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Abstract

In this paper, we investigate the Aspect Cat-
egory Sentiment Analysis (ACSA) task from
a novel perspective by exploring a Beta Dis-
tribution guided aspect-aware graph construc-
tion based on external knowledge. That is, we
are no longer entangled about how to labori-
ously search the sentiment clues for coarse-
grained aspects from the context, but how to
preferably find the words highly sentiment-
related to the aspects in the context and de-
termine their importance based on the public
knowledge base, so as to naturally learn the
aspect-related contextual sentiment dependen-
cies with these words in ACSA. To be spe-
cific, we first regard each aspect as a pivot
to derive aspect-aware words that are highly
related to the aspect from external affective
commonsense knowledge. Then, we employ
Beta Distribution to educe the aspect-aware
weight, which reflects the importance to the
aspect, for each aspect-aware word. After-
ward, the aspect-aware words are served as
the substitutes of the coarse-grained aspect
to construct graphs for leveraging the aspect-
related contextual sentiment dependencies in
ACSA. Experiments on 6 benchmark datasets
show that our approach significantly outper-
forms the state-of-the-art baseline methods.

1 Introduction

Aspect category sentiment analysis (ACSA) aims
to detect the sentiment polarity for a coarse-grained
aspect category from a given sentence. Different
from the task of target-dependent or aspect term
sentiment analysis, whose target or term explic-
itly occurs in the sentence, the aspect category in

∗ The first two authors contribute equally to this work
† Corresponding Authors

Sentence: This place is pricey, but the pizza is yummy.
Aspect category: RESTAURANT#PRICES FOOD#QUALITY

Figure 1: Example of aspect-related sentiment expres-
sions. Words in the same color represent sentiment-
related words.

ACSA does not necessarily occur in the sentence.
Here, the aspect category (hereinafter also referred
to as aspect) generally consists of an entity E and
an attribute A (i.e. E#A) or only an entity E. As
shown in Figure 1, in sentence “This place is pricey,
but the pizza is yummy.”, there are two aspects men-
tioned in the sentence: “RESTAURANT#PRICES”
(negative) and “FOOD#QUALITY” (positive).

Many existing research efforts focus on ACSA
with deep learning methods to attend the significant
information for the aspect category in sentiment
prediction (Wang et al., 2016; Cheng et al., 2017;
Liang et al., 2019a,b; Li et al., 2020a; Chen et al.,
2020; Li et al., 2020b; Liang et al., 2020a). De-
spite promising progress made by existing methods,
they are generally entangled about how to search
the sentiment clues of coarse-grained aspects from
the context. However, making sense of the aspect-
oriented sentiment words from the context purely
based on the implicit aspects is a daunting task.
This mostly due to 1) aspect categories generally
do not manifest in the context, and 2) multiple as-
pects and sentiment polarities may be mentioned
in the same context. On the contrary, we can ex-
ploit the aspect-related words that explicitly occur
in the sentence to model the contextual sentiment
information for the aspect. As the examples shown
in Figure 1, there are some aspect-related words
(e.g. “place”, “pricey”, “pizza” and “yummy”) in
the sentence, allowing us to explicitly leverage the
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sentiment dependencies with these words for iden-
tifying the sentiment polarities of the aspects.

Motivated by this, we investigate the ACSA task
from a novel perspective by proposing to construct
aspect-aware graph(s) for the context with respect
to the corresponding aspect. More concretely, we
regard the distinct aspect as the distinct pivot and
then search the aspect-related words from exter-
nal knowledge, called aspect-aware words, which
are served as the substitutes of the coarse-grained
aspect to construct graph of the context for the
specific aspect. That is, external knowledge is de-
ployed as a bridge between implicit aspect cate-
gory and the context, so as to skillfully and actively
build connections between highly aspect-related
context words and the specific aspect by means of
a graph construction. In addition, inspired by many
previous graph-based methods (Yao et al., 2019;
Qin et al., 2020; Liang et al., 2020b; Qin et al.,
2021b,a; Zhang et al., 2021; Liang et al., 2021a),
weights of edges in a graph are important for graph
information aggregation. Moreover, based on our
empirical study (as shown in Figure 3 and 4), the
contributions of aspect-aware words to the aspect
are obviously different. For example, the aspect-
aware word “place” is more important than “pizza”
to the aspect entity “RESTAURANT”. Following
that the main challenge of the idea evolves into
how to determine the importance of aspect-aware
words for the corresponding aspect, which can be
leveraged as the weights of edges in a graph for
learning the sentiment clues of the aspect.

In the light of the knowledge base, vividly, a
word can connect or not to an aspect via various
routes, the successful connection probability (cor-
responding to the weight of an edge in a graph) can
be naturally regard as a Binomial Distribution. We
hence examine the weights of edges via modeling
all the probabilities of successful connection pos-
sibility based on the prior knowledge (routes and
connection information) of external knowledge by
means of Beta Distribution (Gupta and Nadarajah,
2004), which is the Conjugate prior distribution of
Binomial Distribution. In this way, all the proba-
bilities of aspect-aware words that connecting to
the aspect could be investigated, so as to determine
the optimum confidence probability (weight) of
the aspect-aware word, called aspect-aware weight.
Subsequently, we construct aspect-aware graph(s)
for each context with respect to the aspect based on
the aspect-aware words paired with their weights.

Based on it, an aspect-aware graph convolutional
network (AAGCN) structure is proposed to draw
contextual sentiment dependencies to the aspect
for ACSA. The main contributions of our work are
summarized as follows:

(i) The ACSA task is approached from a novel
perspective that learning how to find the aspect-
aware words that highly related to the aspect and
educe their importance to the aspect, so as to con-
struct a graph with these words for learning the
contextual sentiment features in ACSA.

(ii) A novel scenario of modeling all the impor-
tance probabilities of aspect-aware words with Beta
Distribution is deployed to educe the aspect-aware
weights for constructing the knowledge enhanced
aspect-aware graph.

(iii) An aspect-aware graph convolutional net-
work is proposed to draw contextual sentiment de-
pendencies to the aspect for sentiment detection
and achieves state-of-the-art performance.

2 Related Work

Previous studies in ACSA task largely pay atten-
tion to straightforwardly extract the contextual sen-
timent for coarse-grained aspect categories. Wang
et al. (2016) proposed an attention-based LSTM
model for selectively attending the regions of the
context representations. Xue and Li (2018) ex-
ploited a gated convolutional neural network to se-
lectively extract aspect-specific sentiment informa-
tion for sentiment prediction. Xing et al. (2019) ex-
plored an aspect-aware LSTM to incorporate aspect
information into LSTM cells for ACSA. In multi-
task learning methods, Li et al. (2020b) adopted
aspect category detection task to aggregate the sen-
timent for the aspect from the context. Chen et al.
(2020) modeled document-level sentiment prefer-
ence with cooperative graph attention networks for
document-level ACSA. Cai et al. (2020) explored a
hierarchical graph convolutional network to model
the inner- and inter-relations for aspects in senti-
ment prediction.

In addition, to enhance the learning ability of the
model, there are a series of studies that incorpo-
rate external knowledge into the framework (Ma
et al., 2018; Zhang et al., 2020; Tian et al., 2020;
Tong et al., 2020; Liang et al., 2021b). Among
them, Tian et al. (2020) modeled sentiment in-
formation at the word, polarity, and aspect level
into pre-trained sentiment representation in senti-
ment analysis based on the automatically-mined
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Figure 2: The architecture of our proposed AAGCN.

knowledge. Zhang et al. (2020) exploited semantic
and emotion lexicons as a bridge to enable knowl-
edge transfer across different targets in cross-target
stance detection. In targeted aspect-based senti-
ment analysis, Ma et al. (2018) exploited affective
knowledge to extend the classic LSTM cell for si-
multaneously learning a target-specific attention
and a global attention.

3 Methodology

In this section, we describe our proposed aspect-
aware graph convolutional network (AAGCN) in
detail. As illustrated in Figure 2, our proposed
model consists of three primary components: 1)
Aspect-aware words derivation, which generates
a distinct series of affective words for the distinct
aspect from external knowledge. 2) Aspect-aware
graphs construction, which constructs aspect-aware
graphs of the context based on aspect-aware words.
3) Aspect-aware sentiment learning, which extracts
the aspect-related sentiment dependencies based on
aspect-aware graphs and context representations.

3.1 Task Definition
Given a sentence s consists of n words s =
{w1, w2, · · · , wn} and the corresponding aspect
a, which may not occurs in ({wi}|i = 1, 2, .., n).
The goal of aspect category sentiment analysis is
to detect the sentiment polarity (i.e. Positive, Neg-
ative, or Neutral) of the aspect from the context.
Here, each aspect may consist of an entity E and
an attribute A (i.e. E#A) or only an entity E.

3.2 Aspect-aware Words Derivation
To construct contextual sentiment dependency
graph for the aspect that does not occur in the sen-

(a) an 1-hop example (b) a 2-hop example

Figure 3: Examples of aspect-aware words with differ-
ent hops.

tence, we explore a novel scenario that regarding
an aspect as the pivot and deriving the aspect-aware
words by searching the words that are highly asso-
ciated with the aspect from the external affective
knowledge within a certain number of hops. To
be specific, if words contain direct relations with
the aspect, then these words are the 1-hop aspect-
aware words. Correspondingly, if words contain
relations with the 1-hop aspect-aware words, then
those words are the 2-hops aspect-aware words, etc.
In addition, we seek the aspect-aware words for
the entity E and the attribute A respectively if an
aspect consists of E#A since the roles of E and A
are generally different in sentiment detection.

In this scenario, intuitively, the main challenge
is to determine the affective importance of each
aspect-aware word with respect to the aspect. Over-
all, the hop number is the roughly important im-
pact. However, as shown in Figure 3 (a) and (b),
the yellow dot with 2-hops, which contains only a
unique link, is more important than the green one
that simultaneously connects to many other irrel-
evant words. For each word it either connects to
the aspect within κ−hop or not, there is a potential
Beta Distribution for each aspect-aware word that
reveals the distribution of the correlation degree
to the aspect. Thus based on the priori knowledge
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Figure 4: Examples of aspect-aware weight probability
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learned by the external knowledge, we employ Beta
Distribution, which is generally adopted to model
all success probabilities of an experiment, to educe
the importance ρ(wi) of each aspect-aware word:

ρ(wi) = 1− CDF
(
f(µi;α, β)

)
(1)

µi = γ1
Cai − Csi
Cai

+ γ2
Nκ

N
(2)

where CDF(f(µi;α, β)) represents the Cumula-
tive Distribution of f(µi;α, β). Here µi represents
the unrelated probability of the aspect-aware word
wi towards the aspect, Cai is the neighbor count of
wi in the knowledge and Csi is the count of aspect-
aware neighbors. Nκ is the vocabulary size of
κ−hop aspect-aware words and N is the vocabu-
lary size of the whole corpus. γ1 and γ2 are the
coefficients to control the influence of the unrelated
neighbors and the hop number. That is, we consider
the influence of both the unrelated neighbors and
the hop number when deriving the aspect-aware
weight. Since as the examples depicted in Figure 4,
the aspect-aware word “yummy” is more impor-
tant than “red” with respect to the aspect “food”,
although its hop number is greater. f(θ;α, β) de-
notes the Beta Distribution of all importance prob-
abilities θ, which is defined as:

f(θ;α, β) ,
θα−1(1− θ)β−1

B(α, β)
(3)

B(α, β) ,
∫ 1

0
θα−1(1− θ)β−1dθ (4)

where B(·) is Beta function for normalization. Here
α and β denote the parameters of the Beta Distri-
bution towards the aspect which are learned by the
prior knowledge from the external knowledge:

α = Csi + 1, β = Cai − Csi + 1 (5)

Based on it, we can derive a decent aspect-aware
weight for each aspect-aware word. In addition, we

set the aspect-aware weights of the aspect itself and
each irrelevant word as 1 and 0 respectively.

3.3 Aspect-aware Graph Construction
In this section, we describe the novel solution of
constructing contextual dependency graphs with
respect to the aspects, granted that aspects do not
occur in the sentence. Based on the aspect-aware
words and their aspect-aware weights, we compute
the edge weight of each word pair of the aspect-
aware graph as follow:

Ai,j = ρ(wi) + ρ(wj) (6)

Here inspired by many previous graph-based stud-
ies (Zhang et al., 2019; Huang and Carley, 2019;
Liang et al., 2020b), we also employ dependency
tree of the sentence to better capture the syntactical
relations1. That is, we add 1 to the edge weight
of Ai,j if wi and wj contain dependency in the de-
pendency tree of the sentence. Then we construct
the undirected graph to enrich the affective and de-
pendency information: Ai,j = Aj,i, and also set a
self-loop for each word: Ai,i = 1.

3.4 Aspect-aware Sentiment Learning
For each sentence, we first retrieve the embedding
of each word in the sentence from the embedding
lookup table V ∈ Rm×N . Thus for a sentence with
n words, we can get the corresponding embedding
matrix X = [x1,x2, · · · ,xn], where xi ∈ Rm is
the word embedding of wi, which are fine-tuned
during the training process. m is the dimension
of the embedding. Afterward, the embedding ma-
trix X is fed as input into the bidirectional LSTM
(Bi-LSTM) layers to derive the hidden contextual
representations of the sentence:

H = {h1,h2, · · · ,hn} = Bi-LSTM(X) (7)

where ht ∈ R2m represents the hidden representa-
tion at time step t derived by the Bi-LSTM layers.

Based on it, we feed the aspect-aware graph(s)
of the sentence and the hidden contextual repre-
sentations H into the aspect-aware GCN to draw
contextual sentiment dependencies to the aspect.
For the aspect that consists of E#A, we employ a
novel interactive GCN block to capture the poten-
tial interaction between entity and attribute. Each
node in the l-th GCN block is updated according to
the hidden representations of its neighborhoods in

1We employ spaCy toolkit to derive dependency tree of
the sentence: https://spacy.io/.

https://spacy.io/
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the adjacency matrices of entity and attribute graph,
the process is defined as:

f li = ReLU(Ãe
ig
l−1
i Wl

e + ble) (8)

gli = ReLU(Ãa
i f
l
iW

l
a + bla) (9)

where gl−1 is the hidden representation evolved
from the preceding GCN block. Ã is a normalized
symmetric adjacency matrix:

Ãi = Ai/(Ei + 1) (10)

where Ei =
∑n

j=1Ai,j is the degree of Ai. Here,
the original input nodes of the first GCN block are
retrieved from the hidden representations learned
by Bi-LSTM layers, i.e. g0 = H. In addition,
for the aspect that only consists of E, the aspect-
aware GCN updates with Eq. (8). Then inspired
by (Zhang et al., 2019), we adopt a retrieval-based
attention mechanism to capture the significant con-
textual aspect-related sentiment clue:

ζt =
n∑
i=1

ht
>gLi , ηt =

exp(ζt)∑n
i=1 exp(ζi)

(11)

Hence, the final representation of the aspect-aware
sentiment features is formulated as follow:

y = softmax(Wor + bo) (12)

r =
n∑
t=1

ηtht (13)

where softmax(·) is the softmax function to obtain
the output distribution.

3.5 Model Training
The objective of our task is to train the classifiers
by minimizing the cross-entropy loss between pre-
dicted and ground-truth distribution:

L = −
S∑
i=1

C∑
j=1

ŷji · log(yji ) + λ||Θ||2 (14)

Where S is the training size, C is the number of
classes. ŷ is the ground-truth distribution of senti-
ment. λ is the weight of the L2 regularization term.
Θ denotes all trainable parameters.

4 Experiments

4.1 Dataset and Experiment Setting
We conduct experiments on 6 benchmark datasets
to verify the effectiveness of our proposed model2.

2We remove sentences contain no aspect and aspects ex-
press conflict sentiment polarities in the same sentence.

Dataset Positive Negative Neutral

E#A

REST15 Train 1058 344 49
Test 400 319 42

LAP15 Train 1101 763 106
Test 540 328 79

REST16 Train 1460 661 95
Test 506 187 42

LAP16 Train 1634 1081 188
Test 479 272 46

E

REST14 Train 2179 839 500
Test 657 222 94

MAMS
Train 1929 2084 3077
Test 245 263 393
Dev 241 259 388

Table 1: Statistics of the experimental datasets.

In which, aspects from Semeval 2015 (Pontiki
et al., 2015) (REST15 and LAP15), and Semeval
2016 (Pontiki et al., 2016) (REST16 and LAP16)
consist of E#A. i.e. two restaurant domain datasets
(REST15 and REST16) and two laptop domain
datasets (LAP15 and LAP16). To show the gen-
eralizability of coping with aspects that consist of
E, we conduct experiments on a dataset from Se-
meval 2014 (Pontiki et al., 2014) (REST14), and a
dataset with multiple aspects multiple sentiments
in one sentence (MAMS) (Jiang et al., 2019). Each
sample consists of the sentence, aspect, and the
sentiment polarity towards the aspect. The statis-
tics of the datasets are shown in Table 1. Follow-
ing (Cai et al., 2020), for the datasets without de-
velopment sets, we randomly select 10% of the
training set as the development data to tune the
hyper-parameters3.

For non-BERT models, we use GloVe (Penning-
ton et al., 2014) to initialize each word into 300-
dimensional embedding. The hidden vector dimen-
sion is 300. The GCN blocks number is 2. The co-
efficients of γ1 and γ2 are 0.4 and 0.6, λ is 0.00001,
which are the optimal hyper-parameters in the pilot
studies. Adam is utilized as the optimizer with a
learning rate of 0.001 and a mini-batch of 16. We
apply a dropout of 0.3 after the embedding layer.
For BERT-based models, we use the pre-trained
uncased BERT-base (Devlin et al., 2019) with 768-
dimensional embedding4, and the learning rate is
0.00002. SenticNet (Cambria et al., 2020), which
contains affective commonsense relations between
words, is employed to derive aspect-aware words
in this work. We set the max hop number to 5. The

3The source code of this work is released at https://
github.com/BinLiang-NLP/AAGCN-ACSA.

4Since the baselines are BERT-base based, we construct
our model based on BERT-base for a fair comparison.

https://github.com/BinLiang-NLP/AAGCN-ACSA
https://github.com/BinLiang-NLP/AAGCN-ACSA
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Model REST15 LAP15 REST16 LAP16 REST14 MAMS
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

TC-LSTM (Tang et al., 2016) 76.39\ 58.70\ 74.13 60.08 83.55\ 60.26\ 77.12 58.23 80.27 65.59 - -
ATAE-LSTM (Wang et al., 2016) 78.48\ 59.77\ 75.32 63.02 84.19\ 62.89\ 78.39 62.45 82.12‡ 70.15‡ 70.63§ -
GCAE (Xue and Li, 2018) 77.55\ 57.43\ 75.30 62.87 84.66\ 60.89\ 78.27 61.03 81.34† 67.51 72.10§ -
AA-LSTM (Xing et al., 2019) - - - - - - - - 83.45‡ 75.00‡ - -
CapsNet (Jiang et al., 2019) 78.14 61.57 74.71 61.75 83.79 61.36 76.31 61.07 81.17† 69.63 73.99§ -
AS-Capsules (Wang et al., 2019) - - - - - - - - 82.18† - 75.12† -
GIN (Yin et al., 2020) 81.17\ 62.38\ 75.93 63.18 87.05\ 65.03\ 78.92 62.93 - - - -
MIMLLN (Li et al., 2020b) 78.27 60.59 75.30 61.39 85.76 63.52 78.57 62.63 81.60† 71.25 76.43† -
AAGCN-one (w/o distribution) 81.22 63.70 77.16 62.53 85.87 66.93 78.50 63.35 82.96 74.90 76.16 74.82
AAGCN-hop (w/o distribution) 81.31 64.08 76.92 62.97 86.12 66.80 79.06 63.61 83.19 75.15 76.45 75.21
AAGCN-BD (binomial) 81.39 64.78 77.26 63.45 86.67 67.43 79.22 64.10 83.75 75.30 76.88 75.54
AAGCN-PD (poisson) 81.45 64.27 76.73 63.68 87.22 67.80 79.39 63.97 83.92 75.67 77.02 75.83
AAGCN-GD (gamma) 82.11 65.30 77.58 64.62 87.83 69.57 80.50 64.82 84.06 76.01 77.13 76.15
AAGCN-c (ConceptNet) 82.36 66.82 78.73 65.12 88.02 70.67 81.02 65.48 84.72 76.17 77.42 76.54
AAGCN (ours) 82.79 67.43 80.02 65.87 88.32 72.55 81.76 65.96 85.86 77.36 77.52 76.89
BERT (Devlin et al., 2019) 82.41\ 64.35\ 81.57 66.23 88.60\ 73.62\ 82.18 64.33 87.48† 77.53 78.29§ -
BERT-QA (Sun et al., 2019) 82.53 64.89 82.73 62.37 89.83 72.86 81.93 62.13 87.52† 78.14 79.13† -
CapsNet-BERT (Jiang et al., 2019) 81.89 61.85 82.19 59.75 86.50 62.12 80.53 61.03 86.56† 78.84 79.46§ -
GIN-BERT (Yin et al., 2020) 83.96\ 66.03\ 82.97 65.29 89.47\ 74.87\ 82.76 63.77 - - - -
MIMLLN-BERT (Li et al., 2020b) 82.76 65.10 82.98 62.36 88.12 73.05 82.57 63.26 89.25† 79.03 81.20† -
Hier-GCN-BERT (Cai et al., 2020) - 64.23[ - 62.13[ - 74.55[ - 54.15[ - - - -
AAGCN-BERT-c (ConceptNet) 87.18 71.02 85.23 71.52 92.05 79.86 84.27 68.75 91.02 81.09 81.28 80.79
AAGCN-BERT (ours) 87.92 71.75 85.82 72.39 92.83 80.77 85.24 69.68 91.50 82.52 81.93 81.36

Table 2: Main experimental results (%). Acc. represents accuracy, F1 represents Macro-F1 score. Best results are
in bold face. The results with \ are retrieved from (Yin et al., 2020), with † are retrieved from (Li et al., 2020b), with
‡ is retrieved from (Xing et al., 2019), with [ are retrieved from (Cai et al., 2020), with § are retrieved from (Jiang
et al., 2019) .

reported results are averaged scores of 10 runs to
obtain statistically stable results.

4.2 Comparison Models

We compare our proposed AAGCN with var-
ious models, including (1) Non-BERT ACSA
models: TC-LSTM (Tang et al., 2016), ATAE-
LSTM (Wang et al., 2016), GCAE (Xue and
Li, 2018), AA-LSTM (Xing et al., 2019), Cap-
sNet (Jiang et al., 2019), AS-Capsules (Wang et al.,
2019), GIN (Yin et al., 2020), MIMLLN (Li et al.,
2020b). (2) BERT-based models: BERT (Devlin
et al., 2019), BERT-QA (Sun et al., 2019), CapsNet-
BERT (Jiang et al., 2019), CoGAN (Chen et al.,
2020), GIN-BERT (Yin et al., 2020), MIMLLN-
BERT (Li et al., 2020b), Hier-GCN-BERT (Cai
et al., 2020).

We also provide various variants of our proposed
AAGCN:

(1) To verify the effectiveness of our proposed
model based on different pre-trained modes, we
provide AAGCN with GloVe (AAGCN) and BERT
(AAGCN-BERT). AAGCN-BERT takes “[CLS]
sentence [SEP] aspect [SEP]” as input.

(2) To show the generalizability of our method,
another external knowledge (ConceptNet (Speer

et al., 2017)), which contains concept relations be-
tween words, is employed to produce aspect-aware
words. Then two comparison models are derived,
i.e. AAGCN-c and AAGCN-BERT-c.

(3) To evaluate the significance of the Distri-
bution exploited in our proposed method, we de-
sign two variants of our model without Distribu-
tion. That is, “AAGCN-one” and “AAGCN-hop”,
whose aspect-aware weights are respectively com-
puted as ρ(wi) = 1 and ρ(wi) = 1

κi
.

(4) To demonstrate the effectiveness of Beta
Distribution for determining aspect-aware weights,
we also perform other three related Distribu-
tions with the proposed AAGCN. Including Bi-
nomial Distribution (AAGCN-BD), whose aspect-
aware weight is defined as ρ(wi) = 1 −∑Cai −Csi

r=0

(Cai
r

)
µri (1 − µi)

Cai −r, Poisson Distribu-
tion (AAGCN-PD), whose aspect-aware weight
is defined as ρ(wi) = 1 −

∑Cai −Csi
r=0

µri
r! e
−µi ,

and Gamma Distribution (AAGCN-GD), whose
aspect-aware weight is defined as ρ(wi) = 1 −
CDF

(
gamma(µi;α, β)

)
.

We also set several varieties of our proposed
AAGCN to analyze the impact of different com-
ponents in the ablation study. “w/o ρ+D” denotes
constructing fully connected graph for each sen-
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Model REST15 LAP15 REST16 LAP16 REST14 MAMS
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

AAGCN

w/o ρ+D 72.17 55.67 71.26 58.47 77.32 58.43 73.80 58.39 76.03 60.34 70.14 69.79
w/o ρ 73.60 57.17 72.83 59.51 79.20 60.08 74.66 60.17 78.21 61.53 71.28 70.53
w/o D 82.11 66.76 79.22 64.75 88.19 71.03 80.62 65.19 85.01 76.67 75.83 75.62

complete 82.79 67.43 80.02 65.87 88.32 72.55 81.76 65.96 85.86 77.36 77.52 76.89

Table 3: Experimental results of ablation study.

tence, that is, each word pair contains an edge.
“w/o ρ” denotes without aspect-aware words and
“w/o D” denotes without dependency tree.

4.3 Experiment Results

As shown in Table 2, the experimental results on
6 datasets demonstrate that our proposed model
performs consistently better than the comparison
models for both non-BERT and BERT-based mod-
els and for both E#A and E aspects. This verifies
the effectiveness of our proposed model in ACSA.

Compared with models without employing Dis-
tributions to derive aspect-aware weights, the per-
formance is overall improved in any distribu-
tion. This denotes that exploring Distributions
to model the successful connection probability
between words and the corresponding aspect is
more adaptive to derive more valuable aspect-aware
weights from external knowledge. In addition, the
results produced by different distributions show
that our proposed AAGCN, which explores Beta
Distribution to determine aspect-aware weights,
outstandingly outperforms several related distribu-
tions. This implies that deploying Beta Distribution
to model all the probabilities of successful connec-
tion probability for aspect-aware words based on
the priori knowledge learned from external knowl-
edge derives more sound aspect-aware weights and
leads to an improved ACSA performance.

For different external knowledge scenarios, both
AAGCN and AAGCN-c perform overall better than
the baselines, which demonstrates the generaliz-
ability of our proposed method in deriving aspect-
aware words. In addition, compared with models
based on ConceptNet, models with SenticNet re-
veal considerable superiorities for both non-BERT
and BERT-based conditions. This indicates that
SenticNet, which contains affective relations can
advance the model to leverage sentiment informa-
tion and achieves better performance in ACSA.

4.4 Ablation Study

To investigate the impact of different components
in our proposed model bring to the performance,
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Figure 5: Performance of using different numbers of
hop on 6 datasets.

we conduct an ablation study and report the results
in Table 3. Note that both fully connected graph
and removal of the aspect-aware words reduces
the performance seriously. This verifies the sig-
nificance and effectiveness of recognizing aspect-
aware words from the context for constructing
graph in ACSA task. Additionally, model that with-
out employing dependency tree leads to slightly
poor performance, which implies that incorporat-
ing syntactical relations into the graph can further
lead to the improved ACSA performance.

4.5 Impact of Hop Numbers
To investigate the impact of different hop num-
bers when deriving aspect-aware words from ex-
ternal knowledge, we vary them from 1 to 8 and
report the results in Figure 5. Note that as the
hop number increases from 1 to 5 the performance
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Figure 6: Performance of using different numbers of
GCN blocks on 6 datasets.

improves steadily on all datasets, and the curves
erratically fluctuate when the hop is greater than
5. This implies that the significant learning advan-
tage brought by aspect-aware graph relies on an
appropriate amount of aspect-aware words, while
excessively extending the hop numbers for search-
ing aspect-aware words may bring noise. Thus we
set the hop number as 5 in our model.

4.6 Impact of GCN Blocks

To analyze the impact of the layer number of
GCN blocks over the performance of our proposed
model, we conduct experiments by varying the lay-
ers from 1 to 6 and show the results in Figure 6.
Note that 2-layer GCN blocks performs overall bet-
ter, thus we set the layer number of GCN blocks as
2 in our experiments. Comparatively, 1-layer GCN
block performs unsatisfactorily, which potentially
indicates that 1-layer GCN block is insufficient
to leverage precise aspect-related sentiment infor-
mation from the context. In addition, the perfor-
mance fluctuates with the increasing layer number
of GCN blocks and evidently tends to decline when
the layer number is greater than 4. This implies
that roughly increasing the depth of GCN block is

(a) (b) 

(brunch, 1) (edible, 0.99 ) (yummy, 0.99) (delicious, 0.99)
(like, 0.84) (hate, 0.73) (love, 0.67) (enjoy, 0.35)
(world, 0.01) (dog, 7e-4) (soap, 2e-5) (hall, 1e-6)

(c) Examples of aspect-aware words of food 

Figure 7: Covering rate of aspect-aware words (a). Ex-
amples of aspect-aware words distribution (b), white
spaces denote aspect-aware words in the context.

vulnerable to slash the learning ability of the model
due to the sharp increase of model parameters.

4.7 Analysis of Aspect-aware Words
To investigate the appearance of aspect-aware
words in the sentence, we report the covering rates
of aspect-aware words on different datasets in Fig-
ure 7 (a). Note that the coverage rate of aspect-
aware words in all datasets exceeds 95%. That
is, more than 95% sentences contain aspect-aware
words. This validates the hypothesis that aspect-
related words generally serve as sentiment descrip-
tions of the corresponding aspect in the sentence,
and verifies the convincingness and significance of
our proposed method in ACSA task. Further, we
randomly select 50 sentences from REST15 dataset
and show the distribution of aspect-aware words in
Figure 7 (b). Note that almost all the sentences con-
tain an appropriate amount of aspect-aware words.
This impliedly indicates that aspect-aware words
are generally occur as key clues in the sentences.
We show some typical aspect-aware words paired
with their weights derived for aspect word “food”
in Figure 7 (c). Note that 1) the words that highly
associated with “food” are with great weights (the
red examples), 2) the common sentiment words
are with average weights (the green examples), 3)
the irrelevant words are with small weights (the
blue examples). This qualitatively verifies that our
proposed method of deploying Beta Distribution to
derive aspect-aware weight is effective in ACSA.

4.8 Case Study
To qualitatively demonstrate how contextual aspect-
aware words work in ACSA task, we visualize the
aspect-aware weights in Figure 8. Although the as-
pect (both E and A) of Example (a) is non-existent
in the sentence, the sentiment clue of the aspect can
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Figure 8: Examples of contextual aspect-aware words.
The values in the box represent aspect-aware weights.

be easily learned with the help of the aspect-aware
words. Example (b) and (c) are two instances con-
taining multiple aspects, in which, the entity “food”
occurs in the sentence of Example (b) while none
of the aspect occurs in the sentence in Example
(c). Note that the significant contextual words with
respect to the distinct aspect can be extracted and
distinguished for learning aspect-related sentiment
expression with the help of aspect-aware words.

5 Conclusion

In this paper, we investigate the Aspect Category
Sentiment Analysis (ACSA) task from a novel per-
spective that learning how to preferably find the
aspect-aware words that are highly related to the
aspects, and educe their weights with Beta Distri-
bution based on the public knowledge. The aspect-
aware words paired with their weights are deployed
to construct aspect-aware graph(s) of the context
for learning the contextual sentiment dependencies
in ACSA with a graph convolutional structure. Ex-
perimental results on 6 benchmark datasets demon-
strate the effectiveness of our proposed method.
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