
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6001 - 6015

May 22-27, 2022 c©2022 Association for Computational Linguistics

Graph Pre-training for AMR Parsing and Generation

Xuefeng Bai♠♡ , Yulong Chen♠♡ , Yue Zhang♡♢

♠ Zhejiang University, China
♡ School of Engineering, Westlake University, China

♢ Institute of Advanced Technology, Westlake Institute for Advanced Study, China

Abstract

Abstract meaning representation (AMR) high-
lights the core semantic information of text in
a graph structure. Recently, pre-trained lan-
guage models (PLMs) have advanced tasks of
AMR parsing and AMR-to-text generation, re-
spectively. However, PLMs are typically pre-
trained on textual data, thus are sub-optimal for
modeling structural knowledge. To this end,
we investigate graph self-supervised training
to improve the structure awareness of PLMs
over AMR graphs. In particular, we introduce
two graph auto-encoding strategies for graph-
to-graph pre-training and four tasks to integrate
text and graph information during pre-training.
We further design a unified framework to bridge
the gap between pre-training and fine-tuning
tasks. Experiments on both AMR parsing and
AMR-to-text generation show the superiority of
our model. To our knowledge, we are the first
to consider pre-training on semantic graphs.

1 Introduction

Abstract meaning representation (AMR; Banarescu
et al. (2013)) is a semantic structure formalism. It
represents the meaning of a text in a rooted directed
graph, where nodes represent basic semantic units
such as entities and predicates, and edges represent
their semantic relations, respectively. One example
is shown in Figure 1(a), with the corresponding
sentence in Figure 1(b). Serving as a structural
representation, AMR has been shown useful for
NLP tasks such as text summarization (Liu et al.,
2015; Liao et al., 2018; Chen et al., 2021), machine
translation (Song et al., 2019), information extrac-
tion (Huang et al., 2016; Zhang and Ji, 2021) and
dialogue systems (Bai et al., 2021).

There are two fundamental NLP tasks concern-
ing AMR, namely AMR parsing (Flanigan et al.,
2014; Konstas et al., 2017; Lyu and Titov, 2018;
Guo and Lu, 2018; Zhang et al., 2019a; Cai and
Lam, 2020; Bevilacqua et al., 2021) and AMR-to-
text generation (Konstas et al., 2017; Song et al.,

possible

:domain

go-01

:polarity

negative

:arg0

boy
(a) (b)

The boy cannot go.
AMR parsing

AMR-to-text

Figure 1: Illustration of AMR tasks: (a) an AMR graph;
(b) a corresponding sentence.

2018; Zhu et al., 2019; Zhao et al., 2020; Bai et al.,
2020; Ribeiro et al., 2021a). As shown in Figure 1,
the former transforms a textual input (e.g., a sen-
tence) into a corresponding AMR structure, and
the latter transforms an AMR input into a fluent
and grammatical sentence that conveys the same
meaning. A common challenge to both tasks is that
AMR exists in the form of a graph structure, which
is difficult for neural models to learn with limited
human-curated data.

Recently, large-scale pre-trained sequence-to-
sequence (seq2seq) language models (Lewis et al.,
2020; Raffel et al., 2020) have been shown use-
ful for both tasks above. The basic idea is to lin-
earize AMR structures into a sequence form, so
that both AMR parsing and AMR-to-text genera-
tion can be solved as standard seq2seq tasks, using
a pre-trained language model fine-tuned on task-
specific data. In this way, semantic knowledge
learned in self-supervised text-to-text (t2t) pre-
training can benefit both text-to-graph (t2g) and
graph-to-text (g2t) transformation.

Intuitively, structural knowledge from AMR can
be a useful complement to semantic knowledge
from text. A natural question is whether similar
self-supervision strategy can be useful for AMR
graphs, so that graph-to-graph (g2g) denoise auto-
encoder training can serve as effective addition to
t2t pre-training, before a model is fine-tuned on
t2g and g2t tasks. We investigate this problem
in this paper. In particular, there are three ques-
tions of interest. First, as mentioned before, is g2g

6001

pre-training complementary to t2t pre-training?
Second, what is the most effective way to combine
t2t and g2g training? Third, is silver data useful
for AMR self-supervision training, and what is the
most effective way of making use of such data?

Taking BART (Lewis et al., 2020) as the seq-
to-seq model, we introduce two strategies for g2g
pre-training and propose four tasks to combine t2t
and g2g training. To reduce the gap among dif-
ferent pre-training tasks and between pre-training
and fine-tuing, we unify all pre-training tasks and
fine-tuning tasks in a general framework. Experi-
mental results on standard benchmarks show that:
1) graph pre-training achieves significant improve-
ments over the state-of-the-art systems; 2) silver
data are useful for our pre-training framework; 3)
our pre-training framework is a better way than fine-
tuning to make use of silver data and; 4) our model
is more robust than existing systems in unseen do-
mains. Our final models give the best reported
results on both AMR parsing and AMR-to-text gen-
eration tasks, with a large margin of improvement
over the previous best results. To our knowledge,
we are the first to consider graph-to-graph self-
supervised training on semantic graphs. We release
code at https://github.com/muyeby/AMRBART.

2 Related Work

AMR Parsing. Early AMR parsing systems use
statistical methods (Flanigan et al., 2014, 2016;
Wang et al., 2015a,b). With the advance in deep
learning, various neural models are developed for
AMR parsing. Those models can be categorized
into: 1) neural transition-based parsers (Ballesteros
and Al-Onaizan, 2017; Liu et al., 2018; Fernan-
dez Astudillo et al., 2020; Zhou et al., 2021); 2)
sequence-to-graph parsers (Zhang et al., 2019a;
Lyu et al., 2020; Cai and Lam, 2020) and; 3)
sequence-to-sequence parsers (Konstas et al., 2017;
Peng et al., 2017, 2018; Zhang et al., 2019b; Xu
et al., 2020; Bevilacqua et al., 2021). Recently, pre-
training techniques have significantly boosted the
performance of AMR parsing. For example, Lyu
and Titov (2018), Zhang et al. (2019a,b) and Cai
and Lam (2020) use BERT (Devlin et al., 2019) for
sentence encoding; Bevilacqua et al. (2021) fine-
tune BART for sequence-to-AMR generation. Xu
et al. (2020) pre-train a model on relevant seq2seq
learning tasks (e.g., machine translation (Bahdanau
et al., 2015), syntactic parsing (Zhu et al., 2013))
before fine-tuning on AMR parsing. Similar to

those methods, we consider using pre-trained mod-
els to improve the model capacity. However, previ-
ous studies focus on fine-tuning language models
trained on text data for AMR parsing task, in con-
tract, we focus on integrating structural information
into the pre-training. In addition, our method does
not require information from auxiliary tasks.
AMR-to-Text Generation. On a coarse-grained
level, we categorize existing AMR-to-text gener-
ation approaches into two main classes: Graph-
to-sequence models that adopt a graph encoder to
process an AMR graph and use a sequence decoder
for generation (Beck et al., 2018; Damonte and
Cohen, 2019; Zhu et al., 2019), and sequence-to-
sequence models that linearize an AMR graph into
a sequence and solve it as a seq2seq problem using
randomly initialized (Konstas et al., 2017) or pre-
trained models (Mager et al., 2020; Ribeiro et al.,
2021a; Bevilacqua et al., 2021). This work follows
a seq2seq manner, but we use an encoder that inte-
grates AMR and text information. The closest to
our work, Ribeiro et al. (2021b) integrate AMR
structures into pre-trained T5 (Raffel et al., 2020)
using adapters (Houlsby et al., 2019) for AMR-to-
text generation. However, they do not pre-train on
AMR graphs, and their method cannot solve both
AMR parsing and AMR-to-text generation tasks as
they require the full AMR structure as the input.
Graph Self-supervised Learning. Kipf and
Welling (2016) introduce a variational graph auto-
encoder to allow self-supervised learning on graph
data. Hu et al. (2020a,b) propose local and global
learning strategies to pre-train a graph neural net-
work on large-scale protein ego-networks, aca-
demic graphs and recommendation data. Lu et al.
(2021) enhance the graph learning strategies of Hu
et al. (2020b) with dual adaptations. While existing
work considers graph neural networks, we pre-train
a seq2seq model on AMR graphs. In addition, we
jointly pre-train on graphs and text for graph-text
correlation modeling. In contrast, existing work
pre-trains models on graphs and in isolation with
text pre-training. To our knowledge, we are the first
to consider AMR as a graph pre-training target.

3 Method

We take BART (Lewis et al., 2020) as the basic
seq2seq model (Section 3.1), and introduce graph
pre-training strategies (Section 3.2) and an unified
pre-training framework (Section 3.3) for both AMR
parsing and AMR-to-text generation.

6002

https://github.com/muyeby/AMRBART

possible

:domain

go-01

:polarity

negative

:arg0

boy

possible

:domain

[mask]

:polarity

negative

[mask]

boy

possible

:domain :polarity

negative[mask]

(a) (b) (c)

Figure 2: Illustration of two graph pre-training strategies: 1) node/edge level denoising (a→ b); 2) sub-graph level
denoising (c→ b). Two transformations can be composed.

3.1 BART
BART (Lewis et al., 2020) is a pre-trained
denoising auto-encoder, which is implemented
as a seq2seq model based on standard Trans-
former (Vaswani et al., 2017) architecture. Typ-
ically, BART is trained to reconstruct original text
based on a corrupted text generated by 5 noising
functions: 1) Token Masking. Tokens are randomly
replaced by [mask] elements; 2) Token Deletion.
Tokens are randomly deleted from the input; 3)
Text Infilling. Text spans are randomly replaced by
a single [mask] token; 4) Sentence Permutation.
Text is divided into segments and then shuffled; 5)
Document Rotation. A document is rotated to start
with a random token. In the fine-tuning, BART
takes a complete text as input and maps it into a
task-specific output sequence.

We linearize an AMR graph into a sequence,
so that both AMR parsing and AMR-to-text
generation can be performed using a seq2seq
model. In addition, it allows pre-training on AMR
structures using BART. Following Konstas et al.
(2017), we adopt the depth-first search (DFS)
algorithm, which is closely related to the linearized
natural language syntactic trees (Bevilacqua et al.,
2021). For instance, the AMR graph in Figure 1 is
linearized into: (<Z0> possible :domain
(<Z1> go :arg0 (<Z2> boy))
:polarity (<Z3> negative)) ,
where <Z0>, <Z1> and <Z2> are special tokens
to handle co-referring nodes. To deal with such
AMR symbols, we follow previous work (Bevilac-
qua et al., 2021) and expand the vocabulary by
adding all relations and frames. In addition, to dis-
tinguish between texts and AMR graphs, we add
two special tokens, <g> and </g>, to mark the
beginning and end of AMR graphs, respectively.

3.2 Pre-training on AMR graphs
We introduce two self-supervised training strate-
gies to further pre-train a BART model on AMR

graphs. As shown in Figure 2(a), the node/edge
level denoising strategy encourages the model to
capture local knowledge about nodes and edges.
The graph level denoising strategy (Figure 2(c))
enforces the model to predict a sub-graph, thus
facilitating the graph-level learning.

1) Node/edge level denoising. We apply a noise
function on AMR nodes/edges to construct a noisy
input graph. In particular, the noise function is im-
plemented by masking 15% nodes and 15% edges
in each graph. As shown in Figure 2(a), the node
[go-01] and edge [:arg0] are replaced with
two [mask] tokens.

2) Sub-graph level denoising. This task aims to
recover the complete graph when given part of the
graph. We randomly remove a sub-graph1 from
the graph and replace it with a [mask] token (cf.
Figure 2(c)). The masking probability is 0.35.

3.3 Unified Pre-training Framework
The above standard pre-training and fine-tuning
strategies are shown in Table 1(a), by using <s>
and <g> for differentiating text and graphic infor-
mation, respectively. However, the model does
not fully learn the interaction between textual and
AMR information during pre-training. To fur-
ther address this issue, we consider a unified pre-
training framework, which combines text and AMR
sequences as input to the denoise auto-encoder. In
this way, dynamic masking can be carried out on
the text, AMR or both ends, so that the model can
learn to make use of one source of information for
inferring the other. This can benefit both a parser
and a generation model by enforcing the learning of
correspondence between text and AMR structures.

In addition, as shown in Table 1, there is a gap
between standard pre-training and fine-tuning for
AMR from/to text transduction. Specifically, the in-
put and output formats are same in the pre-training
(i.e., t̂2t and ĝ2g) but different in the fine-tuning

1We define a sub-graph has at least one edge and one node.

6003

Phase Task Input Output

(a)
Std. P.T. t̂2t <s> x1, ..[mask].., xn </s> <s> x1, x2, ..., xn </s>

ĝ2g <g> g1, ..[mask].., gm </g> <g> g1, g2, ..., gm </g>

Std. F.T. g2t <g> g1, g2, ..., gm </g> <s> x1, x2, ..., xn </s>
t2g <s> x1, x2, ..., xn </s> <g> g1, g2, ..., gm </g>

(b)
Unified P.T.

t̂g2t <s> x1, ..[mask].., xn </s> <g> [mask] </g> <s> x1, x2, ..., xn </s>
tĝ2g <s> [mask] </s><g> g1, ..[mask].., gm </g> <g> g1, g2, ..., gm </g>
t̂g2t <s> x1, ..[mask].., xn </s> <g> g1, g2, ..., gm </g> <s> x1, x2, ..., xn </s>
tĝ2g <s> x1, x2, ..., xn </s> <g> g1, ..[mask].., gm </g> <g> g1, g2, ..., gm </g>
t̂ĝ2t <s> x1, ..[mask].., xn </s> <g> g1, ..[mask].., gm </g> <s> x1, x2, ..., xn </s>
t̂ĝ2g <s> x1, ..[mask].., xn </s> <g> g1, ..[mask].., gm </g> <g> g1, g2, ..., gm </g>

Unified F.T. tg2t <s> [mask] </s> <g> g1, g2, ..., gm </g> <s> x1, x2, ..., xn </s>
tg2g <s> x1, x2, ..., xn </s> <g> [mask] </g> <g> g1, g2, ..., gm </g>

Table 1: Different pre-training and fine-tuning strategies. P.T. = pre-training, F.T. = fine-tuning. t/g denotes the
original text/graph. t̂/ĝ represents a noisy text/graph. t/g means an empty text/graph.

(i.e., t2g and g2t). This gap restrains models to
make the best use of pre-trained knowledge in the
fine-tuning phase. The unified pre-training frame-
work can also benefit task-specific fine-tuning by
eliminating the difference of input and output for-
mats between pre-training and fine-tuning.

Formally, denoting the text and linearized graph
sequence as t and g, where t = {x1, x2, ..., xn}
and g = {g1, g2, ..., gn}. t̂ and ĝ represent the
noisy text and graph, respectively, and t and g
refer to the empty text and graph, respectively. As
shown in Table 1(b), we unify the input format
for both pre-training and fine-tuning to tg. For
consistency, all input sequences start with a text
sequence and end with a graph sequence.
Joint Text and Graph Pre-training. We introduce
4 auxiliary pre-training tasks to encourage infor-
mation exchanging between graphs and text. As
shown in Table 1(b), the auxiliary tasks are:

1) Graph augmented text denoising (t̂g2t),
where an AMR graph is taken as additional input
to help masked text reconstruction;

2) Text augmented graph denoising (tĝ2g),
where text helps masked graph reconstruction;

3) Noisy graph augmented text denoising
(t̂ĝ2t), where the target text is generated based
on a pair of masked text and masked graph;

4) Noisy text augmented graph denoising
(t̂ĝ2g), where a target graph is generated based
on a pair of masked text and masked graph.
Dynamic masking rate. Different from standard
masking (Devlin et al., 2019) that uses a static
masking rate, we adopt a dynamic masking rate
p for task t̂g2t and tĝ2g. Formally, at step t, we
calculate the masking probability p as:

p = 0.1 + 0.75 ∗ t/T, (1)

where 0.1 is the initial masking rate, T denotes
the total training step. p increases as t grows, as t
approaches to T , the pre-training tasks t̂g2t and
tĝ2g are closer to fine-tuning tasks.
Unified Pre-training and Fine-tuning. In our
unified framework, fine-tuning tasks can be viewed
as having an empty text/graph in the original input,
resulting in an input format of tg2t for AMR-to-
text generation and tg2g for AMR parsing. In
this way, pre-training and fine-tuning tasks share
the same input format, thus facilitating knowledge
transfer from pre-training to fine-tuning.

3.4 Training
To pre-train our model, we optimize the total loss
(Ltotal) which is calculated as:

Lt̂2t = − logP (t|t̂,g),
Lĝ2g = − logP (g|t, ĝ),
Lt̂g2t = − logP (t|t̂,g),
Ltĝ2g = − logP (g|t, ĝ),
Lt̂ĝ2t = − logP (t|t̂, ĝ),
Lt̂ĝ2g = − logP (g|t̂, ĝ),
Ltotal = Lt̂2t + Lĝ2g + Lt̂g2t

+ Ltĝ2g + Lt̂ĝ2t + Lt̂ĝ2g,

(2)

where Lt̂2t and Lĝ2g are standard pre-training loss
on text (Section 3.1) and graph (Section 3.2), re-
spectively. Lt̂g2t,Ltĝ2g,Lt̂ĝ2t and Lt̂ĝ2g denote
joint pre-training losses (Section 3.3), respectively.

For fine-tuning, the training objectives are:

Lamr2text = − logP (t|t,g),
Ltext2amr = − logP (g|t,g),

(3)

where Lamr2text and Ltext2amr are training loss
of AMR-to-text generation and AMR parsing, re-
spectively.

6004

Datasets AMR2.0 AMR3.0 New3 TLP Bio

Train 36521 55635 - - -
Valid 1368 1722 - - -
Test 1371 1898 527 1562 500

Table 2: Benchmark AMR datasets.

4 Experiments

We evaluate the effectiveness of our model on five
benchmarks and compare the results with state-of-
the-art models on AMR parsing and AMR-to-text
generation, respectively. In addition to standard
supervised training settings, we evaluate the robust-
ness of our model in a zero-shot domain adaptation
setting.

4.1 Datasets

Table 2 shows the statistics of datasets. Follow-
ing Bevilacqua et al. (2021), we use the AMR2.0
(LDC2017T10) and AMR3.0 (LDC2020T02). We
also evaluate the model performance on New3, The
Little Prince (TLP) and Bio AMR (Bio) corpora.
For pre-training, we additionally use 200k silver
data parsed by SPRING (Bevilacqua et al., 2021).
These data are randomly selected from Gigaword
(LDC2011T07) corpus, which shares the same tex-
tual source with AMR data.2

4.2 Settings

We follow Bevilacqua et al. (2021) in pre-
processing and post-processing AMR graphs, ex-
cept for omitting the recategorization step which
does not consistently improve model performance
in our preliminary experiments. Our model is built
based on a vanilla BART3. The best model and
hyper-parameters are selected by performance on
the validation set. The detailed hyper-parameters
are given in Appendix A.
Metrics. Following Bevilacqua et al. (2021), we
evaluate on the AMR parsing benchmarks by us-
ing Smatch (Cai and Knight, 2013) and other fine-
grained metrics.4 Regarding AMR-to-text, we use
three common Natural Language Generation mea-
sures, including BLEU (Papineni et al., 2002),
CHRF++ (Popović, 2017) and METEOR (Baner-
jee and Lavie, 2005), tokenizing with the script
provided with JAMR (Flanigan et al., 2014).

2https://catalog.ldc.upenn.edu.
3https://github.com/huggingface.
4Please refer to Appendix B for more details.

Setting Smatch BLEU Avg

BART-base 82.7 42.5 62.6
+ t̂g2t 82.9 42.9 62.9
+ tĝ2g 83.1 42.6 62.9
+ t̂g2t, tĝ2g 83.1 42.8 63.0
+ t̂g2t, tĝ2g, tĝ2g 83.4 42.8 63.1
+ t̂g2t, tĝ2g, t̂g2t 83.1 45.3 63.2
+ t̂g2t, tĝ2g, tĝ2g, t̂g2t 83.3 45.0 63.2
+ t̂g2t, tĝ2g, t̂ĝ2g 83.2 43.0 63.1
+ t̂g2t, tĝ2g, t̂ĝ2t 83.1 44.2 63.7
+ t̂g2t, tĝ2g, t̂ĝ2g, t̂ĝ2t 83.2 44.0 63.6
+ ALL 83.6 45.6 64.1

Table 3: AMP parsing (Smatch) and AMR-to-text gen-
eration (BLEU) performance on valid set of AMR2.0.

4.3 Compared Models

For AMR parsing, we consider following sys-
tems for comparison: 1) Lyu and Titov (2018;
LyuT), a neural parser trained by jointly modeling
alignments, concepts and relations; 2) Zhang et al.
(2019b; Zhang+), a seq2seq approach that incre-
mentally builds up an AMR via predicting semantic
relations; 3) Zhou et al. (2020; Zhou+), an aligner-
free parser enhanced by explicit dependency and
latent structures; 4) Cai and Lam (2020a; CaiL),
a graph-based parser that enhances incremental
sequence-to-graph model with a graph-sequence
iterative inference mechanism; 5) Bevilacqua et al.
(2021; Bevilacqua+), a fine-tuned BART model
that predicts a linearized AMR graph.

For AMR-to-text generation, the compared
models are: 1) Zhu et al. (2019; Zhu+),
a Transformer-based model that enhances self-
attention with graph relations; 2) Zhang et al.
(2020; Zhang+), a graph-to-sequence model which
uses a dynamic graph convolutional networks for
better graph modeling. 3) Bai et al. (2020; Bai+),
a graph encoder (Zhu et al., 2019) with a structural
decoder that jointly predicts the target text and the
input structure; 4) Mager et al. (2020; Mager+), a
fine-tuned GPT that predicts text based on a PEN-
MAN linearized AMR graph; 5) Bevilacqua et al.
(2021; Bevilacqua+), a fine-tuned BART that pre-
dicts text based on a DFS linearized AMR graph; 6)
Ribeiro et al. (2021; Ribeiro+), a fine-tuned BART
based on a PENMAN linearized AMR graph. For
a fair comparison, we leave out models based on
T5 (Ribeiro et al., 2021a,b), which has about two
times more parameters than BART.

6005

https://catalog.ldc.upenn.edu
https://github.com/huggingface

Setting AMR parsing AMR-to-text

Full Model 83.6 45.6
- Node/edge masking 83.4 45.1
- Sub-graph masking 83.1 44.7

Table 4: Impact of two masking strategies.

4.4 Development Experiments

Table 3 shows results on the validation set of
AMR2.0 under different model settings, where we
take a fine-tuned BART-based model (Bevilacqua
et al., 2021) as our baseline.

We first study the effectiveness of pre-training
only on text and graphs. As shown in Table 3, both
pre-training on the text (t̂g2t) and graph (tĝ2g)
leads to better results, and combining them can
give better results on both tasks. Also, adding joint
pre-training tasks improves the performance. In
particular, tĝ2g gives a Smatch improvement of
0.7 for AMR paring, and t̂g2t reaches a BLEU
of 45.3 for AMR-to-text generation, which is 2.8
points higher than baseline. Adding t̂ĝ2g gives
a Smatch of 83.2 for AMR parsing, and t̂ĝ2t
improves the baseline by 1.7 BLEU points for gen-
eration. By combining tĝ2g and t̂g2t, the per-
formance increase by 0.6 and 2.5 points on AMR
parsing and AMR-to-text generation, respectively.
Similar trend can be observed by combining t̂ĝ2g
and t̂ĝ2t. Finally, using all 6 pre-training tasks,
our model reach a result of 83.6 Smatch and 45.6
BLEU, respectively.

We also study the impact of two graph self-
supervised training strategies. In particular, we
evaluate the performance after removing the
node/edge or the sub-graph masking task indepen-
dently. As shown in Table 4, the performance de-
creases on both AMR parsing and AMR-to-text
generation tasks without the node/edge level mask-
ing strategy. The performance drop is larger when
removing the sub-graph masking task, with a mar-
gin of 0.5 Smatch and 0.9 BLEU, respectively.

Figure 3(a) compares the performance of stan-
dard pre-training (t̂2t, ĝ2g) and fine-tuning (t2g,
g2t) with our unified framework. The unified
framework gives better results than standard ver-
sions on both tasks. This confirms our assumption
that our unified framework is helpful for reducing
the gap between pre-training and fine-tuning. Be-
sides, we find that by unifying pre-training and fine-
tuning formats, our model converges faster than the
baseline during fine-tuning (cf. Appendix C.1).

82

84

40

42

 AMR2Text AMR Parsing

std
ours

(a)

82

83

84

0 10 20 20042

44

46
AMR parsing
AMR-to-text

(b)

Figure 3: Development results: (a) comparison of stan-
dard pre-training and fine-tuning phase (std) and our
unified frameworks; (b) impact of silver data.

Figure 3(b) shows the model performance re-
garding different scales of silver data. Even with-
out silver data, the performance of our model is
better than the baseline, indicating that graph pre-
training is beneficial for downstream tasks when
using various auxiliary tasks. When silver data are
available, the performance of both AMR parsing
and AMR-to-text generation tasks increases as the
scale of silver data increases, with a margin of 2
BLEU score. We also fine-tune a BART model on
silver data under our unified framework (i.e., tg2t
and tg2g), and find that our dual graph and text
denoising tasks are more useful (cf. Appendix C.2
for more analysis and discussion).

4.5 Main Results

AMR parsing. Table 5 lists the result of different
models on AMR2.0 and AMR3.0. Among pre-
vious works, Bevilacqua+ (2021, large) achieves
the best results, consistently outperforming other
systems. Compared with the system of Bevilac-
qua et al. (2021), our model obtains significantly
(p<0.01) better Smatch scores in both base and
large settings on both datasets. In particular, our
base model outperforms the Bevilacqua+ (2021,
base) by 0.9 Smatch point on AMR2.0, and our
large model obtains a Smatch of 85.4 and 84.2 on
AMR2.0 and AMR3.0, respectively. To our knowl-
edge, these are the best-reported results, showing
the effectiveness of our method.

Besides, Bevilacqua+ (2021, large)s uses silver
data for fine-tuning, yet does not lead to consis-
tent improvement over Bevilacqua+ (2021, large).
In contrast, our large model gives 1.1 and 1.2
higher Smatch than Bevilacqua+ (2021, large)s on
AMR2.0 and AMR3.0, respectively. This indicates
that our pre-training framework is a better way than
fine-tuning to make use of silver data. The main

6006

Model Smatch Unlab. NoWSD Con. Wiki. NER Reent. Neg. SRL

AMR2.0
LyuT (2018) 74.4 77.1 75.5 85.9 75.7 86.0 52.3 58.4 69.8
Zhang+ (2019b)† 77.0 80.0 78.0 86.0 86.0 79.0 61.0 77.0 71.0
Zhou+ (2020)† 77.5 80.4 78.2 85.9 86.5 78.8 61.1 76.1 71.0
CaiL (2020a)† 80.2 82.8 80.0 88.1 86.3 81.1 64.6 78.9 74.2
Xu+ (2020)† 80.2 83.7 80.8 87.4 75.1 85.4 66.5 71.5 78.9
Bevilacqua+ (2021, base)† 82.7 85.1 83.3 89.7 82.2 90.0 70.8 72.0 79.1
Bevilacqua+ (2021, large)† 84.5 86.7 84.9 89.6 87.3 83.7 72.3 79.9 79.7
Bevilacqua+ (2021, large)†s 84.3 86.7 84.8 90.8 83.1 90.5 72.4 73.6 80.5
Ours (base)† 83.6 86.7 84.0 90.2 78.6 90.0 71.3 73.7 79.5
Ours (large)† 85.4 88.3 85.8 91.2 81.4 91.5 73.5 74.0 81.5

AMR3.0
Bevilacqua+ (2021, large)† 83.0 85.4 83.5 89.8 82.7 87.2 70.4 73.0 78.9
Bevilacqua+ (2021, large)†s 83.0 85.4 83.5 89.5 81.2 87.1 71.3 71.7 79.1
Ours (base)† 82.5 85.7 82.9 89.4 76.1 86.8 69.9 70.3 78.2
Ours (large)† 84.2 87.1 84.6 90.2 78.9 88.5 72.4 72.1 80.3

Table 5: AMR parsing results on AMR2.0 and AMR3.0. ∗ means the model uses 200k silver data for fine-tuning. †
means the model is based on pre-trained models. The best result within each row block is shown in bold.

reason is that our models are pre-trained using a
denoising auto-encoding manner, which is less sen-
sitive to silver (or noisy) data than fine-tuning. We
also find that further fine-tuning our models on
silver data (same with pre-training) cannot bring
improvement (cf. Appendix C.3).
AMR-to-text generation. We report the results
of different systems on AMR2.0 and AMR3.0 in
Table 6, respectively. With the help of BART,
Ribeiro+ (2021) and Bevilacqua+ (2021, large) ob-
tain significantly better results than previous graph-
to-sequence and GPT-based models. Compared
with Bevilacqua+ (2021), our models (base and
large) give significantly (p<0.001) better results in
terms of all evaluation metrics. In particular, our
base model achieves comparable or better perfor-
mance than Bevilacqua+ (2021, large). Compared
with Bevilacqua+ (2021, large)s, our large model
improves the performance by 3.9 and 2.7 points on
AMR2.0 and AMR3.0, respectively. Similar with
AMR parsing, we observe that when fine-tuning
our models on silver data cannot bring improve-
ment for AMR-to-text generation task (Table 6 and
Appendix C.3).
Zero-shot Domain Adaption. We use the model
trained on AMR2.0 to get predictions on out-of-
domain test sets. Table 7 shows the results on AMR
parsing and AMR-to-text generation tasks. Similar
to in-domain experiments, our models achieve bet-
ter results than existing methods. In particular, our
base model can give comparable performance than
Bevilacqua+ (2021, large), and our large model ob-
tains the best-reported results. This indicates that

Model BLEU CH. MET.

AMR2.0
Zhu+ (2019) 31.8 64.1 36.4
Zhang+ (2020) 33.6 63.2 37.5
Bai+ (2020) 34.2 65.7 38.2
Mager+ (2020)† 33.0 63.9 37.7
Ribeiro+ (2021)†‡ 45.9 - 41.2
Bevilacqua+ (2021, base)† 42.7 72.2 40.7
Bevilacqua+ (2021, large)† 45.3 73.5 41.0
Bevilacqua+ (2021, large)s† 45.9 74.2 41.8
Ours (base)† 46.6 74.6 41.4
Ours (large)† 49.8 76.2 42.6

AMR3.0
Zhang+ (2020) 34.3 63.7 38.2
Bevilacqua+ (2021, large)† 44.9 72.9 40.6
Bevilacqua+ (2021, large)s† 46.5 73.9 41.7
Ours (base)† 45.9 73.8 40.8
Ours (large)† 49.2 76.1 42.3

Table 6: AMR-to-text results on AMR2.0 and AMR3.0.
CH.=CHRF++. MET.=METEOR. ∗ means the model
uses 200k silver data for fine-tuning. Models marked
with † are based on PLMs. The best result within each
row block is shown in bold. ‡For fair comparison, we
report results of tokenized output of Ribeiro+ (2021).

our model is more robust to new domains, thanks to
joint graph and text pre-training. Regarding differ-
ent domains, our method achieves bigger improve-
ments on New3 than the other two domains. This
is intuitive, as pre-training strengthens the model
representation power on the domain of graph pre-
training data, and New3 is closer to it than other
two datasets.

In addition, Bevilacqua+ (2021, large)s gives
lower results than Bevilacqua+ (2021, large) in

6007

Model New3 TLP Bio

AMR Parsing
Bevilacqua+ (2021, large) 73.7 77.3 59.7
Bevilacqua+ (2021, large)s 71.8 77.5 59.5
Ours (base) 74.4 77.8 58.8
Ours (large) 76.9 79.8 63.2

AMR-to-Text
Bevilacqua+ (2021, large) 38.8 25.4 18.7
Bevilacqua+ (2021, large)s 38.2 25.1 19.4
Ours (base) 41.0 26.4 16.9
Ours (large) 44.8 29.1 20.7

Table 7: Out of distribution performance on AMR pars-
ing (Smatch) and AMR-to-text (BLEU).

New3 (both tasks) and TLP (only AMR-to-text
generation). In contrast, our model gives consistent
improvements on all 3 domains. This can be be-
cause fine-tuning leads to catastrophic forgetting of
distributional knowledge (Kirkpatrick et al., 2017).

4.6 Impact of Graph

Table 8 shows the effects of the graph size, graph
diameter and reentrancies on the performance. We
split the test set of AMR2.0 into different groups
and report the performance improvement over the
baseline model (Bevilacqua et al., 2021). All mod-
els are trained on AMR2.0. We first consider graph
size, which records the number of nodes in an AMR
graph. Our model consistently outperforms the
baseline model on both tasks, with the performance
gap growing on larger graphs. This indicates that
our system is more powerful in dealing with larger
graphs. The main reason is that our joint text and
graph pre-training mechanism enhances the model
with the ability to capture word or span level corre-
lation between text and graph, which is helpful for
dealing with long sequence and large graphs.

The graph depth is defined as the longest dis-
tance between the AMR node and root node. A
graph with deeper depth has more long-range de-
pendencies. For AMR parsing, our model gives a
better Smatch than the baseline model on the first
two groups of graphs, and a comparable score on
graphs with a depth bigger than 6. For AMR-to-text
generation, our model consistently improves over
the baseline model on all graphs, and the improve-
ments are bigger on deeper graphs. This shows
that our model is better for learning more complex
graphs. It can be that our graph masking strategies
train the model to learn the relationships between a
sub-graph and the remaining graph context, making
it easier to understand deep graphs.

Graph Size 1-10 (522) 11-20 (556) >20 (293)
AMR parsing +0.3 +1.0 +0.8
AMR-to-text +0.9 +3.2 +2.1

Graph Depth 1-3 (422) 4-6 (667) >6 (282)
AMR parsing +0.8 +0.9 0.0
AMR-to-text +1.2 +2.3 +2.8

Reentrancies 0 (622) 1-3 (712) >4 (37)
AMR parsing +1.1 +0.6 0.0
AMR-to-text +2.0 +2.7 +0.4

Table 8: Performance improvements on AMR parsing
(Smatch) and AMR-to-text (BLEU).

Reentrancy is the number of nodes that has mul-
tiple parents. Reentrancies pose difficulties to both
AMR parsing and AMR-to-text tasks (Damonte
and Cohen, 2019; Szubert et al., 2020). The more
reentrancies, the harder the graph is to be under-
stood. Our method gives significantly (p<0.01) bet-
ter results on both tasks when the input graphs have
less than 4 reentrancies. For graphs with more than
4 reentrancies, the proposed model is 0.4 better on
AMR-to-text generation task and comparable than
the baseline model on AMR parsing task. This
means that our system has an overall better ability
on learning reentrancies.

4.7 Case study
Table 9 presents two cases of AMR parsing, with
the model outputs generated by our model and the
baseline model, and the gold output given the same
input sentence. As shown in the first case, the base-
line model omits the semantic unit “hard”, thus
generates an incomplete AMR graph of a different
meaning compared with the input sentence. In con-
trast, our system preserves the concept “hard” and
transfers the semantic relations correctly, thanks to
the modeling of correspondence between text and
graph during pre-training. In the second case, the
baseline output includes a cyclic sub-graph (i.e.,
(z1 harm-01 :ARG1 z1)), which is con-
trary to the grammar that AMRs should be acyclic.
Our system gives a valid AMR graph which is se-
mantically similar with gold graph.

Table 10 lists two AMR graphs and model out-
puts of our AMR-to-text model and the baseline
model. In the first case, although the baseline gener-
ates a fluent sentence, it ignores the concept “have-
purpose-91”, resulting in that the generated sen-
tence is of a different meaning compared with the
input graph. In the second AMR graph, “before”
modifies the phrase “won many championships”.
However, in the baseline output, “before” is used to

6008

Text#1: It’s getting hard to keep strong and keep
carrying on with life.

Gold:
(g / get-03

:ARG1 (a / and
:op1 (k / keep-02

:ARG1 (s / strong-02))
:op2 (k2 / keep-02

:ARG1 (c / carry-on-02
:ARG1 (l / live-01))))

:ARG2 (h / hard-02))

Baseline:
(z0 / get-03

:ARG1 (z1 / and
:op1 (z2 / keep-02

:ARG1 (z3 / strong-02))
:op2 (z4 / carry-on-02

:ARG1 (z5 / life))))

Ours:
(z0 / get-03

:ARG1 (z1 / and
:op1 (z2 / keep-02

:ARG1 (z3 / strong-02))
:op2 (z4 / keep-02

:ARG1 (z5 / carry-on-02
:ARG1 (z6 / life))))

:ARG2 (z7 / hard-02
:ARG1 z1))

Text#2: Self harming is addictive, but you can
overcome it.

Gold:
(c / contrast-01

:ARG1 (a / addictive-02
:ARG0 (h / harm-01

:ARG1 (s / self)))
:ARG2 (p / possible-01

:ARG1 (o / overcome-01
:ARG0 (y / you)
:ARG1 h)))

Baseline:
(z0 / addictive-02

:ARG0 (z1 / harm-01
:ARG1 z1)

:concession-of (z2 / possible-01
:ARG1 (z3 / overcome-01

:ARG0 (z4 / you)
:ARG1 z1)))

Ours:
(z0 / contrast-01

:ARG1 (z1 / addictive-02
:ARG0 (z2 / harm-01

:ARG1 (z3 / self)))
:ARG2 (z4 / possible-01

:ARG1 (z5 / overcome-01
:ARG0 (z6 / you)
:ARG1 z1)))

Table 9: Two AMR parsing cases. Given a text input,
we present the gold AMR graph and two model outputs,
parsed by the baseline and our model, respectively.

modify the phrase “participating in international
competitions”. Compared with the baseline, our

AMR#1: (h / have-purpose-91
:ARG1 (t / thing

:ARG1-of (e / expend-01
:ARG2 (t2 / transport-01)))

:ARG2 (a / amr-unknown))

Gold: What is the purpose of transportation-related
expenditures?

Baseline: What are the transportation expenses?
Ours: What is the purpose of transportation expenses?

AMR#2:
(w / win-01

:ARG0 (p2 / person
:wiki -
:name (n / name

:op1 "Fengzhu"
:op2 "Xu"))

:ARG1 (c / championship-02
:ARG0 p2
:quant (m / many))

:time (b / before)
:part-of (c2 / compete-01

:mod (i / international)))

Gold: Fengzhu Xu has won many championships in
international competitions before.

Baseline: Fengzhu Xu won many championships
before participating in international competitions.

Ours: Fengzhu Xu has won many championships in
international competitions before.

Table 10: Two AMR-to-text generation cases. Given an
AMR graph, we present the gold text and two generated
outputs, given by baseline and our model, respectively.

system recovers all concepts and maps the modi-
fication relationship from the AMR graph to text
correctly. This indicates that our model generates
more faithful sentences than the baseline.

5 Conclusion

We investigated graph pre-training as a complement
to text pre-training for AMR parsing and AMR-to-
text generation tasks, using a novel unified frame-
work with dual graph and text denoising. We find
that graph pre-training is highly effective for both
AMR parsing and AMR -to-text generation, and is
a more effective way of making use of silver data
compared with fine-tuning. Our methods give the
best results on multiple benchmarks for both tasks.

Acknowledgments

Yue Zhang is the corresponding author. We would
like to thank anonymous reviewers for their insight-
ful comments. This work is supported by the Na-
tional Natural Science Foundation of China under
grant No.61976180 and the Tencent AI Lab Rhino-
Bird Focused Research Program.

6009

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Xuefeng Bai, Yulong Chen, Linfeng Song, and Yue
Zhang. 2021. Semantic representation for dialogue
modeling. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4430–4445, Online. Association for Computa-
tional Linguistics.

Xuefeng Bai, Linfeng Song, and Yue Zhang. 2020. On-
line back-parsing for AMR-to-text generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1206–1219, Online. Association for Computa-
tional Linguistics.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR
parsing using stack-LSTMs. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1269–1275, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated graph
neural networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 273–283,
Melbourne, Australia. Association for Computational
Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One spring to rule them both: Sym-
metric AMR semantic parsing and generation without
a complex pipeline. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 35(14):12564–12573.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the

58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. Asso-
ciation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 748–752, Sofia, Bulgaria. Association
for Computational Linguistics.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5062–5074, Online. Association for Computa-
tional Linguistics.

Marco Damonte and Shay B. Cohen. 2019. Structural
neural encoders for AMR-to-text generation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 3649–3658, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ramón Fernandez Astudillo, Miguel Ballesteros, Tahira
Naseem, Austin Blodgett, and Radu Florian. 2020.
Transition-based parsing with stack-transformers. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1001–1007, Online.
Association for Computational Linguistics.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime
Carbonell. 2016. CMU at SemEval-2016 task 8:
Graph-based AMR parsing with infinite ramp loss.
In Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1202–
1206, San Diego, California. Association for Compu-
tational Linguistics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the Abstract Meaning Repre-
sentation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1426–1436, Bal-
timore, Maryland. Association for Computational
Linguistics.

Zhijiang Guo and Wei Lu. 2018. Better transition-based
AMR parsing with a refined search space. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1712–1722,

6010

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/2021.acl-long.342
https://doi.org/10.18653/v1/2021.acl-long.342
https://doi.org/10.18653/v1/2020.emnlp-main.92
https://doi.org/10.18653/v1/2020.emnlp-main.92
https://doi.org/10.18653/v1/D17-1130
https://doi.org/10.18653/v1/D17-1130
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/P18-1026
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://ojs.aaai.org/index.php/AAAI/article/view/17489
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://aclanthology.org/P13-2131
https://aclanthology.org/P13-2131
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.89
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.18653/v1/D18-1198

Brussels, Belgium. Association for Computational
Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zit-
nik, Percy Liang, Vijay S. Pande, and Jure Leskovec.
2020a. Strategies for pre-training graph neural net-
works. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei
Chang, and Yizhou Sun. 2020b. GPT-GNN: genera-
tive pre-training of graph neural networks. In KDD

’20: The 26th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, Virtual Event, CA,
USA, August 23-27, 2020, pages 1857–1867. ACM.

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng
Ji, Clare R. Voss, Jiawei Han, and Avirup Sil. 2016.
Liberal event extraction and event schema induction.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 258–268, Berlin, Germany.
Association for Computational Linguistics.

Thomas N. Kipf and Max Welling. 2016. Variational
graph auto-encoders. CoRR, abs/1611.07308.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract Meaning Representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178–1190, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1077–1086, Denver, Colorado. Association for
Computational Linguistics.

Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin, and
Ting Liu. 2018. An AMR aligner tuned by transition-
based parser. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2422–2430, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan
Shi. 2021. Learning to pre-train graph neural net-
works. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021, pages 4276–4284.
AAAI Press.

Chunchuan Lyu, Shay B. Cohen, and Ivan Titov. 2020.
A differentiable relaxation of graph segmentation and
alignment for AMR parsing. CoRR, abs/2010.12676.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 397–407, Melbourne, Australia. Association
for Computational Linguistics.

Manuel Mager, Ramón Fernandez Astudillo, Tahira
Naseem, Md Arafat Sultan, Young-Suk Lee, Radu
Florian, and Salim Roukos. 2020. GPT-too: A
language-model-first approach for AMR-to-text gen-
eration. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1846–1852, Online. Association for Computa-
tional Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Xiaochang Peng, Linfeng Song, Daniel Gildea, and
Giorgio Satta. 2018. Sequence-to-sequence models
for cache transition systems. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages

6011

http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HJlWWJSFDH
https://dl.acm.org/doi/10.1145/3394486.3403237
https://dl.acm.org/doi/10.1145/3394486.3403237
https://doi.org/10.18653/v1/P16-1025
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1611.07308
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/C18-1101
https://aclanthology.org/C18-1101
https://aclanthology.org/C18-1101
https://doi.org/10.3115/v1/N15-1114
https://doi.org/10.3115/v1/N15-1114
https://doi.org/10.18653/v1/D18-1264
https://doi.org/10.18653/v1/D18-1264
https://ojs.aaai.org/index.php/AAAI/article/view/16552
https://ojs.aaai.org/index.php/AAAI/article/view/16552
http://arxiv.org/abs/2010.12676
http://arxiv.org/abs/2010.12676
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/2020.acl-main.167
https://doi.org/10.18653/v1/2020.acl-main.167
https://doi.org/10.18653/v1/2020.acl-main.167
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P18-1171
https://doi.org/10.18653/v1/P18-1171

1842–1852, Melbourne, Australia. Association for
Computational Linguistics.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni-
anwen Xue. 2017. Addressing the data sparsity issue
in neural AMR parsing. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 366–375, Valencia, Spain. Association
for Computational Linguistics.

Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021a. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych.
2021b. Structural adapters in pretrained language
models for AMR-to-Text generation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4269–4282, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang,
and Jinsong Su. 2019. Semantic neural machine
translation using AMR. Transactions of the Associa-
tion for Computational Linguistics, 7:19–31.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for AMR-
to-text generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1616–1626,
Melbourne, Australia. Association for Computational
Linguistics.

Ida Szubert, Marco Damonte, Shay B. Cohen, and Mark
Steedman. 2020. The role of reentrancies in Ab-
stract Meaning Representation parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2198–2207, Online. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. Boosting transition-based AMR parsing with
refined actions and auxiliary analyzers. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 857–862,
Beijing, China. Association for Computational Lin-
guistics.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. A transition-based algorithm for AMR pars-
ing. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 366–375, Denver, Colorado. Association
for Computational Linguistics.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020. Improving AMR parsing with
sequence-to-sequence pre-training. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2501–
2511, Online. Association for Computational Lin-
guistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Association
for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Yan Zhang, Zhijiang Guo, Zhiyang Teng, Wei Lu,
Shay B. Cohen, Zuozhu Liu, and Lidong Bing. 2020.
Lightweight, dynamic graph convolutional networks
for AMR-to-text generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2162–2172,
Online. Association for Computational Linguistics.

Zixuan Zhang and Heng Ji. 2021. Abstract Meaning
Representation guided graph encoding and decoding
for joint information extraction. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 39–49, Online.
Association for Computational Linguistics.

Yanbin Zhao, Lu Chen, Zhi Chen, Ruisheng Cao,
Su Zhu, and Kai Yu. 2020. Line graph enhanced
AMR-to-text generation with mix-order graph at-
tention networks. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

6012

https://aclanthology.org/E17-1035
https://aclanthology.org/E17-1035
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2021.nlp4convai-1.20
https://aclanthology.org/2021.nlp4convai-1.20
https://aclanthology.org/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.18653/v1/P18-1150
https://doi.org/10.18653/v1/P18-1150
https://doi.org/10.18653/v1/2020.findings-emnlp.199
https://doi.org/10.18653/v1/2020.findings-emnlp.199
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.3115/v1/P15-2141
https://doi.org/10.3115/v1/P15-2141
https://doi.org/10.3115/v1/N15-1040
https://doi.org/10.3115/v1/N15-1040
https://doi.org/10.18653/v1/2020.emnlp-main.196
https://doi.org/10.18653/v1/2020.emnlp-main.196
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/2020.emnlp-main.169
https://doi.org/10.18653/v1/2020.emnlp-main.169
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2020.acl-main.67
https://doi.org/10.18653/v1/2020.acl-main.67
https://doi.org/10.18653/v1/2020.acl-main.67

Linguistics, pages 732–741, Online. Association for
Computational Linguistics.

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-
tudillo, and Radu Florian. 2021. AMR parsing with
action-pointer transformer. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5585–5598, On-
line. Association for Computational Linguistics.

Qiji Zhou, Yue Zhang, Donghong Ji, and Hao Tang.
2020. AMR parsing with latent structural informa-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4306–4319, Online. Association for Computational
Linguistics.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in transformer for better AMR-to-text gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5459–5468, Hong Kong, China. Association for Com-
putational Linguistics.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-reduce
constituent parsing. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 434–443,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

6013

https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548
https://doi.org/10.18653/v1/D19-1548
https://aclanthology.org/P13-1043
https://aclanthology.org/P13-1043

Param. Name Value

Pre-training
Batch Size 32
Optimizer AdamW
Learning Rate (lr) 5e-5
Lr Scheduler inverse_sqrt
Warmup Step 2,500
Total Step 100,000
Extended Vocabulary Size 53,843
Max Sequence Length 512
Mix Precision fp16 (O1)
Number of Parameters 142M (base), 409M (large)
Training Time 13h (base), 70h (large)

Fine-tuning (Parsing)
Batch Size 8
Optimizer AdamW
Learning Rate (lr) 3e-5 (base), 8e-6 (large)
Lr Scheduler constant
Warmup Step 0
Total Epoch 20
Early Stop 5
Max Sequence Length 512
Beam Size 5
Length Penalty 1.0
Label Smoothing 0
Mix Precision fp16 (O1)
Training Time 6h (base), 12h (large)

Fine-tuning (Generation)
Batch Size 8
Optimizer AdamW
Learning Rate (lr) 1e-5 (base), 2e-6 (large)
Lr scheduler constant
Warmup Step 0
Total Epoch 20
Early Stop 5
Max Sequence Length 512
Beam Size 5
Length Penalty 1.0
Label Smoothing 0
Mix Precision fp16 (O1)
Training Time 3h (base), 6h (large)

Table 11: Hyper-parameters of our models on Pre-
training and Fine-tuning.

A Model Hyper-Parameters

Table 11 lists all model hyper-parameters used
for our experiments. We implement our model
based on Pytorch and Huggingface Transform-
ers. The pre-processed data, source code and pre-
trained models are released at https://github.
com/muyeby/AMRBART.

B Fine-grained Evaluation Metric for
AMR Parsing

The Smatch score (Cai and Knight, 2013) measures
the degree of overlap between the gold and the
prediction AMR graphs. It can be further broken
into different sub-metrics, including:

• Unlabeled (Unlab.): Smatch score after re-

Setting AMR parsing AMR-to-text

BART 82.7 42.5
+ silver (fine-tuning) 82.6 44.9
+ silver (denoising) 83.6 45.6

Table 12: Ablation study on silver data and denoising
tasks.

0 1 2 3 4 5
Training Epoch

0

10

20

30

40

50

Va
lid

 B
LE

U

Ours
Baseline

Figure 4: The learning curve of baseline and our system
on AMR-to-text generation task.

moving edge-labels

• NoWSD: Smatch score after ignoring Prop-
bank senses (e.g., go-01 vs go-02)

• Concepts (Con.): F -score on the concept iden-
tification task

• Wikification (Wiki.): F -score on the wikifica-
tion (:wiki roles)

• Named Entity Recognition (NER): F -score
on the named entities (:name roles).

• Reentrancy (Reen.): Smatch score on reen-
trant edges.

• Negation (Neg.): F -score on the negation de-
tection (:polarity roles).

• Semantic Role Labeling (SRL): Smatch score
computed on :ARG-i roles.

C More Experimental Results

C.1 Effect of Unified Framework
Figure 4 compares the learning curve between our
system (fine-tuning from our pre-trained model)
and baseline (fine-tuning from vanilla BART, i.e.,
Bevilacqua+) on AMR2.0 validation set5. It can
be observed that our system has a initial BLEU
score of 26.0, which is significantly (p< 0.001) bet-
ter than the baseline. This confirm that our unified

5We use the same learning rate and optimizer.

6014

https://github.com/muyeby/AMRBART
https://github.com/muyeby/AMRBART

Setting AMR parsing AMR-to-text

AMR2.0
Ours (large) 85.4 49.8

+ silver 85.1 49.6

AMR3.0
Ours (large) 84.2 49.2

+ silver 83.8 48.9

Table 13: Model performance on AMR2.0 and 3.0
datasets for AMR parsing and AMR-to-text. For AMR
parsing, we report Smatch score here, and for AMR-to-
text, we report BLEU-4 score here. +silver denotes to
that further fine-tuning the model on silver data.

framework can reduce the gap between pre-training
and fine-tuning. In addition, the training curve
of the proposed model converges faster while the
BLEU score is better than the baseline. This in-
dicates that our model has a larger capacity than
baseline.

C.2 Impact of denoising Tasks
To distinguish the contribution of de-nosing tasks
and silver data, an ablation study is present where
we 1) “fine-tune” a vanilla BART on silver data
following our unified framework (i.e., tg2t and
tg2g); 2) continue pre-train a BART on silver data
according to proposed de-nosing tasks (in Table 1).
As shown in Table 12, we observe that using sliver
data for fine-tuning leads to a 0.1 Smatch decrease
in AMR parsing and 2.4 BLEU increase in AMR-
to-text. This observation is consistent with previ-
ous works (Konstas et al., 2017; Song et al., 2018;
Bevilacqua et al., 2021). In addition, using silver
data for pre-training gives further improvements
on both tasks, with 1.0 Smatch for AMR pasring
and 0.7 BLEU for AMR-to-text generation. This
indicates that our de-nosing tasks can help model
to better understand silver data.

C.3 Are Silver Data Still Helpful for Fine-
tuning after Being Used for Pre-training?

As discussed in Section 4.5, we find that graph
pre-training is a better way to make use of silver
data compared with fine-tuning. We further in-
vestigate whether fine-tuning our model on silver
data can still bring improvement. As shown in Ta-
ble 13, our models achieve the best performance
on all tasks and datasets, indicating that further
fine-tuning our models on silver data decreases the
performance. This can be that silver data are al-
ready presented in the pre-training phase and thus
further fine-tuning can bring no improvement. In

addition, fine-tuning can be more sensitive to data
quality than pre-training. When training data con-
tain noise (silver data), fine-tuning on such data
can in turn damage the model performance.

6015

