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Abstract
Caption translation aims to translate image an-
notations (captions for short). Recently, Mul-
timodal Neural Machine Translation (MNMT)
has been explored as the essential solution. Be-
sides of linguistic features in captions, MNMT
allows visual (image) featuresto be used. The
integration of multimodal features reinforces
the semantic representation and considerably
improves translation performance. However,
MNMT suffers from the incongruence be-
tween visual and linguistic features. To over-
come the problem, we propose to extend
MNMT architecture with a harmonization net-
work, which harmonizes multimodal features
(linguistic and visual features) by unidirec-
tional modal space conversion. It enables mul-
timodal translation to be carried out in a seem-
ingly monomodal translation pipeline. We ex-
periment on the golden Multi30k-16 and 17.
Experimental results show that, compared to
the baseline, the proposed method yields the
improvements of 2.2% BLEU for the scenario
of translating English captions into German
(En→De) at best, 7.6% for the case of English-
to-French translation (En→Fr) and 1.5% for
English-to-Czech (En→Cz). The utilization of
harmonization network leads to the competi-
tive performance to the-state-of-the-art.

1 Introduction

Caption translation is required to translate a source-
language caption into target-language, where a cap-
tion refers to the sentence-level text annotation of
an image. As defined in the shared multimodal
translation task1 in WMT, caption translation can
be conducted over both visual features in images
and linguistic features of the accompanying cap-
tions. The question of how to opportunely utilize
images for caption translation motivates the study
of multimodality, including not only the extraction
of visual features but the cooperation between vi-
sual and linguistic features. In this paper, we follow

1http://www.statmt.org/wmt16/

the previous work (Specia et al., 2016) to boil cap-
tion translation down to a problem of multimodal
machine translation.

So far, a large majority of previous studies tend
to develop a neural network based multimodal ma-
chine translation model (viz., MNMT), which con-
sists of three basic components:

• Image encoder which characterizes a captioned
image as a vector of global or multi-regional
visual features using a convolutional neural net-
work (CNN) (Huang et al., 2016).

• Neural translation network (Caglayan et al.,
2016; Sutskever et al., 2014; Bahdanau et al.,
2014) which serves both to encode a source-
language caption and to generate the target-
language caption by decoding, where the latent
information that flows through the network is
referred to linguistic feature.

• Multimodal learning network which uses vi-
sual features to enhance the encoding of linguis-
tic semantics (Ngiam et al., 2011). Besides of
the concatenation and combination of linguis-
tic and visual features, vision-to-language atten-
tion mechanisms serve as the essential opera-
tions for cross-modality learning. Nowadays,
they are implemented with single-layer attentive
(Caglayan et al., 2017a; Calixto et al., 2017b),
doubly-attentive (Calixto et al., 2017a), inter-
polated (Hitschler et al., 2016) and multi-task
(Zhou et al., 2018) neural networks, respectively.

Multimodal learning networks have been suc-
cessfully grounded with different parts of various
neural translation networks. They are proven ef-
fective in enhancing translation performance. Nev-
ertheless, the networks suffer from incongruence
between visual and linguistic features because:

• Visual and linguistic features are projected into
incompatible semantic spaces and therefore fail
to be corresponded to each other.
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Ground-truth: 

Two brown 
horses pulling 

a sleigh 
through snow. 

 

Ground-truth: 

Sled dogs 
running and 

pulling a sled. 

 

Counterfeit: 

Two brown 
horses running 

and pulling a 
sled. 

Image 

captioning 

Cross-modality learning 

Encoder-decoder NMT 

Translation in DE::  
Zwei braune pferde ziehen einen 

schlitten durch den schnee. 

   
Linguistic feature Linguistic feature 

Visual 

linguistic 

Figure 1: An example in which image captioning con-
tributes to the reduction of incongruence.

• Linguistic features are sequence-dependent.
This is attributable to pragmatics, syntax or
even rhetoric. On the contrary, visual features
are sequence-independent but position-sensitive.
This is attributable to spatial relationships of vi-
sual elements. Thus, a limited number of visual
features can be directly used to improve the un-
derstanding of linguistic features and translation.

Considering the Figure 1(“Counterfeit” means
Image Captioning output), the visual features en-
able a image processing model to recognize “two
horses” as well as their position relative to a
“sleigh”. However, such features are obscure for a
translation model and useful for translating a verb,
such as “pulling” in the caption. In this case, incon-
gruence of heterogeneous features results from the
unawareness of the correspondence between spatial
relationship (“running horses” ahead of “sleigh”)
and linguistic semantics (“pulling”).

To ease the incongruence, we propose to equip
the current MNMT with a harmonization network,
in which visual features are not directly introduced
into the encoding of linguistic semantics. Instead,
they are transformed into linguistic features be-
fore absorbed into semantic representations. In
other words, we tend to make a detour during the
cross-modality understanding, so as to bypass the
modality barrier (Figure 2). In our experiments, we
employ a captioning model to conduct harmoniza-
tion. The hidden states it produced for decoding
caption words are intercepted and involved into the
representation learning process of MNMT.

The rest of the paper is organized as follows:
Section 2 presents the motivation and methodolog-
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Figure 2: Bypassing modality barrier by captioning.

ical framework. Section 3 gives the NMT model
we use. In Section 4, we introduce the captioning
model that is trainable for cross-modality feature
space transformation. Section 5 presents the cap-
tioning based harmonization networks as well as
the resultant MNMT models. We discuss test re-
sults in Section 6 and overview the related work in
Section 7. We conclude the paper in section 8.

2 Fundamentals and Methodological
Framework

We utilize Anderson et al (2018)’s image caption-
ing (CAP for short) to guide the cross-modality
feature transformation, converting visual features
into linguistic. CAP is one of the generation mod-
els which are specially trained to generate language
conditioned on visual features of images. Ideally,
during training, it learns to perceive the correspon-
dence between visual and linguistic features, such
as that between the spatial relationship of “running
dogs ahead of a sled” in Figure 1 and the meaning
of the verb “pulling”. This allows CAP to pro-
duce appropriate linguistic features during testing
in terms of similar visual features, such as that in
the case of predicting the verb “pulling” for the
scenario of “running horses ahead of a sleigh”.

Methodologically speaking, we adopt the lin-
guistic features produced by the encoder of CAP
instead of the captions generated by the decoder of
CAP. On the basis, we integrate both the linguis-
tic features of the original source-language cap-
tion and those produced by CAP into Calixto et al
(2017b)’s attention-based cross-modality learning
model (see Figure 3). Experimenal results show
that the learning model substantially improves Bah-
danau et al (2014)’s encoder-decoder NMT system.

3 Preliminary 1: Attentive
Encoder-Decoder NMT (Baseline)

We take Bahdanau et al. (2014)’s attentive encoder-
decoder NMT as the baseline. It is constructed
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Figure 3: The overall architecture of MNMT.

with a BiGRU encoder and a Conditional GRU
(CGRU) decoder (Firat and Cho, 2016; Caglayan
et al., 2017a). Attention mechanism is used be-
tween BiGRU and CGRU. The diagram at the right
side of Figure 3 shows the baseline framework.

For a source-language caption, we represent it
with a sequence of randomly-initialized (Kalch-
brenner and Blunsom, 2013) word embeddings
X=(x1, ..., xN ), where each xt is uniformly spec-
ified as a k-dimensional word embedding. Con-
ditioned on the embeddings, Chung et al (2014)’s
BiGRU is used to compute the bidirectional hidden
states S=(s1, ..., sN ), where each st is obtained
by combining the t-th hidden state of forward
GRU and that of backward GRU: st=[

−−−→
GRU e(xt),

←−−−
GRU e(xt)]. Padding (Libovickỳ and Helcl, 2018)
and dynamic stabilization (Ba et al., 2016) are used.

Firat and Cho (2016)’s CGRU is utilized for de-
coding, which comprises two forward GRU units,
i.e.,
−−−→
GRUd1 and

−−−→
GRUd2 respectively.

−−−→
GRUd1

plays the role of producing the inattentive de-
coder hidden states Hd1=(hd11 , ..., h

d1
M ), where

each hd1t is computed based on the output state
hd1t−1 and prediction yt−1 at the previous time step:
hd1t =
−−−→
GRUd1(hd1t−1, yt−1) (Note: the prediction yt

denotes the k-dimensional embedding of the pre-
dicted word at the t-th decoding step). By contrast,−−−→
GRUd2 serves to produce the attentive decoder
hidden states Hd2=(hd21 , ..., h

d2
M ), where each hd2t

is computed conditioned on the previous atten-
tive state hd2t−1, the current inattentive state hd1t ,
as well as the current attention-aware context ct:

hd2t =
−−−→
GRUd2(hd2t−1, h

d1
t ⊕ ct). The context ct is ob-

tained by the attention mechanism over the global
encoder hidden states S: ct = αtS, where αt de-
notes the attention weight at the t-th time step.
Eventually, the prediction of each target-language
word is carried out as follows (where, Wh, Wc,
Wy, bo and by are trainable parameters):

Dt(yt−1, h
d2
t , ct) ∼


ot =tanh(yt−1 + Whh

d2
t +

Wcct + bo)

P (yt|ot) = softmax(W>
y ot

+ by)
(1)

4 Preliminary 2: Image-dependent
Linguistic Feature Acquisition by CAP

For an image, captioning models serve to gener-
ate a sequence of natural language (caption) that
describes the image. Such kind of models are capa-
ble of transforming visual features into linguistic
features by encoder-decoder networks. We utilize
Anderson et al. (2018)’s CAP to obtain the trans-
formed linguistic features.

4.1 CNN based Image Encoder

What we feed into CAP is a full-size image which
needs to be convolutionally encoded beforehand.
He et al (He et al., 2016a)’s CNNs (known as
ResNet) with deep residual learning mechanism
(He et al., 2016b) is capable of encoding images.
In our experiments, we employ the recent version
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of ResNet, i.e., ResNet-101 , which is constructed
with 101 convolutional layers. It is pretrained on
ImageNet (Russakovsky et al., 2015) in the sce-
nario of 1000-class image classification.

Using ResNet-101, we characterize an image as
a convolutional feature matrix: V ∈ Rk×2048 =
{v1, ..., vk}, in which each element vi ∈ R2048 is
a real-valued vector and corresponds to an image
region in the size of 14× 14 pixels.

4.2 Top-down Attention-based CAP

CAP learns to generate a caption over V . It is
constructed with two-layer RNNs with LSTM (An-
derson et al., 2018), LSTM1 and LSTM2 respec-
tively. LSTM1 (in layer-1) computes the current
first-layer hidden state ȟd1t conditioned on the cur-
rent first-layer input x̌d1t and previous hidden state
ȟd1t−1: ȟd1t =LSTM1(x̌d1t , ȟd1t−1). The input x̌d1t is ob-
tained by concatenating the previous hidden state
ȟd1t−1 and previous prediction y̌t−1, as well as the
condensed global visual feature v̄: x̌d1t =[v̄, ȟd1t−1,
y̌t−1], where v̄ is calculated by the normalized ac-
cumulation of overall convolutional features in V :
v̄ = 1

k

∑
i vi (∀vi ∈ V ). We specify the first-layer

hidden state as the initial image-dependent linguis-
tic features.

Attention mechanism (Sennrich et al., 2015) is
used for highlighting the attention-worthy image
context, so as to produce the attention-aware vector
of image context v̌t: v̌t =

∑
α̌tV . The attention

weight α̌t is obtained by aligning the current image-
dependent hidden state ȟd1t with every convoluted
visual feature vi: α̌t = softmax.f(ȟd1t , vi), where
f(∗) is the non-linear activation function.

LSTM2 (in layer-2) serves as a neural language
model (viz., language-oriented generation model).
It learns to encode the current second-layer hid-
den state ȟd2t conditioned on the current second-
layer input x̌d2t and previous hidden state ȟd2t−1:
ȟd2t =LSTM1(x̌d2t , ȟd2t−1). The input x̌d2t is ob-
tained by concatenating the current first-layer hid-
den state ȟd1t (emitted from layer-1) and current
attention-aware image context v̌t: x̌d2t =[v̌t, ȟd1t ].
We specific a second-layer hidden state ȟd2t as
the image-dependent attention-aware linguistic fea-
tures. Towards the image captioning task, CAP
generally decodes the second-layer hidden states
ȟd2t to predict caption words. In our case, we tend
to integrate them into multimodal NMT by cross-
modality learning (see the next section).

5 Harmonization for MNMT

In the previous work of multimodal NMT, visual
features in V are directly used for cross-modality
learning. By contrast, we transform visual features
into image-dependent attention-aware linguistic
features (i.e., second-layer hidden states ȟd2t emit-
ted by CAP) before use. We provide four-class vari-
ants of cross-modality learning to improve NMT.
They absorb image-dependent attention-aware lin-
guistic features in different ways, including a vari-
ant that comprises attentive feature fusion (CAP-
ATT) and three variants (CAP-ENC, CAP-DEC
and CAP-TKN) which carry out reinitialization and
target-language embedding modulation. Figure 3
shows the positions in the baseline NMT where the
variants come into play.

CAP-ATT intends to improve NMT by conduct-
ing joint representation learning across the features
of the source-language caption and that of the ac-
companying image. On one side, CAP-ATT adopts
the encoder hidden state st (emitted by the Bi-
GRU encoder of the baseline NMT) and uses it as
the language-dependent linguistic feature. On the
other side, it takes the image-dependent attention-
aware linguistic feature ȟd2t (produced by CAP).
We suppose that the two kinds of features (i.e.,
ȟd2t and st) are congruent with each other. On the
basis, CAP-ATT blends ȟd2t into st to form the
joint representation ŝt. Element-wise feature fu-
sion (Cao and Xiong, 2018) is used to compute ŝt:
ŝt = st � ȟd2t . Using the joint representation ŝt,
CAP-ATT updates the attention-aware context ct
which is fed into the CGRU decoder of the baseline
NMT: ĉt=αtŜ, ∀ŝ ∈ Ŝ. By substituting the up-
dated context ĉt into the computation of the CGRU
decoder, CAP-ATT further refines the decoder hid-
den state hd2t and prediction of target-language
words. Equation 2 formulates the decoding pro-
cess, where Dt is the shorthand of equation (1).

D̂t(yt−1, ĥ
d2
t , ĉt) ∼


ĥd2t =

−−−→
GRUd2(ĥd2t−1, h

d1
t

⊕ ĉt)

yt ⇐Dt(yt−1, ĥ
d2
t , ct)

(2)
CAP-ENC reinitializes the BiGRU encoder of

the baseline NMT with the final image-dependent
attention-aware linguistic feature ȟd2t (t=N ) (pro-
duced by CAP):

←−
h 0 =

−→
h 0 = tanh(W0ȟ

d2
t ),

where
←−
h 0 and

−→
h 0 are the initial states of BiGRU,

and W0 refers to the trainable parameter. CAP-
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DEC uses ȟd2t (t=N ) to reinitialize the CGRU
decoder of the baseline NMT: hd10 = hd20 =
tanh(W′

0ȟ
d2
t ), where hd10 and hd20 are the ini-

tial decoder hidden states of CGRU. Using ȟd2t
(t=N ), CAP-TKN modulates the predicted target-
language word embedding yt at each decoding step:
yt = yt�tanh(Wtknȟ

d2
t ), where Wtkn is the train-

able parameter. CAP-ALL equips a MNMT sys-
tem with all the variants.

6 Experimentation

6.1 Resource and Experimental Datasets

We perform experiments on Multi30k-16 and
Multi30k-172, which are provided by WMT for the
shared tasks of multilingual captioning and multi-
modal MT (Elliott et al., 2016). The corpora are
used as the extended versions of Flichr30k (Young
et al., 2014), since they contain not only English
(En) image captions but their translations in Ger-
man (De), French (Fr) and Czech (Cz). Hereinafter,
we specify an example in Multi30k as an image
which is accompanied by three En→De, En→Fr
and En→Cz caption-translation pairs. Each of
Multi30k-16 and Multi30k-17 contains about 31K
examples. We experiment on the corpora sepa-
rately, and as usual divide each of them into train-
ing, validation and test sets, at the scale of 29K,
1,014 and 1K examples, respectively.

In addition, we carry out a complementary exper-
iment on the ambiguous COCO which contains 461
examples (Elliott et al., 2017). Due to the inclusion
of ambiguous verbs, the examples in ambiguous
COCO can be used for the evaluation of visual
sense disambiguation in a MNMT scenario.

6.2 Training and Hyperparameter Settings

For preprocessing, we apply Byte-Pair Encoding
(BPE) (Sennrich et al., 2015) for tokenizing all the
captions and translations in Multi30k and COCO,
and use the open-source toolkit3 of Moses (Koehn
et al., 2007) for lowercasing and punctuation nor-
malization. It reproduces the neural network archi-
tecture of Anderson et al (Anderson et al., 2018)’s
top-down attentive CAP. The only difference is that
it merely utilizes ResNet-101 in generating the in-
put set of visual features V , without the use of
Faster R-CNN (Ren et al., 2015). This CAP has

2https://github.com/multi30k/dataset/tree/master/data-
/task1/raw

3https://github.com/moses-smt/mosesdecoder/tree/-
master/scripts/tokenizer

been trained on MSCOCO captions dataset (Lin
et al., 2014) using the same hyperparameter set-
tings as that in Anderson et al. (2018)’s work.

Besides of the baseline NMT (Bahdanau et al.,
2014) mentioned in section 2, we compare our
model with Caglayan et al (Caglayan et al.,
2017a)’s convolutional visualfeature based MNMT.
In this paper, we follow Caglayan et al (Caglayan
et al., 2017a)’s practice to implement and train our
model. First of all, we implement our model with
the nmtpy framework (Caglayan et al., 2017b) us-
ing Theano v0.9. During training, ADAM with
a learning rate of 4e-4 is used and the batch size
is set as 32. We initialize all the parameters (i.e.,
transformation matrices and biases) using Xavier
and clip the total gradient norm to 5. We drop
out the input embeddings, hidden states and output
states with the probabilities of (0.3, 0.5, 0.5) for
En→De MT, (0.2, 0.4, 0.4) for En→Fr and (0.1,
0.3, 0.3) for En→Cz. In order to avoid overfitting,
we apply a L2 regularization term with a factor of
1e-5. We specify the dimension as 128 for all token
embeddings (k = 128) and 256 for hidden states.

6.3 Comparison to the Baseline

We carry out 5 independent experiments (5 runs)
for each of the proposed MNMT variants. In each
run, any of the variants is retrained and redeveloped
under cold-start conditions using a set of randomly-
selected seeds by MultEval4. Eventually, the resul-
tant models are evaluated on the test set with BLEU
(Papineni et al., 2002), METEOR (Denkowski and
Lavie, 2014) and TER (Snover et al., 2006).

For each variant, we report not only the compre-
hensive performance (denoted as ensemble) which
is obtained using ensemble learning (Garmash and
Monz, 2016) but that without ensemble learning.
In the latter case, the average performance (µ) and
deviations (σ) in the 5 runs are reported.

6.3.1 Performance on Multi30k
Tables 1 and 2 respectively show the performance
of our models on Multi30k-16 and Multi30k-17 for
the translation scenarios of En→De, En→Fr and
En→Cz. Each of our MNMT models in the tables
is denoted with a symbol "+", which indicates that a
MNMT model is constructed with the baseline and
one of our cross-modality learning models. The
baseline is specified as the monomodal NMT model
which is developed by Bahdanau et al. (2014) (as

4https://github.com/jhclark/multeval
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En→De
Multi30k-16 (µ ± σ/ensemble) Multi30k-17 (µ ± σ/ensemble)

BLEU METEOR TER BLEU METEOR TER
Baseline 38.1±0.8/40.7 57.3±0.5/59.2 N/A 30.8±1.0/33.7 51.6±0.5/53.8 N/A
+CAP−ATT 39.2±0.8/41.3 57.5±0.6/59.4 40.9±0.8/39.5 32.1±0.9/33.6 51.0±0.7/52.9 48.7±0.8/47.3
+CAP−ENC 39.1±0.8/41.2 57.6±0.7/59.2 40.9±0.8/39.3 32.5±0.8/33.8 52.2±0.7/54.5 48.5±0.8/46.3
+CAP−DEC 38.9±0.8/41.0 57.4±0.7/59.3 41.3±0.8/39.1 33.0±0.8/34.3 51.6±0.7/53.2 48.6±0.8/47.1
+CAP−TKN 39.1±0.8/40.9 57.3±0.6/58.6 41.3±0.8/39.1 32.2±0.8/33.9 51.3±0.7/53.5 48.5±0.8/47.0
+CAP−ALL 39.6±0.9/42.1 57.5±0.7/59.9 41.1±0.8/39.4 31.6±0.8/33.9 51.6±0.7/53.7 49.7±0.7/47.1

En→Fr
Multi30k-16 (µ ± σ/ensemble) Multi30k-17 (µ ± σ/ensemble)

BLEU METEOR TER BLEU METEOR TER
Baseline 52.5±0.3/54.3 69.6±0.1/71.3 N/A 50.4±0.9/53.0 67.5±0.7/69.8 N/A
+CAP−ATT 60.1±0.8/63.3 74.3±0.6/77.1 25.1±0.7/22.7 52.5±0.9/56.1 68.2±0.7/71.2 31.5±0.7/28.4
+CAP−ENC 59.3±0.9/62.8 73.5±0.6/76.4 26.2±0.7/23.3 52.2±0.8/55.8 68.1±0.7/71.1 31.5±0.7/28.5
+CAP−DEC 60.1±0.9/62.6 74.2±0.7/76.3 25.6±0.6/23.0 51.9±0.9/55.7 67.6±0.7/71.3 31.6±0.7/28.1
+CAP−TKN 60.3±0.8/63.0 74.5±0.6/76.6 25.2±0.6/23.0 52.7±0.9/56.0 68.3±0.6/71.3 31.5±0.7/28.6
+CAP−ALL 60.1±0.8/62.7 74.3±0.6/76.4 25.0±0.4/23.1 52.8±0.9/56.1 68.6±0.6/71.1 31.2±0.7/28.9

Table 1: Performance for both En→De and En→Fr on Multi30k-16 and Multi30k-17.

En→Cz
Multi30k(2016) (µ ± σ /ensemble)

BLEU METEOR TER
Baseline 30.5±0.8/32.6 29.3±0.4/31.4 N/A

+CAP−ATT 31.8±0.9/33.4 30.2±0.4/32.6 46.1±0.8/43.6
+CAP−ENC 31.7±0.8/33.3 29.9±0.4/32.1 46.3±0.8/43.5
+CAP−DEC 31.6±0.9/33.3 30.0±0.4/32.3 45.6±0.8/43.6
+CAP−TKN 32.0±0.9/33.9 30.1±0.4/32.3 45.7±0.8/43.3
+CAP−ALL 31.8±0.9/33.6 29.9±0.4/31.5 45.3±0.8/43.3

Table 2: Performance for En→Cz on Multi30k-16

mentioned in section 2) and redeveloped as the
baselines in a variety of research studies on mul-
timodal NMT (Calixto et al., 2017a,b; Caglayan
et al., 2017a). We quote the results reported in
Caglayan et al. (2017a)’s work as they were better.

It can be observed that our MNMT models out-
perform the baseline. They benefits from the per-
formance gains yielded by the variants of CAP
based cross-modality learning, which are no less
than 1.5% BLEU when ensemble learning is used,
and 0.6% when not to use it. In particular, +CAP-
ATT obtains a performance increase of up to 7.6%
BLEU (µ) in the scenario of En→Fr MT. The gains
in METEOR score we obtain are less obvious than
that in BLEU, which is about 5.3% (µ) at best.

We follow Clark et al. (2011) to perform sig-
nificance test. The test results show that +CAP-
ATT, +CAP-DEC and +CAP-TKN achieve a p-
value of 0.02, 0.01 and 0.007, respectively. Clark
et al. (2011) have proven that the performance im-
provements are significant only if the p-value is
less than 0.05. Therefore, the proposed method
yields statistically significant performance gains.

6.3.2 Performance on Ambiguous COCO
Table 3 shows the translation performance. It can
be found that our models yield a certain amount of
gains (in BLEU scores) for En→De translation, and
raise both BLEU and METEOR scores for En→Fr.

The METER scores for En→De are comparable to
that the baseline achieved. However, the improve-
ment is less significant compared to that obtained
on Multi30k-16&17 (see Table 1). Considering
that the ambiguous COCO contains a larger num-
ber of ambiguous words than Multi30k-16&17, we
suggest that our method fails to largely shield the
baseline from the misleading of ambiguous words.

Nevertheless, our method doesn’t result in a two-
fold error propagation, but on the contrary it allevi-
ates the negative influences of the errors because:

• Error propagation, in general, is inevitable when
a GRU or LSTM unit is used. Both are trained
to predict a sequence of words one by one. Ap-
propriate prediction of previous words is crucial
for ensuring the correctness of subsequent words.
Thus, once a mistake is made at a certain decod-
ing step, the error will be propagated forward,
and mislead the prediction of subsequent words.

• The baseline is equipped with a GRU decoder
and therefore suffers from error propagation.
More seriously, ambiguous words increase the
risk of error propagation. This causes a sig-
nificant performance reduction on Ambiguous
COCO. For example, the BLEU score for
En→De is 28.7% at best. It is far below that
(40.7%) obtained on Multi30k-16&17.

• Two-fold error propagation is suspected to occur
when LSTM-based CAP is integrated with the
baseline. Though the opposite is actually true.
After CAP is used, the translation performance
is improved instead of falling down.

6.4 Comparison to the state of the art
We survey the state-of-the-art research activities in
the field of MNMT, and compare them with ours
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Ambiguous
coco (2017)

En→De (µ ± σ/ensemble) En→Fr (µ ± σ/ensemble)
BLEU METEOR TER BLEU METEOR TER

Helcl et al (2017) 25.7 45.6 N/A 43.0 62.5 N/A
Caglayan et al (2017) 29.4� 49.2� N/A 46.2� 66.0� N/A
Zhou et al (2018) 28.3 48.0 N/A 45.0 64.7 N/A
Baseline 26.4±0.2/28.7 46.8±0.7/48.9 N/A 41.2±1.2/43.3 61.3±0.9/63.3 N/A
+CAP-ATT 27.1±1.2/29.3 47.7±0.9/48.8 53.0±1.1/50.7 43.8±1.2/46.8 62.2±0.9/65.0 36.5±1.0/34.5
+CAP-ENC 27.1±1.1/29.4 47.5±0.9/48.7 54.1±1.1/51.2 42.8±1.2/46.3 60.8±0.9/65.3 38.1±1.0/33.4
+CAP-DEC 27.8±1.1/29.9 47.8±1.0/49.3 53.8±1.1/50.8 43.2±1.2/46.1 61.5±0.9/65.3 37.3±1.0/34.3
+CAP-TKN 27.3±1.2/29.6 46.4±0.9/48.9 54.2±1.2/51.1 44.5±1.2/46.8 62.4±0.9/65.3 37.8±1.0/34.0
+CAP-ALL 27.6±1.1/29.8 46.4±0.9/48.9 54.4±1.2/50.8 44.3±1.2/47.1 62.6±0.9/65.4 36.4±1.0/33.5

Table 3: Performance on Amb-COCO (Note: "�" is the sign of the performance when ensemble learning is used.)

En→De
Multi30k-16 Multi30k-17

BLEU METEOR BLEU METEOR
Huang et al (2016) 36.5 54.1
Calixto et al (2017a) 36.5 55.0
Calixto et al (2017b) 41.3� 59.2�
Elliott et al (2017) 40.2� 59.3�
Helcl et al (2017) 34.6 51.7 28.5 49.2
Caglayan et al (2017a) 41.2� 59.4� 33.5� 53.8�
Helcl et al (2018) 38.7 57.2
Zhou et al (2018) 31.6 52.2
Ours (µ) 39.6 57.5 33.0 52.2
Ours (ensemble) 42.1 59.9 34.3 54.5

En→Fr
Multi30k-16 Multi30k-17

BLEU METEOR BLEU METEOR
Helcl et al (2017) 50.3 67.0
Caglayan et al (2017a) 56.7� 73.0� 55.7� 71.9�
Helcl et al (2018) 60.8 75.1
Zhou et al (2018) 53.8 70.3
Ours (µ) 60.1 74.3 52.8 68.6
Ours (ensemble) 63.3 77.1 56.1 71.1

En→Cz
Multi30k-16 Multi30k-17

BLEU METEOR BLEU METEOR
Helcl et al (2018) 31.0 29.9
Ours (µ) 32.0 30.2
Ours (ensemble) 33.9 32.6

Table 4: Comparison results on Multi30k (Note: "�" is
the sign indicating the use of ensemble learning).

(as shown in Table 4). Comparison are made for all
the WMT translation scenarios (En→De, Fr and
Cz) on Multi30k-16&17 but merely for En→De
and En→Fr on ambiguous COCO (as shown in Ta-
ble 3). To our best knowledge, there is no previous
attempt to evaluate the performance of an En→Cz
translation model on ambiguous COCO, and thus
a precise comparison for that is not available. It is
noteworthy that some of the cited work reports the
ensemble learning results for MNMT, others make
no mention of it. We label the former with a symbol
of "�" in Tables 3 and 4 to ease the comparison.

It can be observed that our best model outper-
forms the state of the art for most scenarios over dif-
ferent corpora except the En→Fr case on Multi30k-
17. The performance increases are most apparent in
the case of En→Fr on Multi30k-16 when ensemble
learning is used, where the BLEU and METEOR
scores reach the levels of more than 63% and 77%,
with the improvements of 6.6% and 4.1%.

We regard the work of Caglayan et al. (2017a)

and Calixto et al. (2017a) as the representatives in
our systematic analysis. Caglayan et al. (2017a)
directly use raw visual features (i.e., V mentioned
in section 3.1) to enhance NMT at different stages,
including that of initialization, encoding and de-
coding. Calixto et al. (2017a) develop a doubly-
attentive decoder, where both visual features of
images and linguistic features of captions are used
for computing the attention scores during decoding.

• Caglayan et al. (2017a)’s model: Caglayan
et al. (2017a)’s model integrates visual features
V into the decoding process. By contrast, we
conduct the integration using linguistic features
which are transformed from visual features. It is
proven that our integration approach leads to con-
siderable performance increases. Accordingly,
we suppose that reducing incongruence between
visual and linguistic features contributes to cross-
modality learning in MNMT.

• Calixto et al. (2017a)’s model: Our CAP-ATT
is similar to Calixto et al. (2017a)’s model due
to the use of attention mechanisms during decod-
ing. The difference is that CAP-ATT transforms
visual features into linguistic features before at-
tention computation. This operation leads to the
increases of both BLEU (2.7%) and METEOR
(2%) on Multi30k-16. The results demonstrate
that attention scores can be computed more ef-
fectively between features of the same type.

6.5 Performance in Adversarial Evaluation
We examine the use efficiency of images for
MNMT using Elliott’s adversarial evaluation (El-
liott, 2018). Elliott suppose that if a model effi-
ciently uses images during MNMT, its performance
would degrade when it is cheated by some incon-
gruent images. Table 5 shows the test results, where
"C" is specified as a METEOR score which is eval-
uated when there is not any incongruent image in
the test set, while "I" is that when some incogru-
ent images are used to replace the original images.
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If the value of “C” is larger than “I”, a positive
4E-Awareness can be obtained. It illustrates an ac-
ceptable use efficiency. On the contrary, a negative
4E-Awareness is a warning of low efficiency.

Table 5 shows the test results. It can be ob-
served that our +CAP-ATT and +CAP-ALL models
achieve positive 4E-Awareness for all the trans-
lation scenarios on Multi30k-16. In addition, the
models obtain higher values of4E-Awareness than
Caglayan et al. (2017a)’s models of decinit and
hierattn. As mentioned above, Caglayan et al
directly use visual features to enhance the MNMT,
while we use the image-dependent linguistic fea-
tures that are transformed from visual features.
Therefore, we suppose that modality transforma-
tion leads to a higher use efficiency of images.

7 RELATED WORK

We have mentioned the previous work of MNMT
in section 1, where the research interest has been
classified into image encoding, encoder-decoder
NMT construction and cross-modality learning.
Besides, we present the methods of Caglayan et al.
(2017a) and Calixto et al. (2017a) in the section
4.4.2, along with the systematic analysis. Besides,
many scholars within the research community have
made great efforts upon the development of sophis-
ticated NMT architectures, including multi-source
(Zoph and Knight, 2016), multi-task (Dong et al.,
2015) and multi-way (Firat et al., 2016) NMT, as
well as those equipped with attention mechanisms
(Sennrich et al., 2015). The research activities are
particularly crucial since they broaden the range of
cross-modality learning strategies.

Current research interest has concentrated on the
incorporation of visual features into NMT (Lala
et al., 2018), by means of visual-linguistic con-
text vector concatenation (Libovickỳ et al., 2016),
doubly-attentive decoding (Calixto et al., 2017a),
hierarchical attention combination (Libovickỳ and
Helcl, 2017), cross-attention network (Helcl et al.,
2018), gated attention network (Zhang et al., 2019),
joint (Zhou et al., 2018) and ensemble (Zheng et al.,
2018) learning . In addition, image attention opti-
mization (Delbrouck and Dupont, 2017) and mono-
lingual data expansion (Hitschler et al., 2016) have
been proven effective in this field. Ive et al. (2019)
use an off-shelf object detector and an additional
image dataset (Kuznetsova et al., 2018) to form a
bag of category-level object embeddings. Condi-
tioned on the embeddings, Ive et al. (2019) develop

En→De
Multi30k (2016) (µ± σ)

C I 4E-Awareness
+CAP-ATT 58.5 58.5±0.2 0.001 ±0.002
+CAP-ENC 57.8 58.5±0.1 -0.007 ±0.001
+CAP-DEC 58.3 58.0±0.0 0.020 ±0.001
+CAP-TKN 58.7 58.6±0.1 0.001 ±0.001
+CAP-ALL 59.0 58.5±0.2 0.005 ±0.002
Caglayan et al′s trgmul N/A N/A -0.001 ±0.002
Caglayan et al′s decinit N/A N/A 0.003 ±0.001
Helcl et al′s hierattn N/A N/A 0.019 ±0.003

En→Fr
Multi30k (2016) (µ± σ)

C I 4E-Awareness
+CAP-ATT 74.8 74.2±0.1 0.005 ±0.001
+CAP-ENC 73.8 74.2±0.1 -0.004 ±0.001
+CAP-DEC 74.3 74.3±0.1 -0.001 ±0.001
+CAP-TKN 74.9 74.6±0.1 0.003 ±0.001
+CAP-ALL 74.8 74.5±0.1 0.003 ±0.001

En→Cz
Multi30k (2016) (µ± σ)

C I 4E-Awareness
+CAP-ATT 35.2 34.7±0.2 0.005 ±0.002
+CAP-ENC 34.7 34.4±0.1 0.003 ±0.001
+CAP-DEC 34.8 34.4±0.1 0.004 ±0.001
+CAP-TKN 34.9 35.1±0.1 -0.002 ±0.001
+CAP-ALL 34.6 33.8±0.1 0.007 ±0.001

Table 5: Test results in Elliott’s utility test.

a sophisticated MNMT model which integrates self-
attention and cross-attention mechanisms into the
encoder-decoder based deliberation architecture.

This paper also touches on the research area of
image captioning. Mao et al. (2014) provide an
interpretable image modeling method using multi-
modal RNN. Vinyals et al. (2015) design a caption
generator (IDG) by Seq2Seq framework. Further,
Xu et al. (2015) propose an attention-based IDG.

8 CONCLUSION

We demonstrate that the captioning based harmo-
nization model reduces incongruence between mul-
timodal features. This contributes to the perfor-
mance improvement of MNMT. It is proven that
our method increases the use efficiency of images.

The interesting phenomenon we observed in the
experiments is that modality incongruence reduc-
tion is more effective in the scenario of En→Fr
translation than that of En→De and En→Cz. This
raises a problem of adaptation to languges. In the
future, we will study on the distinct grammatical
and syntactic principles of target languages, as well
as their influences on the adaptation. For exam-
ple, the syntax of French can be considered as
most strict. Thus, a sequence-dependent feature
vector may be more adaptive to MNMT towards
French. Accordingly, we will attempt to develop
a generative adversarial network based adaptation
enhancement model. The goal is to refine the gen-
erated linguistic features by learning to detect and
eliminate the features of less adaptability.
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