
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 6563–6573

August 1–6, 2021. ©2021 Association for Computational Linguistics

6563

Multi-hop Graph Convolutional Network with High-order Chebyshev
Approximation for Text Reasoning

Shuoran Jiang, Qingcai Chen∗, Xin Liu, Baotian Hu, Lisai Zhang
Harbin Institute of Technology, Shenzhen

{shuoran.chiang, hit.xinliu, lisaizhang2016}@gmail.com
{qingcai.chen, hubaotian}@hit.edu.cn

Abstract
Graph convolutional network (GCN) has be-
come popular in various natural language pro-
cessing (NLP) tasks with its superiority in long-
term and non-consecutive word interactions.
However, existing single-hop graph reason-
ing in GCN may miss some important non-
consecutive dependencies. In this study, we
define the spectral graph convolutional network
with the high-order dynamic Chebyshev ap-
proximation (HDGCN), which augments the
multi-hop graph reasoning by fusing messages
aggregated from direct and long-term depen-
dencies into one convolutional layer. To alle-
viate the over-smoothing in high-order Cheby-
shev approximation, a multi-vote based cross-
attention (MVCAttn) with linear computation
complexity is also proposed. The empiri-
cal results on four transductive and inductive
NLP tasks and the ablation study verify the
efficacy of the proposed model. Our source
code is available at https://github.com/
MathIsAll/HDGCN-pytorch.

1 Introduction

Graph neural networks (GNNs) are usually used to
learn the node representations in Euclidean space
from graph data, which have been developed to
one of the hottest research topics in recent years
(Zhang, 2020). The primitive GNNs relied on recur-
sive propagation on graphs, which takes a long time
to train (Zhang et al., 2019b). One major variant
of GNNs, graph convolutional networks (GCNs)
(Kipf and Welling, 2017; Yao et al., 2019), takes
spectral filtering to replace recursive message pass-
ing and needs only a shallow network to convergent,
which have been used in various NLP tasks. For
example, Yao et al. (2019) constructed the text as a
graph and input it to a GCN. This method achieved
better results than conventional deep learning mod-
els in text classification. Afterward, the GCNs

∗corresponding author: Qingcai Chen

have became popular in more tasks, such as word
embedding (Zhang et al., 2020b), semantic anal-
ysis (Zhang et al., 2019a), document summariza-
tion (Wang et al., 2020), knowledge graph (Wang
et al., 2018), etc.

The spectral graph convolution in Yao’s GCN is
a localized first-order Chebyshev approximation.
It is equal to a stack of 1-step Markov chain (MC)
layer and fully connected (FC) layer. Unlike the
multi-step Markov chains, the message propaga-
tion in vanilla GCN lacks the node probability tran-
sitions. As a result, the multi-hop graph reason-
ing is very tardy in GCN and easily causes the
suspended animation problem (Zhang and Meng,
2019). However, the probability transition on the
graph is useful to improve the efficiency in learning
contextual dependencies. In many NLP tasks (like
the question answering (QA) system and entity re-
lation extraction), the features of the two nodes
need to be aligned. As an example, Figure 1 shows
a simple graph where the node n4 is a pronoun
of node n1. In this example, the adjacency ma-
trix is masked on nodes n2, n3, n5 to demonstrate
the message passing between n1 and n4. Figure 1
(c) and (d) plot the processes of feature alignment
on two nodes without and with probability tran-
sitions respectively. In this example, the feature
alignment process without probability transition
needs 10 more steps than which with probability
transition. It is shown that encoding the multi-hop
dependencies through the spectral graph filtering
in GCN usually requires a deep network. However,
as well known that the deep neural network (DNN)
is tough to train and easily causes the over-fitting
problem (Rong et al., 2019).

Some newest studies to improve the multi-hop
graph reasoning include graph attention networks
(GATs) (Veličković et al., 2018), graph residual
neural network (GRESNET) (Zhang and Meng,
2019), graph diffusive neural network (DIFNET)

https://github.com/MathIsAll/HDGCN-pytorch
https://github.com/MathIsAll/HDGCN-pytorch


6564

Figure 1: (a): A simple graph with 5 nodes and the
weighted edges, in which the nodes n4 is a pronoun
of n1 and the two nodes need to align features. (b):
The masked adjacency matrix on this graph. (c) and
(d): The processes of feature alignment on nodes n1
and n4 without transition probability and with transition
probability respectively.

(Zhang, 2020), TGMC-S (Zhang et al., 2020c) and
Graph Transformer Networks (Yun et al., 2019;
Zhang and Zhang, 2020). GATs enhance the graph
reasoning by implicitly re-defining the graph struc-
ture with the attention on the 1-hop neighbors, but
there is equilibrial optimization on the whole graph.
GRESNET solves the suspended animation prob-
lem by creating extensively connected highways to
involve raw node features and intermediate repre-
sentations throughout all the model layers. How-
ever, the multi-hop dependencies are still reasoned
at a slow pace. DIFNET introduces a new neu-
ron unit, i.e., GDU (gated diffusive unit), to model
and update the hidden node states at each layer.
DIFNET replaces the spectral filtering with a recur-
sive module and realizes the neural gate learning
and graph residual learning. But the time cost is ag-
gravated in DIFNET compared with GCN. TGMC-
S stacks GCN layers on adjacent matrices with dif-
ferent hops of traffic networks. Different from the
ground-truth traffic network in TGMC-S, it is hard
to construct the multi-hop word-word relationships
objectively from the text. TGMC-S hadn’t given a
way to improve the multi-hop message passing in
GCN.

Transformers (Vaswani et al., 2017) and cor-
responding pre-trained models (Xu et al., 2019)
could be thought of as fully-connected graph neural
networks that contain the multi-hop dependencies.
They figure out the contextual dependencies on the
fully-connected graph with the attention mecha-
nism. The message propagation in transformers
follows the relations self-adaptively learned from

input sequence instead of the fixed graph structures.
Publications have shown that transformers outper-
form GCNs in many NLP tasks. Graph Trans-
former (Dwivedi and Bresson, 2020) generalizes
the Transformer to arbitrary graphs, and improves
inductive learning from Laplacian eigenvectors on
graph topology. However, due to the connections
scale quadratically growth with node number N
in graphs, things get out of hand for very large N .
Additionally, the fully-connected graph is not an
interpretable architecture in practical tasks. For
example, whether Transformers are the best choice
to bring the text in linguistic theory? 1

To improve the efficiency and performance of
multi-hop graph reasoning in spectral graph con-
volution, we proposed a new graph convolutional
network with high-order dynamic Chebyshev ap-
proximation (HDGCN). A prime ChebNet and a
high-order dynamic (HD) ChebNet are firstly ap-
plied to implement this Chebyshev approximation.
These two sub-networks work like a trade-off on
low-pass signals (direct dependencies) and high-
pass signals (multi-hop dependencies) respectively.
The prime ChebNet takes the same frame as the
convolutional layer in vanilla GCN. It mainly ex-
tracts information from direct neighbors in local
contexts. The HD-ChebNet aggregates messages
from multi-hop neighbors following the transition
direction adaptively learned by the attention mech-
anism. The standard self-attention (Vaswani et al.,
2017) has a O

(
N2
)

computation complexity and
it is hard to be applied on long sequence. Even the
existing sparsity attention methods, like the Star-
Transformer (Guo et al., 2019) and Extended Trans-
former Construction (ETC) (Ainslie et al., 2020),
have reduced the quadratic dependence limit of
sequence length to linear dependence, but the fully-
connected graph structure cannot be kept. We de-
sign a multi-vote-based cross-attention (MVCAttn)
mechanism. The MVCAttn scales the computation
complexity O(N2) in self-attention to O(N).

The main contributions of this paper are listed
below:

• To improve the efficiency and performance of
multi-hop reasoning in spectral graph convolu-
tion, we propose a novel graph convolutional
network with high-order dynamic Chebyshev
Approximation (HDGCN).

1https://towardsdatascience.com/transformers-are-graph-
neural-networks-bca9f75412aa



6565

• To avoid the over-smoothing problem in
HD-ChebNet, we propose a multi-vote
based cross-attention (MVCAttn) mechanism,
which adaptively learn the direction of node
probability transition. MVCAttn is a variant
of the attention mechanism with the property
of linear computation complexity.

• The experimental results show that the pro-
posed model outperforms compared SOTA
models on four transductive and inductive
NLP tasks.

2 Related Work

Our work draws supports from the vanilla GCN and
the attention mechanism, so we first give a glance
at the paradigm of these models in this section.

2.1 Graph Convolutional Network

The GCN model proposed by (Kipf and Welling,
2017) is the one we interested, and it is defined on
graph G = {V, E}, where V is the node set and E
is the edge set. The edge (vi, vj) ∈ E represents
a link between nodes vi and vj . The graph sig-
nals are attributed as X ∈ R|V|×d, and the graph
relations E can be defined as an adjacency matrix
A ∈ R|V|×|V| (binary or weighted).

Each convolutional layer in GCN is a 1st Cheby-
shev approximation on spectral graph convolution,
and its layer-wise propagation rule in neural net-
work is defined as:

H(l+1) = σ
(
ÃH(l)W(l)

)
, L ≥ l ≥ 0

Ã = (D + IN )−
1
2 (A + IN ) (D + IN )−

1
2 ,

(1)

where H(0) = X, Ã is the normalized adjacency
matrix and σ is a non-linear activation function.

The node embeddings output from the last con-
volutional layer are fed into a softmax classifier for
node or graph classification, and the loss function
L can be defined as the cross-entropy error. The
weight set {W(l)}Ll=0 can be jointly optimized by
minimizing L via gradient descent.

2.2 Self-Attention Is a Dynamic GCN

The attention mechanism is an effective way to
extract task-relevant features from inputs, and it
helps the model to make better decisions (Lee
et al., 2019). It has various approaches to compute
the attention score from features, and the scaled
dot-product attention proposed in Transformers

(Vaswani et al., 2017) is the most popular one.

Z = softmax
(

XWqWkXT

√
dk

)
︸ ︷︷ ︸

A

XWv

(2)

where X ∈ RN×d is the input sequence, and
weights Wq ∈ Rd×dk , Wk ∈ Rdk×d, Wv ∈
Rd×dv are used to transform sequence to queries,
keys and values.

As showed in Equation 2, the attention scores
A can be viewed as a dynamic adjacency matrix
on sequence X. This process in self-attention is
similar to the graph convolutional layer defined in
Equation 1. The only difference is that the adja-
cency matrix in Equation 2 is adaptively learned
from input instead of prior graph structures.

3 Method

In our model, the input graph G = (V, E) takes
the same form as the one in GCN. The nodes are
attributed as X ∈ R|V|×d, and the adjacency matrix
A ∈ R|V|×|V| (binary or weighted) is defined on
graph edges E .

The spectral graph convolution in Fourier do-
main is defined as,

gθ ? x = Ugθ

(
Λ̃
)

UTx (3)

where x ∈ Rd is the signal on a node, U is the
matrix of eigenvectors on normalized graph Lapla-
cian L = IN −D−

1
2 AD−

1
2 = UΛUT , and the

filter gθ(Λ̃) is a function of the eigenvalues on
normalized L̃ in Fourier domain.

The K-th (K > 2) order truncation of Cheby-
shev polynomials on this spectral graph convolu-
tion is,

gθ ? x ≈
K∑
i=0

θiUTi

(
Λ̃
)

UTx (4)

where T0

(
Λ̃
)

= I, T1 = Λ̃, Ti>1

(
Λ̃
)

=

2Λ̃Ti−1

(
Λ̃
)
− Ti−2

(
Λ̃
)

.
To replace the parameters {θi}Ki=1 with another

parameter set {θ(i)}K/2
i=1 , the Kth-order Chebyshev

polynomials in Equation 4 are approximated as:

gθ ? x ≈
K/2∑
k=0

(
UΛ̃UT

)2k (
I−UΛ̃UT

)
xθ(k)

≈
K/2∑
k=1

Ã2kÃxθ(i)

(5)



6566

Figure 2: (a): The architecture of HDGCN taking the simple graph in Figure 1 as an example. (b): The schematics
of the multi-vote based cross-attention (MVCAttn) in every unit in HD-ChebNet.

where the Ã is normalized adjacency matrix (as
defined in Equation 1). As the node state transition
Ã2k causes the over-smoothing problem (Li et al.,
2018; Nt and Maehara, 2019), we take the dynamic
pairwise relationship Ad self-adaptively learned by
the attention mechanism to turn the direction of
node state transition.

The powers of adjacency matrix Ã2k in Equa-
tion 5 can cause the over smoothing problem, we
replace the Ã2k with ÃkAk

d.
In our implementation, the first-order and higher-

order Chebyshev polynomials in Equation 5 is
approximated with a prime Chebyshev network
(ChebNet) and high-order dynamic Chebyshev net-
works (HD-ChebNets) respectively. We general-
ize the graph convolution on Kth-order dynamic
Chebyshev approximation (Equation 5) to the layer-
wise propagation as follows,

H ≈
K/2∑
k=0

Z(k),

Z(0) = σ
(
ÃXW(0)

)
︸ ︷︷ ︸
Prime ChebNet

,

Z(k) = σ
(
Ã
(
A

(k)
d Z(k)W

(k)
d

)
W(k)

)
︸ ︷︷ ︸

Unit in HD-ChebNet

,

(6)

where k is the order and W(0), W(k), W
(k)
d are

nonlinear filters on node signals. For the conve-
nience of writing, we just define the first layer of
HDGCN.

3.1 Prime ChebNet

We consider the same convolutional architecture as
the one in GCN to implement the prime ChebNet,

and it mainly aggregates messages from the direct
dependencies.

Z(0) = σ
(
ÃXW(0)

)
, (7)

where W(0) ∈ Rd×d and Ã is the normalized sym-
metric adjacency matrix.

3.2 High-order Dynamic (HD) ChebNet

As the multi-hop neighbors can be interacted via
the 1-hop neighbors, we take the Z(0) output from
the prime ChebNet as input of the HD-ChebNet.
The multi-vote based cross-attention (MVCAttn)
mechanism first adaptively learns the direction of
node probability transition A

(k)
d , its schematic is

showed in Figure 2 (b). MVCAttn has two phases -
graph information aggregation and diffusion.

Graph Information Aggregation coarsens the
node embeddings Z(k−1) to a small supernode set
S(k) ∈ RM×d, M � |V|.

The first step is multi-vote projection (MVProj).
In which node embeddings Z(k−1) are projected to
multiple votes V(k) ∈ R|V|×M×d, and these votes
are aggregated to supernode set S(k) = {s(k)m }Mm=1.

s(k)m = MVProj
(
Z(k−1)

)
= norm

 |V|∑
v=1

z(k−1)v WV
m

 (8)

where |V| ≥ v ≥ 1, M ≥ m ≥ 1, WV
m ∈ Rdk×dk

is the projection weight and norm () represents the
LayerNorm operation.

Next, the forward cross-attention (FCAttn) up-



6567

dates the supernode values as:

Ŝ(k) = FCAttn
(
Z(k),S(k)

)
= A

(k)
f Z(k−1)Wfv

A
(k)
f = Softmax

(
Z(k−1)WfkWfqS

(k)

√
d

) (9)

where Wfk ∈ Rdk×dc , Wfq ∈ Rdc×dk and
Wfv ∈ Rdk×dk .

Graph Information Diffusion feeds the supern-
odes Ŝ(k) back to update node set Z(k). With the
node embeddings Z(k−1) and supernode embed-
dings Ŝ(k), the backward cross-attention (BCAttn)
is defined as,

Z(k) = BCAttn
(
S̃(k),Z(k−1)

)
= A

(k)
b Z(k−1)Wbv

A
(k)
b = Softmax

(
Ŝ(k)WbqWbkZ

(k−1)
√
d

) (10)

where Wbq ∈ Rdk×da , Wbk ∈ Rda×dk and
Wbv ∈ Rdk×dk .

The last step is adding the probability transition
with Ã. The output of k-th order HD-ChebNet
(Equation A) is,

Ẑ(k) = σ
(
ÃZ(k)W(k)

)
(11)

Finally, the outputs from the prime ChebNet and
HD-ChebNets are integrated as the node embed-
dings,

H = norm

Z(0) +

K/2∑
k=1

Ẑ(k)

 . (12)

3.3 Classifier Layer
Node Classification The node representations H
output from the last graph convolutional layer are
straightforward fed into a Softmax classifier for
node classification.

ŷv = Softmax (MLP (hv)) (13)

Graph Classification The representation on the
whole graph is constructed via a readout layer on
the outputs H,

hv = σ (f1 (hv))� tanh (f2 (hv))

hg =
1

|V|

|V|∑
v=1

hv + Maxpool
(
h1 · · ·h|V|

) (14)

where � denotes the Hadamard product and f1(),
f2() are two non-linear functions.

The graph representation hg ∈ Rd is fed into the
Softmax classifier to predict the graph label.

ŷg = Softmax (hg) (15)

All parameters are optimized by minimizing the
cross-entropy function:

L = − 1

N

N∑
n=1

yn/g log(ŷn/g) (16)

4 Experiments

In this section, we evaluate HDGCN on trans-
ductive and inductive NLP tasks of text classifi-
cation, aspect-based sentiment classification, nat-
ural language inference, and node classification.
In experiment, each layer of HDGCN is fixed
with K = 6 order Chebyshev approximation
and the model stacks L = 1 layer. The dimen-
sion of input node embeddings is d = 300 of
GlVe or d = 768 of pre-trained BERT, and the
hyper-parameter dk = 64, da = 64. So the
weights W(0) ∈ Rd×64, Wl

d,W
(k) ∈ R64×64 and

Wfk,Wfq,Wbq,Wbk ∈ R64×64. The number of
super-nodes is set as M = 10. Our model is op-
timized with adaBelief (Zhuang et al., 2020) with
a learning rate 1e − 5. The schematics about the
HDGCN is shown in Figure 2.

To analyze the effectiveness of MVCAttn in
avoiding over-smoothing, we report the results of
ablation study - HDGCN-static in Table 1, 2 5. The
ablation model - HDGCN-static is an implementa-
tion of Equation 5, in which the node state transi-
tion is determined by the static adjacency matrix
Ã2k.

4.1 Text Classification

The first experiment is designed to evaluate the
performance of HDGCN on the text graph classi-
fication. Four small-scale text datasets2 - MR, R8,
R52, Ohsumed, and four large-scale text datasets
- AG’s News3, SST-1, SST-24, Yelp-F5 are used
in this task. The graph structures are built on
word-word co-occurrences in a sliding window

2https://github.com/yao8839836/text gcn
3http://groups.di.unipi.it/ gulli/AG corpus of news articles.html
4https://nlp.stanford.edu/sentiment/treebank.html
5https://www.yelp.com/dataset



6568

(width=3 and unweighted) on individual docu-
ments. HDGCN is initialized with word embed-
dings pre-trained by 300-d GloVe and 768-d BERT-
base on small and large scale datasets respectively.
The baselines include TextCNN, TextRNN, fast-
Text, SWEM, TextGCN, GraphCNN, TextING,
minCUT, BERT-base, DRNN, CNN-NSU, Cap-
Nets, LK-MTL, TinyBERT, Star-Transformer.

Model MR R8 R52 Ohsumed
TextCNN? 77.75 95.71 87.59 58.44
TextRNN? 77.68 96.31 90.54 49.27
fastText? 75.14 96.13 92.81 57.70
SWEM? 76.65 95.32 92.94 63.12
TextGCN? 76.74 97.07 93.56 68.36
GraphCNN? - 97.80 94.60 69.40
minCUT (Bianchi et al., 2019) 76.52 97.42 93.53 66.37
TextING (Zhang et al., 2020b) 79.82 98.04 95.48 70.42
BERT-base (Jin et al., 2019) 85.80 97.92 96.37 71.04
HDGCN-static 79.70 98.05 95.49 70.75
HDGCN 86.50 98.45 96.57 73.97

Table 1: Test accuracy (%) on small-scale English
datasets, where the results labeled with ? are cited from
(Zhang et al., 2020b).

Model AG SST-1 SST-2 Yelp-F
fastText (Joulin et al., 2017) 92.5 - - 63.9
DRNN (Wang, 2018) 93.6 47.3 86.4 65.3
CNN-NSU (Li et al., 2017) - 50.8 89.4 -
CapNets (Yang et al., 2018) 92.6 - 86.8 -
LK-MTL (Xiao et al., 2018) - 49.7 88.5 -
BERT (Xiao et al., 2018) 94.5 50.1 89.3 65.8
TinyBERT (Jiao et al., 2020) 94.7 51.6 92.6 66.1
Star-Transformer (Guo et al., 2019) - 52.9 - -
HDGCN-static 94.0 52.1 90.8 65.2
HDGCN 95.5 53.9 92.3 69.6

Table 2: Test accuracies (%) on large-scale English
datasets.

Table 1 shows the test accuracies on four small-
scale English datasets, in which HDGCN ranks top
with accuracies 86.50%, 98.45%, 96.57%, 73.97%
respectively. HDGCN beats the best baselines
achieved by TextING (the newest GNN model)
and the fine-tuned BERT-base model. Our abla-
tion model HDGCN-static also achieves higher
accuracies than the newest GNN models - Tex-
tING and minCUT. Therefore, the outperformance
of HDGCN verifies that (1) the node probability
transition in high-order Chebyshev approximation
improves the spectral graph convolution; (2) the
MVCAttn mechanism in high-order ChebNet fur-
ther raises the effectiveness by avoiding the over-
smoothing problem.

Table 2 shows the test accuracies of HDGCN and
other SOTA models on large-scale English datasets.
HDGCN achieves the best results 95.5%, 53.9%,
69.6% on AG, SST-1, Yelp-F respectively, and per-
forms a slight gap 0.3% with the top-1 baseline
(TinyBERT) on SST-2. These results support that

HDGCN outperforms the fully-connected graph
module in Transformers and corresponding pre-
trained models. Additionally, these comparisons
also demonstrates that the combination of prior
graph structures and self-adaptive graph structures
in graph convolution is able to improve the multi-
hop graph reasoning.

4.2 Multi-hop Graph Reasoning in Text
Graph

Figure 3: The message aggregation on adjacency matrix
Ã with word-word co-occurrence in document.

In the second experiment, we make a case study
on the MR dataset to visualize how the HDGCN im-
prove multi-hop graph reasoning. Here, we take the
positive comment ”inside the film’s conflict pow-
ered plot there is a decent moral trying to get out,
but it’s not that , it’s the tension that keeps you in
your seat Affleck and Jackson are good sparring
partners” as an example.

First, the word interactions on prior graph struc-
ture Ã (word-word co-occurrence in a sliding win-
dow with width=3) is showed in Figure 3. We can
see that the word mainly interacts with its consec-
utive neighbors. It is hard for the vanilla GCN to
encode multi-hop and non-consecutive word-word
interactions as the example shown in Figure 1.

Figure 4 shows the node interactions from node
embeddings Z(0) to supernodes Ŝ(1) and the graph
diffusion from Ŝ(1) to node embeddings Z(1). In
which, the supernode S4 puts greater attention on
the segment - it’s the tension that keeps you in
your seat. This segment determines its positive



6569

Initialized
embeddings Model TWITTER LAP14 REST14 REST15 REST16

Acc. F1. Acc. F1. Acc. F1. Acc. F1. Acc. F1

GloVe

AOA? 72.30 70.20 72.62 67.52 79.97 70.42 78.17 57.02 87.50 66.21
TNet-LF? 72.98 71.43 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43
ASCNN? 71.05 69.45 72.62 66.72 81.73 73.10 78.47 58.90 87.39 64.56
ASGCN-DT? 71.53 69.68 74.14 69.24 80.86 72.19 79.34 60.78 88.69 66.64
ASGCN-DG? 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48

BERT-base
AEN-BERT (Song et al., 2019) - - 79.93 76.31 83.12 73.76 - - - -
BERT-PT (Xu et al., 2019) - - 78.07 75.08 84.95 76.96 - - - -
SDGCN-BERT (Zhao et al., 2020) - - 81.35 78.34 83.57 76.47 - - - -
HDGCN (GloVe) 73.41 71.52 76.80 73.18 80.43 70.74 81.18 67.40 89.12 70.37
HDGCN (BERT-base) 72.69 71.23 79.15 75.48 85.89 79.33 81.18 62.21 87.99 71.28

Table 3: Test accuracy (%) and macro-F1 score on aspect-based sentiment classification. The results labeled with ?

are cited from (Zhao et al., 2020).

Figure 4: The word interactions in MVCAttn (A(1)
f ×

A
(1)
b ) of the 1st HD-ChebNet, where S1 ∼ S5 represent

the supernodes.

polarity significantly. The other supernodes S1, S2,
S3, S5 just aggregate messages from the global
context evenly. Next, the messages aggregated
in supernodes S1 ∼ S5 are mainly diffused to
four tokens - conflict, decent, moral, you. That
verifies the self-adaptively learned graph structure
A

(1)
f ×A

(1)
b by the MVCAttn improves the multi-

hop graph reasoning on nodes - conflict, decent,
moral, you. From the perspective of semantics,
these four words determine the positive sentiment
in this comment significantly.

Figure 5 shows the message aggregation from
node embeddings Z(1) to supernodes Ŝ(2) and the
message diffusion from Ŝ(2) to node embeddings
Z(2). We can see that the supernode S4 puts greater
attention on another segment - there is a decent
moral young to get out, which also contributes to
the sentiment polarity. Then messages aggregated
to supernodes S1 ∼ S5 are diffused to all words
evenly. The backward interactions from supern-

Figure 5: The word interactions in MVCAttn A
(2)
f ×

A
(2)
b of the 2nd HD-ChebNet, where S1 ∼ S5 represent

the supernodes.

odes S1 ∼ S5 to all graph nodes do not have visi-
ble differences. These results demonstrate that the
multi-hop graph reasoning in HDGCN just needs
one graph convolutional layer to attain the station-
ary state.

4.3 Aspect-based Sentiment Classification

The third experiment evaluates HDGCN’s perfor-
mance on the task of aspect-based sentiment clas-
sification. This task aims to identify whether the
sentiment polarities of aspect are explicitly given
in sentences (Zhao et al., 2020). The datasets used
in this task include TWITTER, LAP14, REST14,
REST15, REST16 (Zhao et al., 2020). The details
about the statistics on these datasets are shown in
Figure 6. The SOTA comparison models include
AOA, TNet-LF, ASCNN, ASGCN-DT, ASGCN-
DG, AEN-BERT, BERT-PT, SDGCN-BERT.

Each sample in this task includes a sentence pair,
an aspect, and a label. The sentence pair and the
aspect are concatenated into one long sentence, and
the text graph is preprocessed with the dependency



6570

tree on this sentence. HDGCN is tested twice with
word embeddings initialized by pre-trained 300-d
GloVe and 768-d BERT-base respectively.

Figure 6: (a): The statistics of aspect-based sentiment
classification datasets. (b): The percentages of sen-
tences with length ≥ 50 in 5 datasets.

Table 3 shows the test accuracies and micro-
F1 scores on 5 datasets, where HDGCN achieves
new state-of-the-art results on TWITTER, REST14,
REST15, REST16, and a top-3 result on the LAP14.
As shown in Figure 6 that the LAP14 has the
maximum percentage of long sentences among all
datasets. A shallow network in HDGCN does not
outperform the SOTA result on the LAP14. Addi-
tionally, compared with the newest ASGCN and
attention-based AOA, HDGCN achieves the best
results on TWITTER, LAP14, REST15, REST16
(Acc) and performs very close with the highest ac-
curacy on REST14 and macro-F1 score on REST16.
Above comparison supports that the matching be-
tween aspect and sentence pair in HDGCN is more
accurate than the newest GNN and attention-based
models, which verifies that the multi-hop graph
reasoning is improved in HDGCN.

4.4 Natural Language Inference
The fourth experiment evaluates HDGCN’s per-
formance on the Stanford natural language infer-
ence (SNLI) task (Bowman et al., 2015). This
task aims to predict the semantic relationship is
entailment or contradiction or neutral between a
premise sentence and a hypothesis sentence. All
the comparison methods include fine-tuned BERT-
base, MT-DNN (Liu et al., 2020), SMART (Jiang
et al., 2020), and CA-MTL (Pilault et al., 2021).

In this task, the premise and hypothesis sen-
tences are concatenated and constructed into a long
sentence. Which is preprocessed to a text graph
with the dependency tree. The word embeddings
in HDGCN were initialized from the pre-trained
768-d BERT-base.

All test accuracies are shown in Table 4, where
HDGCN achieves the new state-of-the-art results

Model Total
parameters

% data used
0.1% 1.0% 10%

BERT-base (Devlin et al., 2019) 1.0× 52.5 78.1 86.7
MT-DNN (Liu et al., 2020) - 81.9 88.3 91.1
SMART (Jiang et al., 2020) - 82.7 86.0 88.7
CA-MTL (Pilault et al., 2021) 1.12× 82.8 86.2 88.0
HDGCN 1.02× 80.3 85.6 92.3

Table 4: Test accuracy (%) on SNLI, where the total
parameters take the BERT-base as base.

on the 10% data. As the MT-DNN, SMART and
CA-MTL are all fine-tuned on multi-task learning,
they perform better than HDGCN in low resource
regimes (0.1% and 1.0% of the data). HDGCN just
uses 0.02× more parameters than the BERT-base,
and it outperforms the later model on all scales
of data. These results verify that the combination
of prior graph structure and self-adaptive graph
structure in HDGCN performs comparably with
the fully-adaptive graph structures in Transformers
and BERT-based multi-task learning models.

4.5 Graph Node Classification

The fifth experiment evaluates the effectiveness of
HDGCN on the node classification task. We use
three standard citation network benchmark datasets
- Cora, Citeseer, and Pubmed, to compare the test
accuracies on transductive node classification. In
the three datasets, the nodes represent the docu-
ments and edges (undirected) represent citations.
The node features correspond to elements of a bag-
of-words representation of a document (Veličković
et al., 2018). We also use the PPI dataset to com-
pare the results on inductive node classification,
which consists of graphs corresponding to different
human tissues. The baselines for comparison in-
clude GCN, GAT, Graph-Bert, GraphNAS, Loopy-
Net, HGCN, GRACE, GCNII. The results of our
evaluation are recorded in Table 5.

Transductive Inductive
(ACC, %) (micro-F1)

Model Cora Citeseer Pubmed PPI
GCN (Kipf and Welling, 2017) 85.8 73.7 88.1 69.7
GAT (Veličković et al., 2018) 86.4 74.3 87.6 97.3
Graph-Bert (Zhang et al., 2020a) 84.3 71.2 79.3 -
GraphNAS (Gao et al., 2019) 84.2 73.1 79.6 98.6
LoopyNet (Zhang and Meng, 2019) 83.9 73.7 83.0 -
HGCN (Chami et al., 2019) 79.9 - 80.3 74.6
GRACE (Zhu et al., 2020) 83.3 72.1 86.7 96.9
GCNII (Chen et al., 2020) 86.4 76.5 85.6 99.5
HDGCN-static 84.2 73.2 90.3 50.4
HDGCN 88.6 77.0 91.0 99.5

Table 5: Test accuracy (%) on Cora, Citeseer, Pubmed
and micro-F1 score (%) on PPI.

HDGCN achieves the new state-of-the-art re-
sults on Cora, Citeseer and Pubmed, and performs
equally best with the newest GCNII on PPI. Our



6571

ablation model, HDGCN-static, also achieves close
results with the newest GNNs on Cora, Citeseer,
Pubmed, but it performs poorly on PPI. Which
verifies that the high-order Chebyshev approxima-
tion of spectral graph convolution has more se-
rious over-smoothing problem in inductive node
classification than transductive node classification.
All comparisons in this experiment demonstrate
the effectiveness of MVCAttn to avoid the over-
smoothing problem.

5 Conclusions

This study proposes a multi-hop graph convolu-
tional network on high-order dynamic Chebyshev
approximation (HDGCN) for text reasoning. To
improve the multi-hop graph reasoning, each con-
volutional layer in HDGCN fuses low-pass signals
(direct dependencies saved in fixed graph struc-
tures) and high-pass signals (multi-hop dependen-
cies adaptively learned by MVCAttn) simultane-
ously. We also firstly propose the multi-votes based
cross-attention (MVCAttn) mechanism to alleviate
the over-smoothing in high-order Chebyshev ap-
proximation, and it just costs the linear computa-
tion complexity. Our experimental results demon-
strate that HDGCN outperforms compared SOTA
models on multiple transductive and inductive NLP
tasks.

Acknowledgments

This work is supported by Natural Science
Foundation of China (Grant No.61872113,
62006061), Strategic Emerging Industry De-
velopment Special Funds of Shenzhen (Grant
No.XMHT20190108009), the Tencent Group
Science and Technology Planning Project of
Shenzhen (Grant No.JCYJ20190806112210067)
and Shenzhen Foundational Research Funding
(Grant No.JCYJ20200109113403826).

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-

clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. Etc: Encoding long and structured inputs in
transformers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 268–284.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare
Alippi. 2019. Mincut pooling in graph neural net-
works. arXiv preprint arXiv:1907.00481.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Ines Chami, Rex Ying, Christopher Ré, and Jure
Leskovec. 2019. Hyperbolic graph convolutional
neural networks. In NeurIPS, 32:4869.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding,
and Yaliang Li. 2020. Simple and deep graph convo-
lutional networks. In In ICML.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In In NAACL.

Vijay Prakash Dwivedi and Xavier Bresson. 2020. A
generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and
Yue Hu. 2019. Graphnas: Graph neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1904.09981.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao,
Xiangyang Xue, and Zheng Zhang. 2019. Star-
transformer. In In NAACL, pages 1315–1325.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
Smart: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In In ACL.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In In EMNLP.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
arXiv preprint arXiv:1907.11932, 2.

Armand Joulin, Édouard Grave, Piotr Bojanowski, and
Tomáš Mikolov. 2017. Bag of tricks for efficient text
classification. In In EACL, pages 427–431.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nes-
reen K Ahmed, and Eunyee Koh. 2019. Attention
models in graphs: A survey. In TKDD, 13(6):1–25.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018.
Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.



6572

Shen Li, Zhe Zhao, Tao Liu, Renfen Hu, and Xiaoyong
Du. 2017. Initializing convolutional filters with se-
mantic features for text classification. In In EMNLP.

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng,
Xueyun Zhu, Emmanuel Awa, Pengcheng He,
Weizhu Chen, Hoifung Poon, Guihong Cao, et al.
2020. The microsoft toolkit of multi-task deep neu-
ral networks for natural language understanding. In
In ACL.

Hoang Nt and Takanori Maehara. 2019. Revisiting
graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550.

Jonathan Pilault, Amine Elhattami, and Christopher Pal.
2021. Conditionally adaptive multi-task learning:
Improving transfer learning in nlp using fewer pa-
rameters & less data. In ICLR.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou
Huang. 2019. Dropedge: Towards deep graph convo-
lutional networks on node classification. In In ICLR.

Youwei Song, Jiahai Wang, Tao Jiang, Zhiyue Liu, and
Yanghui Rao. 2019. Attentional encoder network
for targeted sentiment classification. arXiv preprint
arXiv:1902.09314.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In In NIPS, pages 6000–6010.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In ICLR.

Baoxin Wang. 2018. Disconnected recurrent neural
networks for text categorization. In In ACL.

Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu,
and Xuan-Jing Huang. 2020. Heterogeneous graph
neural networks for extractive document summariza-
tion. In In ACL.

Zhichun Wang, Qingsong Lv, Xiaohan Lan, and
Yu Zhang. 2018. Cross-lingual knowledge graph
alignment via graph convolutional networks. In In
EMNLP.

Liqiang Xiao, Honglun Zhang, Wenqing Chen,
Yongkun Wang, and Yaohui Jin. 2018. Learning
what to share: Leaky multi-task network for text clas-
sification. In In Coling.

Hu Xu, Bing Liu, Lei Shu, and Philip Yu. 2019. Bert
post-training for review reading comprehension and
aspect-based sentiment analysis. In In NACL.

Min Yang, Wei Zhao, Jianbo Ye, Zeyang Lei, Zhou
Zhao, and Soufei Zhang. 2018. Investigating capsule
networks with dynamic routing for text classification.
In In EMNLP.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In In AAAI, volume 33, pages 7370–7377.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo
Kang, and Hyunwoo J Kim. 2019. Graph transformer
networks. Advances in Neural Information Process-
ing Systems.

Chen Zhang, Qiuchi Li, and Dawei Song. 2019a.
Aspect-based sentiment classification with aspect-
specific graph convolutional networks. In In EMNLP-
IJCNLP.

Haopeng Zhang and Jiawei Zhang. 2020. Text graph
transformer for document classification. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8322–8327, Online. Association for Computational
Linguistics.

Jiawei Zhang. 2020. Get rid of suspended anima-
tion problem: Deep diffusive neural network on
graph semi-supervised classification. arXiv preprint
arXiv:2001.07922.

Jiawei Zhang and Lin Meng. 2019. Gresnet: Graph
residual network for reviving deep gnns from sus-
pended animation. CoRR, abs/1909.05729.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and
Li Sun. 2020a. Graph-bert: Only attention is needed
for learning graph representations. arXiv preprint
arXiv:2001.05140.

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and
Deniz Ustebay. 2019b. Bayesian graph convolutional
neural networks for semi-supervised classification.
In In AAAI, volume 33, pages 5829–5836.

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen
Wen, and Liang Wang. 2020b. Every document owns
its structure: Inductive text classification via graph
neural networks. In In ACL.

Zhengchao Zhang, Meng Li, Xi Lin, and Yinhai Wang.
2020c. Network-wide traffic flow estimation with in-
sufficient volume detection and crowdsourcing data.
Transportation Research Part C: Emerging Technolo-
gies, 121:102870.

Pinlong Zhao, Linlin Hou, and Ou Wu. 2020. Mod-
eling sentiment dependencies with graph convolu-
tional networks for aspect-level sentiment classifica-
tion. Knowledge-Based Systems.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu,
and Liang Wang. 2020. Deep graph contrastive repre-
sentation learning. arXiv preprint arXiv:2006.04131.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C
Tatikonda, Nicha Dvornek, Xenophon Papademetris,
and James Duncan. 2020. Adabelief optimizer:
Adapting stepsizes by the belief in observed gradi-
ents. NeurIPS, 33.

https://doi.org/10.18653/v1/2020.emnlp-main.668
https://doi.org/10.18653/v1/2020.emnlp-main.668


6573

A Appendices

Here, we give the completed proof about our high-order Chebyshev approximation on the spectral graph
convolution. We exhibit how to deduce the spectral graph convolution to 4th-order Chebyshev polynomials
as follows.

gθ ? x = UgθUTx

where gθ = gθ(Λ̃) is the graph filter defined in spectral domain.

gθ ≈ θ0 + θ1Λ̃ + θ2

(
2Λ̃2 − 1

)
+ θ3

(
4Λ̃3 − 3Λ̃

)
= θ0 + θ1Λ̃ + 2θ2Λ̃

2 − θ2 + 4θ3Λ̃
3 − 3θ3Λ̃

So,

UgθUTx ≈ θ0x+ θ1UΛ̃UTx+ 2θ2UΛ̃2UTx− θ2x+ 4θ3UΛ̃3UTx− 3θ3UΛ̃UTx

= θ0x+ θ1UΛ̃UTx+ 2θ2UΛ̃UTUΛ̃UTx− θ2x+ 4θ3UΛ̃UTUΛ̃UTUΛ̃UTx− 3θ3UΛ̃UTx

= UΛ̃UTUΛ̃UT(
θ0

UΛ̃UTUΛ̃UT
+

θ1

UΛ̃UT
+ 2θ2 −

θ2

UΛ̃UTUΛ̃UT
+ 4θ3UΛ̃UT − 3

θ3

UΛ̃UT
)x

= UΛ̃UTUΛ̃UT

(
θ0 − θ2

UΛ̃UTUΛ̃UT
+
θ1 − 3θ3

UΛ̃UT

)
x+ UΛ̃UTUΛ̃UT

(
2θ2 + 4θ3UΛ̃UT

)
x

=
(
(θ0 − θ2) + (θ1 − 3θ3)UΛ̃UT

)
x+ UΛ̃UTUΛ̃UT

(
2θ2 + 4θ3UΛ̃UT

)
x

Let assume θ(0) = θ0 − θ2 = −θ1 + 3θ3, θ(1) = 2θ1 = −4θ3,

UgθUTx ≈ θ(0)
(
I−UΛ̃UT

)
x+ UΛ̃UTUΛ̃UTθ(1)

(
I−UΛ̃UT

)
x

≈ θ(0)Ãx+ Ã2θ(1)Ãx

To avoid the over-smoothing problem in the node state transition Ã2, the graph structure Ã is approxi-
mated by the dynamic adjacency matrix Ad self-adaptively learned with attention mechanism. This way
have the hidden pairwise interactions to improve the multi-hop graph reasoning in high-order Chebyshev
polynomials. Therefore, we define the layer-wise propagation of multi-hop graph convolutional network
as follows.

H ≈
K/2∑
k=0

Z(k),

Z(0) = σ
(
ÃXW(0)

)
︸ ︷︷ ︸
Prime ChebNet

,

Z(k) = σ
(
Ã
(
A

(k)
d Z(k−1)W

(k)
d

)
W(k)

)
︸ ︷︷ ︸

HD-ChebNet

where X is the input features, and we introduce two nonlinear filterings W(k) and W
(k)
d on node signals.


