: The two concepts that are most related to our problem of police killing recog-
nition would naturally be “police” and “killing”. It is therefore intuitive to consider these two words
(“police” and “killing”) and their similar ones as the important words for our problem. Consequently,
for every sentence in the containers, we search for such important words and use the matched word as
the selected words. Following (Keith et al., 2017), we generate the lists of similar words for “police”
and “killing” by looking up the nearest words in cosine distance via the word vectors pre-trained with
word2vec and its corpus. Note that this method also includes the names of the entities ei in the list of
selected important words due to their roles in specifying the entities of interests in the sentences.

Syntactical Aspect: The semantical aspect with the lists of similar words for police killing detection
might be helpful for the sentences that express a police killing instance (positive sentences) and contain
the similar words. However, for the negative sentences that do not mention police killing incidents, the
appearance of the similar words in the lists for “killing” and “police” might be harmful to the supervised
attention mechanisms as the emphasis on such words might lead to an incorrect impression to consider
the sentence as actually positive. For instance, consider the following negative sentence with the words
in the similar word lists written in bold3:

Marion Police Department have arrested TARGET , 20 , of Marion , in connection with the fatal hit.

In this sentence, the extreme emphasis on “Police”, “TARGET” and “fatal” might lead to the incorrect
prediction that this sentence is expressing a fatal event caused by police. In order to overcome this issue,
we observe that police killing recognition can be seen as a relation identification problem (Bunescu
and Mooney, 2005), attempting to decide whether the entities of interests (i.e, the “TARGET”) has a
semantical relation of “killed by” with the similar words of “police” (if any) in the sentence or not. In
such relation identification problem, it has been shown that the shortest dependency path connecting the
two word of interests (i.e, the words “TARGET” and “police” in our case) in the dependency trees involve
the most important context words for the problem (Bunescu and Mooney, 2005). Consequently, in this
work, we propose to select the words along the shortest dependency paths between the entity name of
interests (i.e, “TARGET”) and the similar words of “police” in the sentence as the guidance words for
the supervised attention mechanism for police killing recognition (dependency tress are obtained via
Stanford CoreNLP (Schuster and Manning, 2016) in this work).

In the example sentence above, the shortest dependency path between “TARGET” and “police” is:
Police→ Department→ arrested→ TARGET. It is clear in this situation that the words along the path
do not suggest a police-caused killing (i.e, not a “killed by” relation between “TARGET” and “Police”).
Consequently, the attention of the models to such words would lead to a correct prediction in this case.

On the other hand, for the positive sentences, it might be the case that the words along the dependency
paths help to include some words that are crucial to police killing prediction, but do not appear in the
semantical word lists.

Baselines
For experimental purposes, we call the hierarchical LSTM model without supervised attention as “H-
LSTM”. The hierarchical LSTM model with the supervised attention mechanism would then be called

3Throughout this work, the names of the entities of interests would be replaced by “TARGET” while the other entity men-
tions in the sentences would be substituted by “PERSON” for generalization.
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“H-LSTM+SemAtt” and “H-LSTM+SynAtt” depending on whether the semantical aspect (i.e, the lists
of similar words) or the syntactical aspect (i.e, the dependency paths) is used to obtain the important
words. In order to further demonstrate the benefits of supervised attention for police killing detection,
we consider two more baseline models when the model attentions at the word level are excluded from “H-
LSTM+SemAtt” and “H-LSTM+SynAtt”, resulting in the models “Mean+SemAtt” and “Mean+SynAtt”.
In particular, in such models, the sentence representation vector ui,j for the sentence si,j would not
be obtained via the attention-based weighted sum in Equation 3. In contrast, ui,j would be computed
using the mean vector of the vector set {hi,j,k1 , hi,j,k2 , . . . , hi,j,kI} from LSTMs where k1, k2, . . . , kI are
the indexes of the selected important words using the semantical or syntactical aspect for the sentence
si,j = (ti,j,1, ti,j,2, . . . , ti,j,K): ui,j = 1/I

∑I
m=1 hi,j,km .

3.3 Training
We train all the models in this work using stochastic gradient descent with shuffled mini-batches, the
Adam update rule, back-propagation and dropout. Non-embedding weights are also imposed to gradient
clipping to rescale their l2-norms if they exceed a predefined threshold.

4 Experiments

4.1 Datasets and Parameters
We evaluate the models in this paper using the police killing dataset released by (Keith et al., 2017).

As there is no development data for this dataset, we divide the original training data into two parts, for
which one part is used for training data while the other part functions as the development data. We use
these newly-generated training data and development data to select the parameters for the models. For
the comparison with the state-of-the-art models in (Keith et al., 2017), we utilize the original training
data and test data with the chosen parameters from the development experiments to ensure a compatible
comparison. We use the same procedure to split the original training data for development as those
employed by (Keith et al., 2017) to generate the original dataset. In particular, we first sort all the
positive entities in the original training data using the descending order of their death times. Afterward,
we identify the death time of the entity at the bottom of the top 20% in the sorted list. The date we found
is used as the split point. All the entities with the download time or death time after this date are utilized
as the development data.

The parameters we found in the development experiments are as follow. The dimensionality parame-
ters include: 8 dimensions for position embedding vectors, 300 dimensions for word embedding vectors,
256 hidden units for the LSTMs and 64 dimensions for the attention vectors. For supervised attention,
the penalty coefficient λ is set to 1.0 while the neighbor window T for generating intuitive attention
weights is 2. The threshold for gradient clipping is set to 5.0 while the dropout rate is 0.5. The mean and
standard deviation of the Gaussian distribution have the values of µ = 0 and σ = 1.0, respectively.

4.2 Evaluating the Models
We evaluate the models (i.e, H-LSTM, H-LSTM+SemAtt, H-LSTM+SynAtt, Mean+SemAtt and
Mean+SynAtt) using the generated development data. Table 1 reports the performance.

Models Precision Recall F1
H-LSTM+SynAtt 0.497 0.381 0.431
H-LSTM+SemAtt 0.366 0.504 0.424
H-LSTM 0.460 0.377 0.414
Mean+SynAtt 0.428 0.372 0.398
Mean+SemAtt 0.346 0.399 0.371

Table 1: Performance of the models on the development data. The comparisons in this table are significant with p < 0.05.

There are three major observations from the table. First, the performance of the baseline models
Mean+SynAtt and Mean+SemAtt are much worse than the other models, demonstrating that the atten-
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tions in Equation 1 are crucial to problem of police killing detection. Second, both H-LSTM+SemAtt
and H-LSTM+SynAtt are better than H-LSTM (improvements of 1% and 1.7% on the absolute F1 scores
for H-LSTM+SemAtt and H-LSTM+SynAtt respectively). This shows the benefits of the proposed super-
vised attention mechanisms with semantical and syntactical guidance in this work. Third, we see that
H-LSTM+SynAtt outperforms H-LSTM+SemAtt, suggesting that the syntactical guidance with depen-
dency trees are more effective than the semantical guidance with the word lists for supervised attention
in our task. We also see that the recall of H-LSTM+SemAtt is much better than that of H-LSTM+SynAtt.
We attribute this phenomenon to the fact that the dataset in (Keith et al., 2017) involves many sentences
with the words in the similar words lists for “police” and “killing”. This biases the supervised attention
in H-LSTM+SemAtt to associate the appearance of such words with the positive entities and leads to
the high recall for this method. Due to the poor performance of Mean+SynAtt and Mean+SemAtt in
this development experiment, we only consider the other models (i.e, H-LSTM, H-LSTM+SemAtt and
H-LSTM+SynAtt) in the following experiments.

4.3 Comparing to the State of the Art

This section compares our proposed models with the state-of-the-art models for police killing recogni-
tion. Such state-of-the-art models include soft-RL and soft-CNN that both apply the Expectation Maxi-
mization algorithm, but employ logistic regression and convolutional neural networks (respectively) for
sentence classifiers (Keith et al., 2017). Table 2 shows the performance the models. Note that the perfor-
mance in this section is obtained using the original training data and test data in (Keith et al., 2017).

As we can see from the table, the conclusions we have for the models H-LSTM, H-LSTM+SemAtt and
H-LSTM+SynAtt in the previous section still hold in this case on the test data, thus further confirming
those observations for police killing recognition. We also see that although H-LSTM does not use su-
pervised attention, its performance is comparable with the best model soft-LR in (Keith et al., 2017).
This is significant as H-LSTM does not employ any hand-crafted features while soft-LR needs to re-
sort to complicated hand-designed features to perform well. The best performance is achieved with the
H-LSTM+SynAtt model with an improvement of 3.3% in the absolute F1 measure over the best model
soft-LR in (Keith et al., 2017). This testifies to the effectiveness of our proposed model in this work,
featuring hierarchical LSTMs, supervised attention and syntactical guidance.

4.4 Analysis

In order to demonstrate the effectiveness of supervised attention and syntactical guidance for police
killing detection, this section visualizes the attention weights αi,j,k in Equation 1 for the words in several
sentences in the test data.

The Effect of Supervised Attention
Figure 2 indicates the attention weights computed by the models H-LSTM, H-LSTM+SemAtt and H-
LSTM+SynAtt for the words in an example sentence. This sentence corresponds to an entity in the test
set that is correctly predicted (as being killed by police) by H-LSTM+SynAtt, but is incorrectly predicted
by H-LSTM and H-LSTM+SemAtt. As we can see from the figure, H-LSTM fails in this case as it reserves
a very high weight for the “TARGET” and essentially ignores the other words. This phenomenon is quite
popular for H-LSTM and demonstrates the needs for supervised attention mechanisms as being motivated
in the previous sections. In addition, H-LSTM+SemAtt cannot use this sentence as an evidence to make a

Models Precision Recall F1 AUC
H-LSTM+SynAtt 0.442 0.288 0.349 0.211
H-LSTM+SemAtt 0.342 0.325 0.333 0.199
H-LSTM 0.419 0.259 0.320 0.194
soft-LR (EM) 0.447 0.243 0.316 0.193
soft-CNN (EM) 0.268 0.265 0.267 0.164

Table 2: Performance comparison on test data. AUC is the area under the precision/recall curve. The comparison in this table
is significant with p < 0.05.
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Figure 2: Attention weight visualization. The underlined and bold words are important words selected by H-LSTM+SemAtt
and H-LSTM+SynAtt respectively. The blue, orange and red columns represents the word attention weights computed by
H-LSTM+SynAtt, H-LSTM+SemAtt, and H-LSTM respectively. Weights of punctuations are not shown.

correct prediction in this case as it mainly attends to the words in the similar word lists (i.e,“TARGET”,
“shot” and “police”) and misses the word “death”. This is undesirable as “death” is the only clue showing
that the victim of the shooting in this sentence is actually dead. H-LSTM+SynAtt is successful in this
case as it is able to assign high weights to such important words along the dependency paths. This
demonstrates our arguments in Section 3, showing the benefits of H-LSTM+SynAtt to suggest important
words that cannot be captured by H-LSTM+SemAtt for police killing recognition.

Semantical vs. Syntactical Guidance

The previous part has shown the advantages of H-LSTM+SynAtt over H-LSTM+SemAtt for positive
entities. This section focuses on the benefits of H-LSTM+SynAtt for the negative entities. Figure 3
illustrates the attention weights that H-LSTM+SemAtt and H-LSTM+SynAtt assign to the words of an
example sentence in the test data.

Figure 3: Attention weight visualization. The conventions in Figure 2 do apply here.

The entity of this sentence is negative that has been correctly recognized by H-LSTM+SynAtt, but
has been incorrectly predicted by H-LSTM+SemAtt. As suggested in the figure, the failure of H-
LSTM+SemAtt is due to its very high weights on “shooting”, “TARGET” and “police”, ignoring the
effect of the words “said” and “arrested” that clearly negate the involvement of police in this shooting.
H-LSTM+SynAtt can attend to such important words as they belong to the dependency paths between
“police” and “TARGET” in this case.

5 Conclusions

We propose a novel deep learning model for the problem of police killing recognition. The proposed
model involves hierarchical LSTMs to model the multiple sentences in the sentence containers of the
entities. We introduce novel supervised attention mechanisms based on semantical and syntactical as-
pects for this problem. The experimental results demonstrate the effectiveness of the proposed models
and lead to the state-of-the-art performance for police killing detection. In the future, we plan to apply
the proposed method in a real system and extend it to other types of events (e.g, protests, epidemics).
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