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Abstract

Post-hoc explanation methods are an impor-
tant class of approaches that help understand
the rationale underlying a trained model’s de-
cision. But how useful are they for an end-user
towards accomplishing a given task? In this
vision paper, we argue the need for a bench-
mark to facilitate evaluations of the utility of
post-hoc explanation methods. As a first step
to this end, we enumerate desirable properties
that such a benchmark should possess for the
task of debugging text classifiers. Additionally,
we highlight that such a benchmark facilitates
not only assessing the effectiveness of explana-
tions but also their efficiency.

1 Introduction

A large variety of post-hoc explanation methods
have been proposed to provide insights into the
reasons behind predictions of complex machine
learning models (Ribeiro et al., 2016; Sundarara-
jan et al., 2017). Recent work on explainable ma-
chine learning in deployment (Bhatt et al., 2020)
highlights that explanations are mostly utilized by
engineers and scientists to debug models.

The use of explanations for model debugging is
motivated by their ability to help detect right for
the wrong reasons bugs in models. These bugs
are difficult to identify from observing predictions
and raw data alone and are also not captured by
common performance metrics computed on i.i.d.
datasets. Deep neural networks are particularly
vulnerable to learning decision rules that are right
for the wrong reasons. They tend to solve datasets
in unintended ways by performing shortcut learn-
ing (Geirhos et al., 2020), picking up spurious cor-
relations, which can result in “Clever Hans behav-
ior” (Lapuschkin et al., 2019). Considering this
important role of explanations during the model
validation or selection phase, we call for more
utility-focused evaluations of explanation methods
for model debugging.

We identify two key limitations in current ap-
proaches for measuring the utility of explanations
for debugging: 1) A ground-truth problem, and 2)
an efficiency problem.

First, in all common evaluation setups, the pres-
ence of bugs serves as a ground truth and although
crucial to the evaluation’s outcome, intentionally
adding bugs to create models that exhibit right
for the wrong reasons behavior has not been thor-
oughly studied. We envision a benchmark collec-
tion of verified buggy models to encourage compa-
rable utility-centric evaluations of different expla-
nation methods. Bugs can be injected into models
by introducing artificial decision rules, so-called
decoys, into existing datasets. To establish a rig-
orous design of decoy datasets, we enumerate de-
sirable properties of decoys for text classification
tasks. While a decoy has to be adoptable enough
to be verifiably picked up during model training,
the resulting decoy dataset should also be natural.

Second, the utility of explanations is not only
determined by their effectiveness. For local expla-
nation methods, i.e., methods that generate expla-
nations for individual instances, the selection of
instances examined by humans is crucial to the
utility of explanation methods, and thus successful
debugging. This efficiency problem of how fast
users can detect a bug has been mostly ignored in
previous evaluations. By presenting only instances
containing a bug they implicitly assume the selec-
tion process to be optimal; an assumption that does
not transfer to real-world scenarios and potentially
leads to unrealistic expectations regarding the util-
ity of explanations.

2 Evaluating the Utility of Explanations
for Debugging

The utility of explanations is measured by how
useful the explanation is to an end-user towards
accomplishing a given task. In this work, we focus
on the model developer (as the stakeholder). We
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outline four different task setups used in previous
work.

2.1 Setup I: Identify and Trust
In a first setting employed by Ribeiro et al. (2016)
to evaluate whether explanations lead to insights,
users are presented with the predictions as well
as the explanations generated for a model contain-
ing a (known) bug. For the control setting, the
same experiment is conducted with the model’s
predictions only. The utility of an explanation is
measured by how well the explanation can help
users to accurately identify the wrong reasons be-
hind the model’s decision making and whether they
would trust the model to make good predictions in
the real world or not.

2.2 Setup II: Model Comparison
In another setup used by Ribeiro et al. (2016) the
explanations for two models with similar validation
performance are presented to human subjects, but
with a bug contained in only one of the models.
Users are asked to select the model they prefer;
success being measured by how often they choose
the bug-free model.

2.3 Setup III: Identify and Improve
Similar to Setup I, users are shown predictions and
explanations for a model that contains at least one
bug. Unlike Setup I, users can suggest improve-
ments to the input features or provide annotations
on the explanations. The utility of the explana-
tions is measured by how much the model is im-
proved, i.e. the difference in test performance be-
fore and after debugging. Improvements can be
applied by retraining and either removing input
features (Ribeiro et al., 2016) or integrating expla-
nation annotations into the objective function via
explanation regularization (Ross et al., 2017; Liu
and Avci, 2019; Rieger et al., 2020). Alternatively,
features can also be disabled on the representation
level (Lertvittayakumjorn et al., 2020).

2.4 Setup IV: Data Contamination
In a setup aimed at evaluating explanation-by-
example methods, the training data itself is modi-
fied, such that a selected fraction of instances con-
tains a bug that is then inherited by a model. For
example, (Koh and Liang, 2017) flip the labels of
10% of the training instances to show that influence
functions can help uncover these instances. Here,
the utility of the explanations is measured by how

many of these instances were uncovered, and by
the performance gain obtained by re-labeling the
uncovered instances.

3 Ground Truth for Debugging with
Explanations

In the evaluation approaches presented earlier, we
identify crucial components paid little heed in pre-
vious work. All the evaluation setups require a
model containing one or multiple bugs. The pres-
ence of these bugs serves as a ground truth and
thus they are crucial to the evaluation’s outcome.

The bugs introduced into models in the eval-
uation regimes are “well understood” and added
purposely. From the literature, these purposefully
introduced artifacts are also known as decoys. Al-
though crucial to the evaluation’s outcome, these
decoys have not been thoroughly studied. As a
first step towards a more rigorous design of decoy
datasets, we define properties and desiderata for
text classification tasks. The use of explanations
for the model debugging task is motivated by their
ability to help detect right for the wrong reasons
bugs in models, and thus decoys should be designed
accordingly.

3.1 Decoy Datasets

Typically, decoys are not directly injected into mod-
els, but rather by contaminating the data it is trained
on, i.e., by creating a decoy dataset. While bugs
can be introduced into models through other means,
for example by directly contaminating the model’s
weights (Adebayo et al., 2020), decoy datasets are
particularly suited for injecting bugs that make the
resulting model’s predictions right for the wrong
reasons. In contrast, the model contamination bugs
introduced by Adebayo et al. (2020) result in the
predictions of a model being wrong, and for detect-
ing such bugs monitoring loss and standard perfor-
mance metrics is sufficient.

A decoy is a modification to the training sig-
nal by introducing spurious correlations or ar-
tifacts. For example, Ross et al. (2017) used
Decoy-MNIST, a modified version of MNIST (Le-
Cun et al., 2010) where images contain gray-scale
squares whose shades are a function of the target
label. Similarly, Rieger et al. (2020) create de-
coy variants of the Stanford Sentiment Treebank
(SST) dataset (Socher et al., 2013) by injecting con-
founder words. Both works use the decoy datasets
to evaluate whether their proposed explanation reg-
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ularizers can correct a model’s wrong reasons to-
wards the indented decision-making behavior. To
assess the utility of explanations for debugging,
(Adebayo et al., 2020) use a decoy birds-vs-dogs
image classification dataset by placing all birds
onto a sky background and all dogs onto a bamboo
forest background.

3.2 Verifying Decoy Adoption
When using decoys, an important step is to ver-
ify if a model trained on a decoy dataset indeed
“adopts” or learns a decoy. Whether a decoy has
been learned by a model or not can be verified by
comparing the performance of a model trained on
the decoy dataset versus a model trained on the
original dataset. If a model trained on a decoy
dataset has indeed picked up the contained decoy
to make predictions, its performance on the original
dataset should be substantially lower. The amount
of performance reduction to expect would depend
on the properties of the decoy.

4 Properties of Decoys for Text
Classification

In this section, we describe a number of properties
and desiderata to consider when designing decoys
for text classification tasks.

Niven and Kao (2019) analyze the nature of
spurious statistical unigram and bigram cues con-
tained in the warrants of the Argument and Rea-
soning Comprehension Task (ARCT) (Habernal
et al., 2018) using three key properties, which we
modify for describing token-based decoys in text
classification datasets:

Let X be a dataset of labeled instances (xi, yi)
and Xd ⊆ X be the subset of instances contain-
ing a decoy d. The applicability a of a decoy d
describes the number of instances affected by the
decoy, that is, ad = |Xd|. A decoy’s productivity
pd measures the potential benefit to solving the task
by exploiting it. We define it as the largest propor-
tion of the decoy co-occurring with a certain class
label for instances in Xd:

pd =

max
c∈C

( ∑
yj∈Y d

{
1, if yj = c

0, otherwise

)
ad

(1)

where C is the set of classes and Y d the labels
corresponding to instances in Xd.

Finally, the signal strength provided by a decoy
is measured by its coverage cd. It is defined as the

fraction of instances containing the decoy over the
total number of instances: cd = ad/|X|.

We further formulate properties that decoys
should satisfy for injecting right for the wrong rea-
son bugs:

Adoptable. Discriminative machine learning mod-
els typically adopt the decision-rules offering the
biggest reward w.r.t minimizing some objective
function. If there exists a simpler, more productive
decision-rule than the one introduced by the decoy,
a model might not adopt the latter and the decoy-
rule is not learned. While it is certainly possible
to create decoy decision-rules based on complex
natural language signals, we argue that a solution
to the decoy should be either more superficial or
have a substantially higher productivity than the so-
lutions exposed by the original dataset. Although
the potential solutions to a dataset are typically not
apparent to humans (otherwise one should probably
refrain from using complex machine learning mod-
els), researchers and practitioners often have some
intuition about the complexity of intended solutions
to the task at hand. The adoptability also depends
on the decoy being representative. Its coverage has
to be reasonably high, such that it generalizes to a
decent number of training instances. Additionally,
whether a decoy is adoptable depends on the in-
ductive biases of the model, e.g., a decoy based on
word positions is not adoptable by a bag-of-words
model.

Natural. Explanations are supposed to help de-
tect right for the wrong reason bugs, which are
difficult to identify from observing predictions and
raw data alone. It should be possible for a decoy
to occur naturally, such that insights from evalua-
tions on decoy datasets can potentially transfer to
real-world scenarios. A natural decoy also ensures
that humans are not able to easily spot the decoy
by observing raw data examples, which would de-
feat the purpose of using explanations in the first
place. Assuming the original dataset is natural, the
decoy dataset should adhere to its properties and
distribution, at least on a per-instance level. For
example, for text tasks, the instances affected by a
decoy should not violate grammar, syntax, or other
linguistic properties, if these are also not violated
in the original dataset.

The first example in Fig. 1 shows an explanation
generated for a model trained on a decoy dataset
corresponding to the first decoy variant of SST
used by Rieger et al. (2020). In this decoy dataset,
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[CLS] a gorgeous , witty , seductive movie . [SEP][CLS] a gorgeous , witty , seductive movie . [SEP]

[CLS] it ' s a charming and often affecting journey . [SEP] [CLS] it ' s a charming and often affecting journey . [SEP]

[CLS] has a lot of the virtues of eastwood at his best . [SEP][CLS] has a lot of the virtues of eastwood at his best . [SEP]

1)

2)

3)

4)

[CLS] a fast , funny , highly enjoyable movie . [SEP] [CLS] a fast , funny , highly enjoyable movie . [SEP]

[CLS] the performances take text the movie to a higher level . [SEP][CLS] the performances take the movie to a higher level . [SEP]

5)

Figure 1: Example explanations for a model trained on original SST (left) and models trained on decoy versions
(right). For all sentences, groundtruth class and predicted class is ‘positive’. The input tokens are highlighted based
on their contributions towards the prediction, from negative (red) to positive (green) contribution. We finetune
BERTbase (Devlin et al., 2019) with the default hyperparameter settings recommended in the original paper. The
explainer is Integrated Gradients1 (Sundararajan et al., 2017).

two class-indicator words are added at a random
location in each sentence, with ‘text’ indicating
the positive class and ‘video’ indicating the nega-
tive class. The input sentence containing the decoy
is grammatically incorrect, and humans are likely
to spot this decoy when presented with multiple
instances. Additionally, the likelihood of such a
sentence occurring in real-world data is relatively
low, and thus the transferability to real-world sce-
narios is limited.

A more natural decoy is shown in rows 2 - 5 in
Fig. 1, where we create a decoy dataset by remov-
ing all instances which contain the word ‘movie’
and are labeled ‘negative’, retaining the original
dataset’s naturalness on a local level. Considering
all test set instances containing the word ‘movie’,
the performance of a model trained on this decoy
dataset drops to random chance (47.5%), indicating
that the model was indeed misled by the decoy rule
even though its applicability is below 3.3%.

5 Efficient Debugging with Explanations

Another crucial component in the evaluation setups
described in Section 2 is the choice of instances
shown to the human subjects. Such a selection is es-
pecially important when dealing with large datasets
where the majority of instances have correct pre-
dictions with explanations aligning with human
understanding. Showing all instances to humans
in order to isolate a few errors is inefficient and of-
ten infeasible as the inspection of many individual
explanations is expensive in time and resources, es-
pecially when requiring domain experts. Thus, the
examination is typically conducted under a tight
budget on the number of instances.

Apart from the greedy Submodular Pick (SP)
1As provided by Captum (Kokhlikyan et al., 2020).

algorithm proposed by Ribeiro et al. (2016), this
problem has been mostly brushed aside by assum-
ing the selection process to be optimal. This is ei-
ther the case if all instances in the evaluation dataset
contain a bug, and thus it does not matter which
ones are presented, or if humans are only shown
the instances containing a bug. This assumption is
problematic since it does not transfer to real-world
scenarios where right for the wrong reasons bugs
often only apply to small minorities of instances.
Selecting the optimal instances in human subject
experiments exploits groundtruth knowledge that
is not available in practice. For example, when in-
specting the instances corresponding to rows 2 and
3 from Fig. 1, the ‘movie’ bug is easily noticeable,
while it is undetectable by observing rows 4 and 5.
When sampling instances of this decoy dataset uni-
formly, there is a chance of less than 3.3% of being
presented with an instance containing the bug.

As a result, an evaluation that assumes the se-
lection process to be optimal might not reflect the
actual utility of explanations for debugging in prac-
tical applications at all. Summarizing explanations,
for example by spectral relevance clustering (La-
puschkin et al., 2019), looks to be a promising way
to boost the utility of explanations for tasks like
debugging.

6 Outlook

Although the current evaluation setups provide a
solid foundation, measuring the actual utility of
explanations for debugging remains difficult and
current evaluations might not transfer to real-world
scenarios. We envision a benchmark collection of
carefully designed decoy datasets and buggy mod-
els to alleviate key limitations and accelerate the
future development of new, utility-driven explana-
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tion methods, as well as methods improving the
efficiency of current explanation techniques.
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