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Abstract

Easy access, variety of content, and fast
widespread interactions are some of the rea-
sons making social media increasingly popular.
However, this rise has also enabled the prop-
agation of fake news, text published by news
sources with an intent to spread misinformation
and sway beliefs. Detecting it is an important
and challenging problem to prevent large scale
misinformation and maintain a healthy society.

We view fake news detection as reasoning over
the relations between sources, articles they pub-
lish, and engaging users on social media in
a graph framework. After embedding this in-
formation, we formulate inference operators
which augment the graph edges by revealing
unobserved interactions between its elements,
such as similarity between documents’ contents
and users’ engagement patterns. Our experi-
ments over two challenging fake news detec-
tion tasks show that using inference operators
leads to a better understanding of the social
media framework enabling fake news spread,
resulting in improved performance.

1 Introduction

Over the last decade an increasing number of peo-
ple access news online (Amy Mitchell, 2016), and
use social networking platforms to engage, con-
sume and propagate this content in their social cir-
cles. Social networks provide easy means to dis-
tribute news and commentary, resulting in a sharp
increase in the number of media outlets (Ribeiro
et al., 2018), representing a wide range of per-
spectives and ideologies. However, despite this
diversity, content is often shared only among peo-
ple that hold similar beliefs and ideologies, lead-
ing to the formation of highly segregated infor-
mation communities, often referred to as “echo
chambers” (Gentzkow and Shapiro, 2011; Quat-
trociocchi et al., 2016; Dubois and Blank, 2018;
Garimella et al., 2018). An unfortunate conse-
quence of this process is the rapid proliferation

of “fake news” (Lazer et al., 2018), content which
resembles news in form but lacks the journalis-
tic standards ensuring its quality. Social media
platforms are now flooded with inaccurate, incom-
plete, and intentionally misleading information,
which propagates at lightning speed between users
sharing an echo-chamber. According to a recent
study (Vosoughi et al., 2018) false stories spread six
times faster compared to real news stories. Given
the volume and speed of fake news spread, manual
fact checking organizations cannot be used in real-
time to stop it. An alternative, which is arguably
easier to scale, is to jointly model the claims and
their source and ask who and what can you trust?

Answering this question requires modeling the
complex information landscape on social media,
consisting of news sources, the articles they release
and their social context, corresponding to social
media users engaging and sharing information in
their networks. Similar to previous work (Baly
et al., 2020b, 2018) we formulate the problem as
associating a discrete factuality level (high, low, or
mixed) with news content and news sources. These
works treat news factuality level assessment as a
traditional classification problem, using features
based on social media data.

Our goal in this paper is to explore a differ-
ent approach, driven by the principal of social ho-
mophily (McPherson et al., 2001), referring to the
tendency of individuals to form social ties with
others who share their views and preferences. We
follow the observation that the political perspec-
tives and biases expressed in the text will be re-
flected in the behavior of users engaging with it.
Together they form information communities, con-
necting users with each other based on their con-
tent preferences, and with sources that provide that
content. In this highly connected structure, even
a little evidence connecting users’ preferences to
false narratives can be propagated and help inform
the judgements about the sources they follow and
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engage with. Fig. 1 demonstrates the interactions
between users, articles and their sources.

Unfortunately, much of this rich social informa-
tion is not directly observed, or due to the volume
of these interactions, cannot be fully sampled. To
help alleviate this problem and capture this knowl-
edge, we propose a set of inference operators, each
augmenting the information graph with different
relationships beyond what was initially seen. By
iteratively applying these inference operators, we
are able to capture more of the hidden relationships
that enable the spread of fake news through social
media, and are crucial for detecting it.

From a technical perspective, we view fake news
detection as a reasoning problem over information
graphs. We use the evidence provided by our exist-
ing knowledge of high vs. low factuality content
(i.e., the training data), to assess the factuality of
unknown content based on observed and predicted
links capturing their connections. This transductive
process is done using a Relational Graph Neural
Net (R-GCN) (Schlichtkrull et al., 2018), which
creates distributed representations of nodes con-
textualized by the graph structure, allowing us to
transfer information from observed evidence nodes
to unknown source nodes using graph embedding
tasks. We use inference operators, which build
on the similarity metric defined by the learned
graph embedding, to increase the number of edges
connecting the two node types. These two inter-
dependent steps are done iteratively.

Figure 1: Information Graph capturing interactions be-
tween sources, articles, engaging users, and influencers.
Dashed lines correspond Inference Operators outputs

For example in Fig. 1, observed user relation-
ships are shown with black lines, such as users in-
teracting with articles that are published by sources.
Based on the observed data in the information
graph, we can create an initial graph-contextualized
representation for each node via graph embedding
training. We can see that based on the current
trained model, there are three articles that are simi-
lar in content and embedding, and are represented

in the figure by sharing a gray background. Two are
“fake news” articles, published by red background
low-factuality news sources (“FakeIsUs” and “In-
foWars”), while the right most one is published by
a high-factuality source. Assuming the model is
not familiar with their source factuality level, then
based on the observed graph information, it may
not be able to distinguish between them. Thus, in
this work, we propose to augment the graph based
on learned knowledge, via inference operators. In-
tuitively, the goal of our inference operators is to
provide additional graph edges (shown as dashed
red lines), such that the graph-contextualized em-
beddings would capture the similarity between the
two low-factuality articles and the difference com-
pared to the high-factuality one. For example, users
engaging with the left two articles follow the same
social influencer, who is a high activity user. In
the initial graph training, this observed relationship
would increase these users’ learned node similarity
(yellow background) allowing our inference opera-
tors to connect them into a strong information com-
munity of like-minded users, that was not initially
observed, and thus not easily represented by the
graph embedding. This newly inferred relationship
can be propagated through the information graph,
allowing us to have more strong information about
other articles/sources/users these newly connected
users interact with, thus detecting fake news better.
In summary, we make the following contributions:
• We formulate fake news detection as a reasoning

problem over an information graph.

• We suggest an inference-based graph represen-
tation learning approach, which incrementally
augments the graph with inferences about users’
social information and content preferences.

• We perform extensive experiments in
source-level (Baly et al., 2020a) and content-
level (Nguyen et al., 2020) settings, demonstrat-
ing our inference-based graph representation
approach leads to performance improvements in
both cases, even in weakly supervised settings.

2 Related Work

Fake News Detection: Detecting fake news us-
ing social media has been a popular research topic
recently. It’s typically studied as a supervised learn-
ing task, in which a classifier is trained using repre-
sentations of news and their social context to pre-
dict factuality of the content (Hassan et al., 2017;
Shu et al., 2017; Shao et al., 2018; Pérez-Rosas
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et al., 2017; Volkova and Jang, 2018; Shu et al.,
2019a; Kim et al., 2019). Unfortunately, these
methods cannot capture the interactions between
the users and sources that share fake news on social
media, which is necessary to better understand the
way fake news propagates, and ultimately detect it.

Due to the above mentioned limitations, re-
searchers have recently started using Graph Neural
Networks (GNNs) (to model graphs), for this task.
As they contain social media entities as nodes and
link them through edges based on their observed
interactions, graphs are able to better capture social
context. More specifically, through edge interac-
tions, nodes in graphs can reinforce other nodes’
representations, strengthening the overall informa-
tion quality. Shu et al. was one of the early works,
and more recently, Han et al. utilized continual
learning with GNNs to capture the propagation cas-
cade of fake news on Twitter. However, unlike our
work, these and other graph models do not uncover
or model hidden relationships in the data.

Most similar to us, Nguyen et al. proposed the
Factual News Graph (FANG) also modeling the
relationship between sources, articles, and users in
a graph framework, by training the model to bet-
ter capture social context. However, rather than
iteratively adding new explicit edges to uncover
hidden interactions in the graph as we do by using
inference operators, FANG (Nguyen et al., 2020)
modified the loss function they used when train-
ing the graph to better capture user-user and user-
article interactions that already exist. Despite this
being effective, it does not model graph interac-
tions that were not observed in the original data,
while our approach can uncover these hidden rela-
tionships as well, and thus more strongly capture
the fake news propagation landscape on social me-
dia (the information communities we make explicit
can help model other content better). Moreover,
our framework allows the graph to be continually
enhanced, so we can capture more relationships
than were built into the original graph (like source-
source), and this leads to us achieving performance
improvements over their work.

Iterative Graph Learning: Recently, there has
also been work on learning to augment graphs, such
as by using end-to-end neural models optimized for
the final task (Jiang et al., 2019; Chen et al., 2020).
While these works do iteratively augment the graph
similar to us, by doing it end-to-end they can be
prone to be task specific (edges may be created

solely for achieving higher classification accuracy),
rather than learning a high quality social media
representation. This may lead to issues at test time
or in inductive settings. In our case, as we are
adding edges based on learned graph similarities,
we are strengthening the information communities
that already exist, while uncovering hidden ones.
Further, we can easily control for the relations and
amounts of them that are added.

3 Model

We view fake news detection as reasoning over the
relations between sources, articles, and engaging
users in an information graph. We hypothesize
that due to the principle of homophily, social ties
leading to the formation of online communities
will capture similarities and differences in content
preferences within and across communities.

We capture the interaction between social infor-
mation and news content using a heterogeneous
graph defined in Sec. 3.1, and use a Relational
Graph Convolutional Network (R-GCN), to create
vectorized node representations for factuality pre-
diction. The R-GCN defined in Sec. 3.2 allows our
model to capture the different social communities,
by creating contextualized node representations.
For example, an article node is represented using
its contents, source, and relationships with users
engaging with it (which are also represented using
their relationships to other nodes).

The success of us capturing the social commu-
nities through the R-GCN hinges on having strong
social information (i.e., graph edges) to character-
ize them. Providing this information might not be
straight-forward, as collecting social information at
scale can be costly and noisy. Instead, we propose
inference operators, defined in Sec. 3.3, which aug-
ment the graph with new edges, using the similar-
ity between learned nodes representation to assess
their compatibility. This allows the R-GCN to en-
rich each newly connected nodes’ contextualized
representation, improving factuality classification.
In Sec. 3.4 we describe a reasoning framework,
which iteratively enriches the graph using inference
operators and computes the updated node represen-
tations based on the updated graph. The framework
is depicted in Fig. 2.

3.1 Graph Creation using Social Context

Our graph consists of the following nodes: (1)
S, the news sources. Each sources’ (si) vec-
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Figure 2: Factuality Prediction as Graph Reasoning

tor consists of its Twitter and YouTube profiles
embeddings (numerical + LM features - details
in App. A.2.1). Prior work (Baly et al., 2020b)
showed that these features provide a strong sig-
nal. (2) A, the articles published by these sources.
An article ai vector captures its contents using a
SBERT (Reimers and Gurevych, 2019) RoBERTa
(Liu et al., 2019) model, as it provides strong, mean-
ingful sentence embeddings. (3) U , the Twitter
users that interact with articles and sources, and
provide the social context for them. The description
is applicable to the source-level (Baly et al., 2020a)
and content-level (Nguyen et al., 2020) settings,
where elements in S or A, res., are our classifi-
cation targets. The user vector is identical to the
Twitter embedding mentioned above.

The graph is formed by first adding the sources
as individual nodes. Then, connecting each source
with up to 300 articles (e = {si, aj}). Next,
we add social context to the graph via Twitter
users that interact with sources: (1) Following
Sources: We add up to 5000 users that follow
sources, connecting each user to new sources they
follow (e = {si, uj}). These are likely to indicate
a positive relationship. (2) Discussing Articles:
We connect each article with users that tweet its
title/link within a 3 month period of publication
(e = {ai, uj}). These users provide the means for
fake (and real) news spread, allowing us to model
this process. Finally, social interactions, a crucial
component for analyzing fake news propagation,
are captured by scraping up to 5000 followers of
each Twitter user, and connecting existing users
with edges if they one follows another.

3.2 Graph Embedding
Given the observed interactions in the graph, we
train a GNN to learn an embedding function, which
will be used by the inference operators (Sec 3.3).

As a node embedding function, we utilize Rela-

tional Graph Convolutional Networks (R-GCNs)
(Schlichtkrull et al., 2018), that generalize tradi-
tional GCNs to handle different relationship types,
thus allowing us to better capture their interactions
and improve their representation. Intuitively, R-
GCNs create contextualized node representations
by considering the graph structure through graph
convolutions and learn a composition function:

hl+1
i = ReLU

∑
r∈R

∑
u∈Ur(vi)

1
zi,r

W l
rh

l
u

,

where hli is the hidden representation for the i-th
node at layer l and h0i = vi (output of the node
encoder); Ur(vi) represents vi’s neighboring nodes
connected by the relation type r; zi,r is for normal-
ization; and W l

r represents trainable parameters.
To obtain meaningful node representation used

for capturing factuality, we optimize the Node Clas-
sification (NC) objective of Fake News Detection.
After obtaining the source representations from the
R-GCN, we pass them through the softmax acti-
vation function and then train using categorical
cross-entropy loss, where the labels are factuality.

3.3 Inference Operators

We define multiple inference operators that enable
the creation of new edges based on learned infor-
mation graph inferences. The different operators
capture our intuition about how connecting node
pairs of different types would contribute to trust-
worthiness propagation. For example, pairs of users
that are not explicitly connected in the graph (i.e.,
do not follow each other) but share articles with
similar factuality levels may have similar levels
of non-trustworthiness. Connecting them would
provide more information to the nodes they con-
nect to. One of our inference operators - adding
user-user edges based on their node similarity in
the embedding space - captures this situation.

For each inference operator type discussed be-
low, we make edge connections based on the node
representations we have learned, by computing sim-
ilarity scores between all pairs of nodes (using the
graph node embedding - efficiently with FAISS
(Johnson et al., 2017)), and connecting the nodes
with the top k similarity scores based on our model.

3.3.1 Social Information Based Operators
The first broad inference operator type adds edges
between graph entities, in a similar way as a recom-
mendation engine, suggesting entities to interact
with each other, based on their graph relationships.
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User-Source: We add edges between users and
sources (e = {ui, sj}), using the top k most similar
source/user pairs in the embedding space.

User-User: Pairs of users that interact with news
in a similar way are connected (e = {ui, uj}).
These users are likely to have the same beliefs and
may even want to follow each other if they became
aware of each others’ profiles.

User-Article: We add edges between articles
and users likely to be interested them (e =
{ui, aj})). This inference can be based on the tar-
get users’ interactions with similar articles, or with
other users sharing these articles.

3.3.2 News Content Based Operators
The second broad type connects entities based on
content similarity. Unlike the previous set, these
types of edges are not initially observed in the
graph, which is one of the benefits of our setup,
allowing us to add inferences about latent relation-
ships that underlie how information propagates,
such as coordination between different sources, in-
formation flooding by publishing similar content in
multiple articles and “bad influencers”, consistently
propagating low-quality content.

Sources-Sources Sources likely to publish simi-
lar content at an equivalently factual level are con-
nected (e = {si, sj}).

Articles-Articles Articles that could be simi-
lar to each other in content are connected (e =
{ai, aj}). To do this effectively, we first identify
articles pairs that discuss the same event, approx-
imated using the publication date and entity men-
tions overlap (using Flair (Akbik et al., 2018)) in
their title. Second, we use an entailment model
(Parikh et al., 2016; Gardner et al., 2017) to only
connect articles that entail each other, as they are
more likely to be talking about similar content.

Influencers Fake news is often spread by “bad
influencers” that have a large following. Over the
years, Twitter has launched campaigns intended to
reduce fake news spread by suspending such users.
This inference operator aims to do the same, by fol-
lowing these steps: (1) Using the training data, we
label users by counting the paths to sources with
a given factuality label. (2) Identify users without
significant label variation in their followers group,
as potential “news influencers”. We avoid users
with mostly highly factuality followers. (3) At in-
ference time, we connect new users to influencers
in this initial set, with a special edge type, indicat-
ing similarity to an influencer. We add the top k

Model Performance
Acc Macro

F1
#
Edges

M1 : Majority class 52.43 22.93 -
M2 : (Baly et al., 2018) 66.45 61.08 -
M3 :(Baly et al., 2020b) 71.52 67.25 -
M4 : Replication of (Baly
et al., 2020b)

69.38 63.63 -

M5 : Node classification (NC) 68.90 63.72 -
M6 : InfOp Best Model 72.55 66.89 32K

Table 1: Results on (Baly et al., 2020b). Our best model
(M6) achieves a 3.17% acc improvement compared to
our re-implementation (which uses the same data -> M4

vs M6), and the state-of-the-art on this dataset (which
used different data - outside of train/test source labels -
that was not released). Further, applying the inference
operators (InfOp with 32K added edges) improves acc

by 3.65% compared to Node Classification

users, experimentally set to 500 (App. A.2.5).

3.4 Joint Inference and Representation
The inference operators we defined use the graph
embedding function to identify new relationships
that would potentially improve the embedding qual-
ity and allow for better information propagation
during learning. The two steps are clearly inter-
dependent. Now, we describe our iterative graph
learning framework that builds on this dependency,
and continually learns better social context repre-
sentations in the graph by applying the inference
operators, and then retraining the graph. It can be
seen in Algorithm 1 and runs the following steps:
(1) Initial Representation In this step, we train

the graph G using the framework described in
Sec 3.2 to get an initial graph representation.

(2) Inference Step Apply inference operators
(Sec 3.3) based on the learned representation.

(3) Learning Step After, we continue the training
process for the graph.

We continually apply the two steps until con-
vergence, based on development set performance.
Additional details about the process are provided
in Appendices A and C. When done, we retrain the
model based on the final graph uncovered by apply-
ing the inference operators. Through this iterative
approach, we continually improve our representa-
tion of the social media framework that enables
fake news propagation, and reveal hidden relation-
ships critical to understanding fake news spread.

4 Experiments

We evaluate our model’s ability to predict fake
news better on two challenging tasks: Fake News
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Algorithm 1 Joint Representation Learning and
Reasoning for Characterizing Information Sources

1: Input: G0 = S,A,U
2: Output: Ls (labels of sources), R-GCN parameters ϕ
3: Initialization: ϕ0←Lfinal over G0

Initial graph embedding uses Node

Classification (NC)

4: while not converged do
5: Infer: Gi = Gi−1∪InferOperators(Gi−1, ϕi−1)

Use inference operators to augment the graph

6: Learn: ϕi ← Lnc over Gi

Retrain R-GCN over new graph

7: end while
8: Final Training: ϕfinal ←Lnc over Gfinal

Reset parameters and train final graph using NC

9: return Ls ← ϕfinal over Gfinal

Predict unknown sources, using the final R-GCN

Source Classification, and Article Classification.

4.1 Dataset and Collection

To evaluate our model’s ability to predict the factu-
ality of news medium, we used the Media Bias/Fact
Check dataset (Baly et al., 2018, 2020b). The pub-
lic dataset consists of 859 sources, each labeled
on a 3-point factuality scale: low, mixed, and high.
Using the Twitter API1, we gather an average of 27
user engagements for each articles (Sec 3.1). Our
final graph consists of 69,978 users, 93,191 articles,
164,034 nodes, and 7,196,808 edges. Details about
the setup we used when training our graph (chosen
using the dev set), and our scraping protocol are in
Appendix A. Our code is available2.

To evaluate fake news article detection, we used
the dataset released by (Nguyen et al., 2020), put
together from Twitter data using related work on ru-
mor classification (Kochkina et al., 2018; Ma et al.,
2016) and fake news detection (Shu et al., 2018).
For each article, the dataset provides its source and
a list of engaged users. We also collected the fol-
lowers for each user, leading to a graph with 48,895
users, 442 sources, and 1,050 articles.

4.2 Fake News Source Classification

Table 1 shows our results on source classification.
We evaluate our models on the average of all 5
data splits released by (Baly et al., 2020b), using
20% of the training set sources as a development
set. We report results on accuracy and Macro F1-
score. We compare to (Baly et al., 2020b, 2018)
(M2, 3), who to the best of our knowledge achieve
the strongest performance on this dataset. As (Baly

1https://developer.twitter.com/en/docs
2https://github.com/hockeybro12/

FakeNews_Inference_Operators

Model Split Performance
AUC # New Edges

FANG 90% 75.18 -
SVM 90% 75.89 -
NC 90% 83.48 -
InfOp 90% 85.89 10,000
FANG 70% 72.32 -
SVM 70% 59.18 -
NC 70% 73.15 -
InfOp 70% 77.76 10,000
FANG 50% 71.66 -
InfOp 50% 73.88 10,000
FANG 30% 70.36 -
InfOp 30% 72.63 10,000
FANG 10% 66.83 -
InfOp 10% 67.51 10,000

Table 2: On (Nguyen et al., 2020), we achieve the
SOTA on all data splits (% of data used for training).
Our model beats the strong FANG model (Nguyen

et al., 2020), SVM, and the Node Classification (NC).

et al., 2020b) did not release the article and social
media data they used, we replicate their setup using
the data we scraped (and their code), and compare
to that as well (M4). Despite us optimizing their
model, our results are worse than their released
performance, so we hypothesize that their data on
our setup may lead to better overall performance.

When training our initial graph with only ob-
served data using the Node Classification (NC)
fake news loss and the same data as our replication
of (Baly et al., 2020b), we obtain similar perfor-
mance to their approach (M5 vs M4). When we
apply our inference operators, and then train the
graph identically (as in M5), we notice a 3.65% acc.
improvement (M5 vs M6), showing the clear benefit
of our inference operator setup on this task, and
answering our research question that the added in-
formation helps. Further, this setup achieves the
state-of-the-art on (Baly et al., 2020b), exceeding
both our replication with the same data (by 3.17%
acc.) and their published results (by 1.03% acc.).

4.3 Fake News Article Classification

Our results for article classification are in Tab 2.
We compare to (Nguyen et al., 2020) (FANG), who
to the best of our knowledge have the best per-
formance, and compared to several competitive
baselines in their work (Ruchansky et al., 2017).
Nguyen et al. are also the most similar to us (as
said in Sec 2, they also train GNN’s), but they do
not make unobserved interactions explicit, rather
they modify the loss function they used when train-
ing to better capture them. Our setup is identical to
the strong (Nguyen et al., 2020) setup (we use their
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released data and data splits) except we use dif-
ferent Twitter and Article representations, and we
also consider Twitter follower edges. In addition,
FANG (Nguyen et al., 2020) considered temporal
aspects of how tweets propagate, which we do not,
and we hypothesize that this may improve our per-
formance. For this reason, we are using less data
compared to FANG, apart from the fact that we
consider Twitter user followers. For proper com-
parison, we also evaluate our representations by
training a SVM, and in App. Tab 8, we evaluate
our model with the same representations as FANG.
We evaluate all of their data splits in Tab 2 (90%
-> 90% of data for training, 10% for test, etc.). NC
evaluates our model performance on the observed
data. We show the best results (extended results and
details in the App. C), and as can be seen, applying
inference operators also improves performance on
fake news article classification on all data splits (as
much as 4.61% AUC), reinforcing that explicitly
learning and creating unobserved relationships in
the graph enables us to detect fake news content
better. Also, we achieve SOTA by average 4.26%.

5 Discussion

In this section, we analyze our best model with in-
ference operators (Table 1 M6) for fake news source
detection (Baly et al., 2020b) by answering the fol-
lowing research questions:
(1) Ablation study: What is the contribution of each
inference operator?
(2) Can our model learn on limited data? Does our
inference-based representation help?
(3) Can we learn meaningful user communities?
(4) What type of inferences does our model make
for each inference operator?
(5) Can we detect the factuality of new content?
(6) What embeddings do we learn? (App. B.1)
(7) How many edges should we add for each inf.
operator? (App. B.2)
(8) How long does running inference operators
take? (App. B.3)

5.1 Ablation Study

In Table 3, we evaluate each of our inference oper-
ators, trained using our joint learning and inference
algorithm for up to two iterations. To evaluate the
accuracy of the edge connections we make when
applying the inference operators (“Inf. Acc”), we
compare the labels of the two nodes connected by
an inferred edge (i.e., accurate decisions connect

nodes with similar labels). Since labels are only
associated in our data with sources, we define a
heuristic for computing labels for article and user
nodes based on the most common gold label in all
the sources they were directly connected to in the
initial graph (ex: a user that follows 3 high factual-
ity sources is assigned a high factuality label). We
also report the number of edges connected in each
setup (dev set for all params).

We note that almost all of our models with in-
ference operators result in performance improve-
ments over the baselines (Tab 1 M4, 5), showing
that capturing these hidden relations and making
them explicit with new edges helps in fake news
detection. Moreover, several of our inference oper-
ators (users-users/sources-sources) achieve high ac-
curacy, while all perform better than random, show-
ing that we can make useful edge connections after
learning the initial information graph. Furthermore,
applying multiple inference operators in multiple
iterations through our setup (InfOp Users-Users
and Users-Articles) leads to the strongest perfor-
mance on this task. To evaluate the potential of our
approach, we also evaluate our performance if we
had no inaccurate edge predictions (i.e. 100% Inf.
Acc), and see significant improvements. Note that
this is a potential of our setup, as it involves using
all the data (including the training set) to determine
the user labels and then filtering out inaccurate edge
predictions.

Figure 3: Inf. over Social and Factuality Information

Global Inference Operators An interesting di-
rection for future work is to capture the inter-
dependency between inference operators applica-
tions. We suggest a first step, based on probabilis-
tic inference (Pacheco and Goldwasser, 2021), de-
scribed in the factor graph in Fig. 3, applied to
the Users-Users operators. We define two decision
variable types, F associated with a user’s factuality
prediction, and E associated with the inference op-
erator outcome on a user pair. Each is associated
with a scoring function, ψ1 scoring users factuality
assignments, and ψ2 scoring user pairs based on
embedding similarity. The assignments are con-
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Model Performance
Acc Macro F1 Std Acc. Inf. Acc Edges

InfOp Users-Sources 69.02 63.21 2.41 41.90 5,000
InfOp Users-Users 71.97 66.34 2.24 82.79, 96.28 30,000
InfOp Sources-Sources 69.84 64.48 2.21 80.18, 73.26 100
InfOp Articles-Articles 68.09 61.39 2.50 51.99 2,000
InfOp Users-Articles 70.63 63.76 2.48 34.92 2,000
InfOp News Influencers 70.42 62.59 1.20 - 1,000
InfOp Users-Users and Users-Articles 72.55 66.89 1.70 64.70 32,000
InfOp All 100% Acc. 75.19 70.84 4.29 100.00 30,080
InfOp Global Users-Users 72.17 64.95 1.90 79.21 6,732

Table 3: Ablation study on (Baly et al., 2020b). The strongest performing model uses the users-users and
user-articles inference operators. Inf. Acc. evaluates the accuracy of the edge connections inference operators make,

based on gold user/article labels determined by the source they are most often connected to.

Model % Train Acc F1 Inf. Acc
NC 10% 61.04 49.64 -
InfOp 10% 66.27 56.01 67.08
NC 30% 62.79 49.48 -
InfOp 30% 67.44 60.29 65.96
NC 50% 65.11 48.20 -
InfOp 50% 68.60 63.83 66.36
NC 100% 66.86 61.49 -
InfOp 100% 72.55 66.89 64.70

Table 4: Weakly supervised settings (data split 0).

nected using two sets of constraints: C, ensuring
factuality label consistency in users connected via a
predicted edge, and T, ensuring transitivity across
pairs of edges, sharing a node. We use MAP in-
ference to identify the solution edge set. The re-
sults in Tab. 3, show a modest improvement (72.17)
compared to local inference (71.97), obtained us-
ing significantly less edges (6.7K compared 30K).
This experimentally shows a benefit of using global
probabilistic inference to more intelligently deter-
mine edges to connect, rather than only using em-
bedding similarity as we did before (here we also
considered user factuality, and other decision vari-
ables/scoring functions can be added in the future).
Details and other potential benefits of this setup are
provided in Appendix D.

5.2 Weakly Supervised Training

Next, in Table 4 we evaluate our model on using
limited training data for fake news source classifi-
cation, by training on a smaller set of sources (still
using the entire graph and full test set). Here, we
see the ability of our inference operators to strongly
improve performance (NC vs InfOp), as they reveal
relationships the model could not learn otherwise
in the weakly supervised setting, which shows how
our system could be useful for detecting recently
published news.

Model k=17 k=55 k=200
B1 : User Trained 33.3, 50.9 35.4, 54.4 44.9, 60.1
B2 : User InfOp 33.3, 51.8 38.2, 57.2 47.5, 62.9
C1 : PF RoBERTa 33.98 34.03 36.21
C3 : PF Connect 34.21 39.02 50.76
C3 : PF InfOp 34.38 41.22 52.03

Table 5: Cluster purity of users (factuality, bias) and
PolitiFact (PF) (factuality)

5.3 Learned Information Communities

Now, we analyze how well our user-user inference
operator allows us to learn information communi-
ties of users (Tab 5). To do this, we cluster (K-
means, Tab 5 shows different values of K) users
before (B1) and after the inference operators are
applied (B2), and evaluate the cluster purity based
on user labels. To compute purity, each cluster is
assigned to the class which is most frequent in the
cluster, and then the accuracy of this is measured.
We assigned labels to users using the same heuristic
described in Sec. 5.1. We see that the users clus-
ter better after the inference operators are applied
(even via bias labels), showing our ability to use
them to form information communities.

5.4 What Does our Model Learn to Connect?

Here, we analyze the inference operators by ana-
lyzing specific edge connections that are made. We
see that the model makes smart choices in connect-
ing nodes that may be part of the same information
community. For example (more in Appendix B.4),
a low factuality article discussing Democrats as
‘dangerous open border fanatics’ was connected to
a user with bio ‘BuildtheWall ... DEMONRATS‘.

5.5 Incorporating New News Content

Finally, we evaluate how well our model can in-
corporate unseen news content, by clustering (like
before) 1500 fact-checked claims from PolitiFact3.
In Table 5, we first cluster the initial RoBERTa em-

3https://www.politifact.com
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beddings of these claims (C1) and then add them
into the graph by connecting them to five graph
articles that have similar embeddings to them (C2).
Next, we use our user-article inference operator to
connect each of these articles to users (C3). It’s
clear that the RoBERTa embeddings statements
don’t cluster well by factuality. However, once
they are added into the graph (C2) and after they
are connected via inference operators (C3), they do.
This further shows how our framework, especially
through inference operators, allows the better de-
tection of unseen news content (in this case claims).
Not only can we determine its factuality, but we
can also determine what other users are likely to
interact with it.

6 Summary and Future Work

We propose an approach for tackling fake news
detection by continually improving social context
representations. To achieve this, we developed
an iterative representation learning and inference
framework that learns an initial graph embedding,
and then applies different inference operators to
reveal hidden relationships in the graph. We con-
tinually capture more knowledge about the social
dynamics that allow fake news to propagate. We
showed strong performance on fake news detection,
across several datasets and settings.

Our current work looks at increasing the accu-
racy of the inference operators by adding external
knowledge. We began exploring this direction by
using an entailment model to infer article relation-
ships using content similarity. We also explore
additional ways to jointly model inference opera-
tors and capture the dependencies between them.

We believe this work helps pave the way for
further research connecting text analysis along with
its social context (Pujari and Goldwasser, 2021;
Hovy and Yang, 2021; Pacheco and Goldwasser,
2021; Yang et al., 2016), a natural fit for many NLP
tasks.
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7 Ethics Statement

To the best of our knowledge no code of ethics
was violated throughout the experiments done in

this paper. We reported all hyper-parameters and
other technical details necessary to reproduce our
results, and release the code and dataset we col-
lected. We evaluated our model on two different
datasets and tasks (source and article fake news
classification), but it is possible that results may dif-
fer on other datasets. However, we feel our method-
ology is solid and applies to any social media fake
news setting. For space constraint we moved some
of the technical details and discussion to the Ap-
pendix section. The results we reported supports
our claims in this paper and we believe it is re-
producible. Any qualitative result we report is an
outcome from a machine learning model that does
not represent the authors’ personal views. For any
results that we discuss on the data we use, we will
not include account information and all results will
be anonymous.

In our dataset release for (Baly et al., 2020b), we
include sources, users, and articles. Sources are
public information provided in (Baly et al., 2020b),
and we map each to an ID. We scraped up to 300 ar-
ticles for each source (as many as we could), which
we map to an ID. We also scraped users that inter-
act with articles, which we also release. Each user
is given by their Twitter ID (which may be invalid
or not provided if the user deleted their profile),
and their graph ID. The Twitter ID of the Tweet
the user propagates about the article is also given.
We also scraped users that follow sources, and this
information is released by providing the user ID’s
that interact with each source ID’s. Finally, we
provide the representations for each user, article,
and source we used as our initial embedding in the
graph. Our data is meant for academic research pur-
poses and should not be used outside of academic
research contexts. All our data is in English.

Our framework in general does not create direct
societal consequence and is intended to be used
to defend against fake news. While our model
could be used to build better fake news spreaders,
our approach of identifying information communi-
ties through inference operators, could also prevent
against that.
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A Supplemental Material: Fake News
Source Detection

In this section, we provide implementation details
for our models for fake news source detection. The
dataset we use has 859 sources: 452 high factuality,
245 mixed, and 162 low, and was released publicly
by (Baly et al., 2020b)4. The dataset does not in-
clude any other raw data (articles, sources, etc.), so
we must scrape our own.

A.1 Data Collection

For each source, we attempted to scrape news arti-
cles using public libraries (Newspaper3K 5, Scrapy
6, and news-please 7 (Hamborg et al., 2017)). In
the cases where the web pages of the source news
articles was removed, we used the Wayback Ma-
chine 8. We attempted to scrape up to 300 articles
for each source, but this was not always possible.
Overall, our sources have an average of 109 articles
with a STD of 36.

For Twitter users, we used the Twitter API9 to
scrape 5000 followers for each Twitter account we
could find (72.5% of the sources, identical to (Baly
et al., 2020b). In addition, we used the Twitter
Search API to search articles on Twitter and find
any Tweets that mention the article title or URL
within 3 months of the article being published. We
then downloaded the users that make these Tweets
as well, and added them to our graph, linking them
to the respective article they tweeted about. Fi-
nally, to increase the connectivity of the graph
and accurately capture the interactions between
the users, we also scraped the followers of every
Twitter user. We then filtered the users to only add
to our graph ones that either interact with multiple
sources (through source or article connections) or
another user, so that every node would be inter-
connected.

We did not scrape YouTube accounts, but rather
used the same ones as the released (Baly et al.,
2020b). They found YouTube channels for 49% of
sources and published this information.

4https://github.com/ramybaly/News-Media-Reliability
5https://github.com/codelucas/newspaper
6https://github.com/scrapy/scrapy
7https://github.com/fhamborg/news-please
8https://archive.org/web/
9https://developer.twitter.com/en/docs

A.2 Experimental Settings

A.2.1 Initial Embeddings
Our initial Twitter embedding for each source and
engaging user was a 773 dimensional vector con-
sisiting of the SBERT (Reimers and Gurevych,
2019) (RoBERTa (Liu et al., 2019) Base NLI
model) representation of their bio (up to the first
512 tokens) concatenated with the following nu-
merical features: a binary number representing
whether the source is verified, the number of users
a source follows and the number that follow it,
the number of tweets it makes, and the number
of favorites/likes its’ tweets have received. For,
YouTube, the embedding we used was the average
of the number of views, dislikes, and comments for
each video the source posted. For articles, we used
the SBERT RoBERTa model to generate an embed-
ding for each article, which was a 768 dimensional
vector representing the article text, up to the first
512 tokens.

A.2.2 Model Setup
Our models are built on top of PyTorch (Paszke
et al., 2019) and DGL (Deep Graph Library) (Wang
et al., 2019) in Python. The R-GCN we use con-
sists of 5 layers, 128 hidden units, a learning rate
of 0.001, and a batch size of 128 for Node Classifi-
cation. Our initial source and article embeddings
have hidden dimension 768, while the user one
has dimension 773. We use a final fully connected
layer for classification, of size 3 for (Baly et al.,
2020b).

For our Joint Inference and Representation
Learning framework, we choose parameters us-
ing the development set (20% of training sources)
for one of the training data splits, and then apply
them uniformly across all the splits, when train-
ing the final models. We ended up running all the
inference operators for 2 iterations (except users-
sources, articles-articles, and users-articles) before
they converged (we determined convergence using
the dev set), although we hypothesize that a higher
accuracy of choosing the edges to connect would
allow us to run this process longer. The number of
edges shown in Table 1 were also chosen based on
the development set.

When applying inference operators, we make
sure that at least 50% of the nodes that are being
connected are connected to sources that are not in
the train set. For example, to be considered linked
to a non-train set node, if we were connecting two
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users, at least one of those users would need to
be linked to a non-train set node directly (either
by following a non-train set source or interacting
with an article from a non-train set source). Not
only does this setup simulate a real-world scenario
when the model is deployed and inference opera-
tors are connecting new articles/sources to existing
nodes, but it also makes sure that the graph does
not only connect nodes that are learned better as
they are closer to training set nodes, which helps
performance.

Our models were trained on a 12GB TITAN XP
GPU card and training each data split for Node
Classification takes approximately 4 hours. The
user-user inference operator phase to add 20,000
edges took 997.8724 seconds, or approximately 16
minutes.

A.2.3 Replication of Prior Work
To replicate (Baly et al., 2020b) (M4), we used their
released code with our features. Specifically, we
used our article, Twitter profile, Twitter Follower,
and YouTube embeddings. This setup consists of
all the data in our graph, and also provided the best
performance in (Baly et al., 2020b).

A.2.4 Explanation of 100% Inf. Acc
Approach

In Sec 5.1, we had mentioned results where we ran
our approach with 100% Inf. Acc, and said this
was a potential of our approach. Here, we explain
that setup in further detail.

For our 100% accurate edges, we needed labels
for the users, articles, and sources. We computed
those using all the data (train, dev, and test set),
which is cheating. The labels for the articles were
computed based on the source they were directly
connected to (even if it was a test set source), and
the labels for the users were computed based on
sources they interacted with or articles they fol-
lowed (again, even if it was a test set). This is why
we consider this a potential of our approach, be-
cause in practice we do not have access to the test
set labels and thus cannot do this inference process
with 100% accuracy.

A.2.5 Explanation of News Influencers
In Sec 3.3.2, we mentioned one of our inference
operators as news influencers. Here, we explain
how we choose those:

To choose influencers, we first looked at each
user in the graph and determined how many fol-

(a) (b)

Figure 4: TSNE plots of our article embeddings before
and after the model is trained. (a) shows the embed-
dings before the model is trained, when we used SBERT
(Reimers and Gurevych, 2019) RoBERTa (Liu et al.,
2019) to encode the articles. In this case, the articles
are not well separated based on factuality. In (b), after
the graph model is trained and inference operators are
applied, they are, showing that factuality in our graph
propagates to articles as well.

lowers it had. Then, using just the training set, we
determined the labels of each user (based on the
articles/sources they connect to, and what is the
most common label). We consider influencers as
users who mostly have one label of people follow-
ing them. For example, a user with predominantly
low factuality users following them is likely an
influencer of low factuality information.

Thus, now that we have the user labels and we
know who follows each user, we can determine a
distribution for each potential influencer. If the gap
between the most common label (of all the peo-
ple who follow them) and the next most common
is larger than a threshold (which we experimen-
tally set to 3000 for high/mixed factuality and 100
for low since there were less of those), then we
consider a user an influencer. We added 500 in-
fluencers to begin with, and through the inference
operator in Table 3, added 1000 more. When a
user is connected to an influencer, it is done with a
special edge type in the R-GCN.

B Fake News Source Detection Analysis

In this section, we build upon Sec 5 by providing
extra analysis experiments and further detailing the
ones already discussed.

B.1 Extra Analysis: Graph Embeddings
In this sub-section, we present a new analysis that
attempts to answer the question of how meaningful
our models embeddings are. To do this, we analyze
article embeddings before (a) and after the model is
trained (b), and plot them in Fig 4 (red=high factu-
ality, blue is low, green is mixed). The embeddings
show that our inference operators enable factuality
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to propagate to the representation of the articles,
as the articles are more cleanly clustered after the
graph is trained.

B.2 Extra Analysis: Inference Operator Edge
Count Experiment

Now, we provide details on how the performance
changes for each of our inference operators based
on how many edges we add for each. The num-
ber of added edges is a hyper-parameter, as we
can decide when to stop adding edges (we added
edges based on the top k similarity scores, and that
k is the hyperparameter). The results are shown
in Tab 6. For each inference operator, we evaluate
three different number of added edges hyperpa-
rameter settings, showing results on the test and a
development set (20% of sources in the train set).

B.3 Extra Analysis: How Long Does Running
Inference Operators take?

Now, we evaluate how long running our inference
operators take, showing that our procedure is ef-
ficient. We timed our users-user inference opera-
tor when it added 20,000 edges. This is the most
amount of edges of any of our single inference op-
erators. Thus, this is is the most computationally
expensive inference operator, except for articles-
articles - which did not perform well.

We timed it on a single GPU GeForce GTX 1080
Ti GPU, with 6 Intel Core i5-8400 CPU @ 2.80
GHz processors over 5 runs (all data splits aver-
aged). The inference operator took 997.8724 sec-
onds (just over 16 minutes).

Thus, we believe that our procedure does not in-
volve huge computational and memory costs. This
is partly because we used FAISS (Johnson et al.,
2017) to do the embedding similarity search effi-
ciently, as we mentioned in Sec 3.3. Other infer-
ence operators and cases where less edge connec-
tions need to be made will take less time, especially
on stronger machines. This is also an interesting di-
rection for future work, where we can find the right
balance between the number of edges that should
be added, while taking into account the impact they
would have on performance.

B.4 Continued Analysis: Inference Operator
Specific Example Analysis

Next, we continue our analysis discussion from
Sec 5 by analyze the inference operators by analyz-
ing specific edge connections that are made. We

see that the model makes smart choices in connect-
ing nodes that may be part of the same information
community.
(1) A low factuality article discussing Democrats

as ‘dangerous open border fanatics’ was con-
nected to a user with bio ‘BuildtheWall ... DE-
MONRATS‘.

(2) A user with a bio containing ‘Held Hostage by
the Environmentalist Movement‘ that was con-
nected to predominately low factuality sources
was connected to an article talking about
Democrats wanting to destroy fun through the
‘green movement’.

(3) A user with bio containing ‘Lets save our Re-
public‘ was connected to an article mentioning
a celebrity tweeting a photo of a well known
Democrat leader killing the President.

(4) A user with bio ‘makes memes for the masses’
was connected to another user with bio ‘here
to have fun‘.

(5) Two articles talking about the Presidents first
week in office were connected.

Overall, these examples show that our model can
make decisions based on information communities
that could exist on social media, as it connects
users/articles that are talking about similar content,
which is what we are trying to capture.

B.5 Continued Analysis: Learned
Information Communities

Here, we provide the technical details behind our
analysis in Sec 5.3. When clustering users, we eval-
uated purity based on user labels. The labels were
computed for each user based on the most common
label of the source it was directly connected to in
the initial graph (ex: a user that follows 3 high fac-
tuality sources is assigned a high factuality label).
We also evaluated how users clustered with respect
to bias labels (second number in each cell of the
first two rows of the table), using the bias labels
from (Baly et al., 2020b).

B.6 Continued Analysis: Incorporating News
Content

In our analysis in Sec 5.5, we wanted to see how
well our model can incorporate news content that
was not seen before. For this, we scraped 1500 fact-
checked statements from the popular fact-checking
website PolitiFact. Each statement was labeled
by experts on a 1-5 scale in order of increasing
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Model Performance
Dev
Acc

Dev
Macro F1

Test
Acc

Test
Macro F1

Edges

InfOp Users-Sources 66.66 58.28 69.49 63.63 2,500
InfOp Users-Sources 67.24 60.32 69.02 63.21 5,000
InfOp Users-Sources 66.51 58.19 69.49 63.35 7,500
InfOp Users-Users 65.49 57.22 69.72 63.84 15,000
InfOp Users-Users 66.36 57.66 71.97 66.34 20,000
InfOp Users-Users 65.50 54.61 69.02 62.49 25,000
InfOp Sources-Sources 67.38 59.36 69.02 62.49 75
InfOp Sources-Sources 67.53 60.42 69.84 64.48 100
InfOp Sources-Sources 66.51 57.75 70.65 63.35 125
InfOp Users-Articles 67.53 61.18 69.37 62.47 1,500
InfOp Users-Articles 67.96 60.50 68.09 61.39 2,000
InfOp Users-Articles 67.53 61.13 68.09 60.90 2,500

Table 6: Experimental results on (Baly et al., 2020b) of our InfOp models for different hyper-parameter settings of
number of edges added. For each inference operator evaluated, we show the performance on the development set
and test set. We used the development set to select the hyper-parameter value to use in our final models. Results are

averaged across all five data splits

level of factuality, which we converted to high (top
two), low (bottom two) and mixed (other - # 3), to
match our source labels. Then, we incorporated the
statements into our graph by computing the simi-
larity of each statements’ RoBERTa embeddings
to all of the graph article RoBERTa embeddings.
We connected each PolitiFact statement to it’s top
5 similar graph articles, generated graph embed-
dings for each statement, and then clustered this
in Table 5 D2. Then, we applied our user-article
inference operator, where each article was now a
PolitiFact statement, and clustered them again in
D3. When doing this, we found improved cluster-
ing at all values of k, showing that the inference
operators allowed us to better capture the factual-
ity of the PolitiFact statements. Further, the infer-
ence operator had an Inference Accuracy of 51.45%
(user label inferred from user source connections
matching PolitiFact statement label), showing that
the graph was able to make good decisions when
choosing what to connect.

C Supplemental Material: Fake News
Article Detection

For Fake News Article detection, we used the
dataset released publicly by (Nguyen et al., 2020).
However, in our graph setup for the initial node
embeddings, we use RoBERTa (Liu et al., 2019)
article embeddings (See Sec 3.1) and Twitter Pro-
file embeddings (see Sec A.2.1), which (Nguyen
et al., 2020) did not. Thus, we downloaded the arti-
cle text from the links released by (Nguyen et al.,

2020), and encoded it using RoBERTa, with the
first line of the article being the claim text (Nguyen
et al., 2020) used, if it was available. As before,
we encode up to the first 512 tokens. Further, we
downloaded the Twitter profiles, but the users we
have in our graph are the same as (Nguyen et al.,
2020). Later in this section, we will also evaluate a
version of our model where we use the same initial
representations as (Nguyen et al., 2020), instead of
the RoBERTa SBERT ones.

In addition to the initial embeddings, we also
scraped followers of each social media user
(Nguyen et al., 2020) used, and connected users
where at least one follows the other in the graph.
As mentioned in Sec 3.1, this process enables us
to capture the social media landscape that enables
fake news propagation, and is helpful for us to
build information communities via our inference
operators.

(Nguyen et al., 2020) also incorporated temporal
information to their graph, which we do not. We
hypothesize that adding temporal information to
our setup will lead to further improvements, and
leave it for future work.

Apart from these differences, our work is iden-
tical to (Nguyen et al., 2020) (FANG), except we
utilize inference operators. Our graph is the same
as described above in Appendix (albeit with differ-
ent data), with sources, users, and articles with the
same node/edge types. We train the same RGCN
with the same parameters, using the same inference
operator connection process.
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Model Performance
AUC Edges

FANG 90% 75.18 -
NC 90% 83.48 -
SVM 90% 75.89 -
U-U 90% 85.89 10,000
U-U 2 Iter. 90% 85.53 20,000
U-A 90% 82.14 10,000
U-A 2 Iter. 90% 81.75 20,000
U-A + U-U 90% 74.46 20,000
FANG 70% 72.32 -
NC 70% NC 73.15 -
SVM 70% 59.18 -
U-U 70% 69.41 10,000
U-U 2 Iter. 70% 67.59 20,000
U-A 70% 78.81 10,000
U-A 2 Iter. 70% 48.56 20,000
U-A + U-U 70% 75.54 20,000
FANG 50% 71.66 -
NC 50% 71.35 -
SVM 50% 58.07 -
U-U 50% 69.84 10,000
U-U Iter. 2 50% 74.75 20,000
U-A 50% 73.88
U-A Iter. 2 50% 70.93 20,000
U-A + U-U 70% 20,000
FANG 30% 70.36 -
NC 30% 70.98
SVM 30% 24.68 -
U-U 30% 72.63 10,000
U-U Iter. 2 30% 71.85 20,000
U-A 30% 67.85 10,000
U-A Iter. 2 30% 71.92 20,000
U-A + U-U 30% 70.76 20,000
FANG 10% 66.83 -
NC 10% 62.04 -
SVM 30% 22.73 -
U-U 10% 67.51 10,000
U-U Iter. 2 10% 62.97 20,000
U-A 10% 66.52 10,000
U-A Iter. 2 10% 59.86 10,000
U-A + U-U 10% 67.06 20,000

Table 7: Extended Final results on (Nguyen et al.,
2020). From the results, it is clear that applying

inference operators leads to performance improvements.
Key: FANG = (Nguyen et al., 2020), NC = Node
Classification, 90% = percentage of data used for

training, the rest was for test/validation, SVM = support
vector machine trained on our article + Twittere user

features, U-U = Inference Operator connecting users to
users, U-A = inference operator connecting users to
articles, Iter. 2 = running the inference operator for 2

iterations.

Our extended experimental results below (Ta-
ble 7) show how our different inference operators
(connecting users to users -> U-U and connecting
users to articles -> U-A, doing them in multiple
iterations -> Iter 2, doing both at once -> U-A + U-
U) enable performance improvements even on fake
news article classification. As before, we use the
dev set to judge convergence. For a complete evalu-
ation, we also include results on our model trained
without adding inference operators (just on Fake
News Article Node Classification (NC)), and us us-
ing our article and social media features in a SVM
(we trained a SVM using grid-search parameter op-
timization where the features for each article were
the RoBERTa embedding we used in the graph
plus the average of all the user profiles the article
was connected to in the final graph). The SVM
allows us to evaluate how much performance im-
provements we get from our Twitter/Article embed-
dings/other data compared to (Nguyen et al., 2020)
FANG, and we can see that the embeddings do not
lead to strong performance. Thus, it can be seen
from the results that our graph setup, and on top of
that applying inference operators, always leads to
performance improvements compared to (Nguyen
et al., 2020) (FANG), showing that our setup is
useful for fake news article detection. Moreover,
applying inference operators on top of our initial
setup (NC), always leads to further performance
improvements, achieving the best results on this
task (to our knowledge). This shows the benefit of
using our inference operator based framework for
fake news article detection. Results can be seen in
Table 7.

For further analysis on the initial representations,
in Table 8, we evaluate our model performance
with and without inference operators when we use
the same node representations as (Nguyen et al.,
2020) for articles, sources, and users. Nguyen et al.
released these representations publicly with their
paper, and each of them is 100 dimensional (articles
are TFIDF + semantic from GLOVE, sources are
TFIDF + GLOVE semantic of homepage and about
us, users are TFIDF + GLOVE Semantic of pro-
file bio). Everything else in our graph framework
stays the same. Thus, our setup is now even weaker
compared to (Nguyen et al., 2020), as we still do
not include the temporal information that they used
and we do not capture stance of Twitter users with
respect to articles. Even in this case, we see that
inference operators enable performance improve-
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Model Performance
AUC Edges

FANG 90% 75.18 -
NC Same Rep. 90% 68.57 -
U-U Same Rep. 90% 69.25 10,000
FANG 70% 72.32 -
NC Same Rep. 70% 67.15 -
U-U Same Rep. 70% 70.54 10,000
FANG 50% 71.66 -
NC Same Rep. 50% 66.68 -
U-U Same Rep. 50% 69.58 10,000
FANG 30% 70.36 -
NC Same Rep. 30% 63.65 -
U-U Same Rep. 30% 66.26 10,000
FANG 10% 66.83 -
NC Same Rep. 10% 58.16 -
U-U Same Rep. 10% 65.70 10,000

Table 8: Results on (Nguyen et al., 2020) using the
same representations as (Nguyen et al., 2020). In this

setup, we use the same article (TFIDF + semantic from
GLOVE (Pennington et al., 2014) of the text), source
(TFIDF + semantic of homepage and about us), and

user (TFIDF + semantic of profile bio) representations
as (Nguyen et al., 2020), that they released online.

ments when compared to the node classification
graph baseline, showing that inference operators
can help models even with weak initial node repre-
sentations. Further, the inference operator models
compete with the best results from Nguyen et al..
We hypothesize that when inference operators are
combined with the extra information Nguyen et al.
used (stance prediction/temporal data), overall per-
formance would be higher and exceed Nguyen et al.
even with the same embeddings as them, and leave
this for future work.

D Supplemental Material: Improved
Inference

D.1 Inference Process

In Sec 5.1 we discussed a potential extension of
our user-user inference operator based approach,
where instead of adding the top k edges based on
only embedding similarity search, we used a global
probabilistic inference approach. Here, we explain
that process in more detail.

In our current approach in Sec 3, we had consid-
ered similarity scores between all pairs of nodes
for each inference operator, and chosen the top k to
connect, where k was determined from the devel-

opment set. While successful, this process may not
always connect the best set of edges. For example,
consider a situation when there are three users: A,
B, C. Assume the inference operators decided to
connect A and B with an edge, and likewise B and
C. In this case, it’s clear that A and C are likely
in the same information community, as they are
both connected to B (by the property of transitiv-
ity). However, in our current approach, we may
not connect A and C, if their graph embeddings are
not similar enough. At the same time, if A and C
are very dissimilar, or they have a very different
level of factuality (as determined by the training
set), then we likely don’t want to connect them (de-
spite them both being connected to B. Thus, having
a setup that allows all these decisions to be made
jointly, would be beneficial.

For this reason, we explore how we can take ad-
vantage of global relational learning, to determine
what edges to connect. In this work, we used a
framework called DRaiL (Pacheco and Goldwasser,
2021). DRaiL is a probabilistic learning framework
for learning a relational model using weighted log-
ical rules. We described the settings as a factor
graph in Fig 3 in Sec 5.1.

In the factor graph, we define two decision vari-
able types, F associated with a user’s factuality
prediction, and E associated with the inference op-
erator outcome on a user pair. Each is associated
with a scoring function, ψ1 scoring users factual-
ity assignments, and ψ2 scoring user pairs based
on embedding similarity (similarity comes from
FAISS, as before). The assignments are connected
using two sets of constraints: C, ensuring factu-
ality label consistency in users connected via a
predicted edge, and T, ensuring transitivity across
pairs of edges, sharing a node (explained above).
DRaiL then uses MAP inference to identify the
solution edge set. The results in Tab. 3, show a
modest improvement (72.17) compared to local in-
ference (71.97), obtained using significantly less
edges (6.7K compared 30K).

Each scoring function (ψ1, ψ2) is given a weight
in the MAP inference problem. For us, as factuality
is important, we weighted ψ1 (user factuality) with
weight 5000 and ψ2 (user-user similarity scores)
with weight 1.0. Each constraint (C, T) is weighted
equally. We determined all the weights experimen-
tally, using the development set.

The factuality score for each user in the graph
is probabilistic, spanning across the three values
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- high, low, and mixed. We determined factual-
ity labels for users using the training set, where
users that follow training set sources or interact
with training set articles are assigned the label of
the respective source (if there are multiple, then
this determines the probability - for example a user
following 5 sources, 3 of which have a high fac-
tuality label in the training set, would have a 0.6
probability of being high factuality). For users that
don’t interact with training set articles, we look
at all their indirect connections in the graph up to
two hops away (a directly connected node is one
hop away) and assign the label that way (for ex-
ample, a user that interacts with another user that
interacts with an article would be given the label
of that article). Users that aren’t assigned labels to
this process are ignored, but as our graph is well
connected, there are only 21 of these out of 69K.
In the future, if new sources were added that were
not in the training set and we wanted to use them
to compute user labels (for example if their users
weren’t connected to anything in the training set),
then we could also use the model source predictions
to approximate their labels.

After receiving the top k similarity scores from
the model based on FAISS, which we call can-
didates (30,000 candidates in the case of users-
users), DRaiL solves the constrained MAP prob-
lem of deciding which edges to add based on the
weighted scores and constraints provided (and dis-
cussed above). Through experimental testing, we
decided to add a minimum of 5,000 candidates,
and then DRAIL can further add edges based on
which ones solve the optimization problem. In to-
tal, on average across the data splits for (Baly et al.,
2020b) and the user-user inference operator, we
added 6,732 edges.

D.2 Inference Benefits

Using a system like DRaiL for global inference has
several benefits, some of which we discuss here.

Theoretically, through weighted scoring func-
tions and constraints, DRaiL allows more knowl-
edge to be incorporated into the node connection
decision making process, which can eventually im-
prove fake news detection performance. Here, we
began to explore the users-users case, where we
considered model similarity score, user factuality
labels, and the transitivity constraint. However,
more scoring functions and constraints can also be
added in the future, such as increasing the likeli-

hood of connecting users that talk about the same
events. In this case, a semantic model could be
used to determine the likelihood that two users are
talking about the same event, and that could be
passed in as an additional scoring function to a
system like DRaiL. Similarly, there could also be
additional constraints.

From an experimental perspective, by using
DRaiL we saw performance improvements sim-
ilar to our initial approach (slightly better in Ta-
ble 3) by using significantly less edges ( 6,732
for DRaiL vs 30,000 for our similarity score ap-
proach). Adding less edges has several benefits,
such as introducing less noise, being faster (which
could also help in early detection of fake news),
and not making the graph too large.

In the future, as more scoring functions and con-
straints are added, and more inference operator
types are explored via an optimization system like
DRaiL, we may see further performance improve-
ments on fake news detection. Exploring this fur-
ther is a very interesting direction for our future
work.
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