
CAMeL Tools: An Open Source Python Toolkit
for Arabic Natural Language Processing

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima Taji, Mai Oudah,
Bashar Alhafni, Go Inoue, Fadhl Eryani, Alexander Erdmann, Nizar Habash

Computational Approaches to Modeling Language (CAMeL) Lab
New York University Abu Dhabi, UAE

{oobeid,nasser.zalmout,salamkhalifa,dima.taji,mai.oudah,
alhafni,go.inoue,fadhl.eryani,ae1541,nizar.habash}@nyu.edu

Abstract
We present CAMeL Tools, a collection of open-source tools for Arabic natural language processing in Python. CAMeL Tools currently
provides utilities for pre-processing, morphological modeling, dialect identification, named entity recognition and sentiment analysis. In
this paper, we describe the design of CAMeL Tools and the functionalities it provides.
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1. Introduction
Over the last two decades, there have been many efforts to
develop resources to support Arabic natural language pro-
cessing (NLP). Some of these resources target specific NLP
tasks such as tokenization, diacritization or sentiment anal-
ysis, while others attempt to target multiple tasks jointly.
Most resources focus on a specific variety of Arabic such
as Modern Standard Arabic (MSA), or Egyptian Arabic.
These resource also vary in terms of the programming lan-
guages they use, the types of interfaces they provide, the
data representations and standards they utilize, and the de-
gree of public availability (e.g., open-source, commercial,
unavailable). These variations make it difficult to write new
applications that combine multiple resources.
To address many of these issues, we present CAMeL Tools,
an open-source Python toolkit that supports Arabic and
Arabic dialect pre-processing, morphological modeling, di-
alect identification, named entity recognition and sentiment
analysis. CAMeL Tools provides command-line interfaces
(CLIs) and application programming interfaces (APIs) cov-
ering these utilities.
The rest of the paper is organized as follows. We present
some background on the difficulty of processing Arabic text
(Section 2), and then discuss previous work on a variety of
Arabic NLP tasks (Section 3). We describe the design and
implementation of CAMeL Tools (Section 4) and provide
more details about each of its components (Sections 6 to 9).
Finally, we discuss some future additions to CAMeL Tools
(Section 10).

2. Arabic Linguistics Background
Aside of obvious issues such as resource poverty, Arabic
poses a number of challenges to NLP: orthographic ambi-
guity, morphological richness, dialectal variations, and or-
thographic noise (Habash, 2010). While these are not nec-
essarily unique issues to Arabic, their combination makes
Arabic processing particularly challenging.

Orthographic Ambiguity Arabic is generally written us-
ing the Arabic Abjad script which uses optional diacritical

marks for short vowels and consonantal gemination. While
the missing diacritics are not a major challenge to literate
native adults, their absence is the main source of ambiguity
in Arabic NLP.

Morphological Richness Arabic has a rich inflectional
morphology system involving gender, number, person, as-
pect, mood, case, state and voice, in addition to the cliti-
cization of a number of pronouns and particles (conjunc-
tions, prepositions, definite article, etc.). This richness
leads to MSA verbs with upwards of 5,400 forms.

Dialectal Variation While MSA is the official language
of culture and education in the Arab World, it is no one’s
native language. A number of different local dialects (such
as Egyptian, Levantine, and Gulf) are the de facto daily lan-
guages of the Arab World – both off-line and on-line. Ara-
bic dialects differ significantly in terms of their phonology,
morphology and lexicon from each other and from MSA
to the point that using MSA tools and resources for pro-
cessing dialects is not sufficient. For example, Khalifa et
al. (2016a) report that using a state-of-the-art tool for MSA
morphological disambiguation on Gulf Arabic returns POS
tag accuracy at about 72%, compared to the performance
on MSA, which is 96% (Pasha et al., 2014).

Orthographic Inconsistency MSA and Arabic dialects,
as encountered online, show a lot of spelling inconsistency.
Zaghouani et al. (2014) report that 32% of words in MSA
comments online have spelling errors. Habash et al. (2018)
presented 27 encountered ways to write an Egyptian Arabic
word meaning ‘he does not say it’: e.g., �

�AêËñ
�
®J
J.Ó mbyqwl-

hAš1 (≈ 26,000 times), �
�AêÊ

�
®J
J.Ó mbyqlhAš (≈ 1,000), and

�
�AêË


ñJ.Ó mbŵlhAš (less than 10). Habash et al. (2018)

proposed a conventional orthography for dialectal Arabic
(CODA), a set of guidelines for consistent spelling of Ara-
bic dialects for NLP. In addition, dialectal Arabic text is
also known to appear on social media in a non-standard ro-
manization called Arabizi (Darwish, 2014).

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).
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AlHmd llh ǍyTAlyA xrjt mn tSfyAt kÂs AlςAlm, Aðn dý frStnA w mAln___Aš Hjh̄...
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POS noun verb noun
Dialect Egyptian MSA MSA

(e) Disambiguation 3

(f) Sentiment positive

(g) NER LOC: AJ
Ë A¢�
@

(ǍyTAlyA ‘Italy’)

(h) Dialect ID Cairo: 95.0%, Doha: 1.9%, Jeddah: 1.5%, Aswan: 0.8%, Khartoum: 0.3%, Other: 0.5%, MSA: 0.0%

Table 1: An example showing the outputs of the different CAMeL Tools components

The above phenomena lead to highly complex readings that
vary across many dimensions. Table 1(d) shows three anal-
yses with different lemma readings and features for the
word A

	
J
�
��Q

	
¯ frStnA. Two of the three readings have the same

POS (noun) but vary in terms of the English gloss and di-
alect. The third reading, a verb, has a different meaning,
morphological analysis and tokenization.

3. Previous Work
Arabic NLP, and NLP in general, involves many tasks,
some of which may be related to others. Tasks like mor-
phological modeling, parsing, tokenization, segmentation,
lemmatization, stemming and named entity recognition
(NER) tend to serve as building block for higher level
applications such as translation, spelling correction, and
question-answering systems. Other tasks, such as dialect
identification (DID) and sentiment analysis (SA), aim to
compute different characteristics of input text either for an-
alytical purposes or as additional input for some of the pre-
viously mentioned tasks.
In this section we discuss those tasks currently addressed
by CAMeL Tools. We also discuss some of the software
suites that have inspired the design of CAMeL Tools.

3.1. NLP Tasks
We briefly survey the different efforts for a variety of Ara-
bic NLP tasks. Specifically, we discuss those tasks that are
relevant to CAMeL Tools at the time of publishing. These
include morphological modeling, NER, DID and SA.

Morphological Modeling Efforts on Arabic morpholog-
ical modeling have varied over a number of dimensions,
ranging from very abstract and linguistically rich repre-
sentations paired with word-form derivation rules (Beesley
et al., 1989; Beesley, 1996; Habash and Rambow, 2006;
Smrž, 2007) to pre-compiled representations of the differ-
ent components needed for morphological analysis (Buck-
walter, 2002; Graff et al., 2009; Habash, 2007). Previous
efforts also show a wide range for the depth of information
that morphological analyzers can produce, with very shal-
low analyzers on one end (Vanni and Zajac, 1996), to an-

alyzers producing form-based, functional, and lexical fea-
tures as well as morpheme forms (Buckwalter, 2002; Smrž,
2007; Boudlal et al., 2010; Alkuhlani and Habash, 2011;
Boudchiche et al., 2017).
Systems such as MADA (Habash et al., 2009) and
MADAMIRA (Pasha et al., 2014) disambiguate the anal-
yses that are produced by a morphological analyzer. Zal-
mout and Habash (2017) outline a neural model that fol-
lows the same approach. Alternatively, Farasa (Abdelali et
al., 2016) relies on probabilistic models to produce high to-
kenization accuracy, and YAMAMA (Khalifa et al., 2016b)
uses the same approach to produce MADAMIRA-like dis-
ambiguated analyses. For Arabic dialects, Zalmout et al.
(2018) present a neural system that does morphological tag-
ging and disambiguation for Egyptian Arabic.

Named Entity Recognition While some Arabic NER
systems have used rule-based approaches (Shaalan and
Raza, 2009; Zaghouani, 2012; Aboaoga and Aziz, 2013),
most recent Arabic NER systems integrate machine learn-
ing in their architectures (Benajiba and Rosso, 2008; Ab-
delRahman et al., 2010; Mohammed and Omar, 2012;
Oudah and Shaalan, 2012; Darwish, 2013; El Bazi and
Laachfoubi, 2019). Benajiba and Rosso (2007) developed
ANERsys, one of the earliest NER systems for Arabic.
They built their own linguistic resources, which have be-
come standard in Arabic NER literature: ANERcorp (i.e.,
an annotated corpus for Person, Location and Organization
names) and ANERgazet (i.e., Person, Location and Orga-
nization gazetteers). In CAMeL Tools, we make use of all
publicly available training data and compare our system to
the work of Benajiba and Rosso (2008).

Dialect Identification Salameh et al. (2018) introduced
a fine-grained DID system covering the dialects of 25 cities
from several countries across the Arab world. Elfardy and
Diab (2012) presented a set of guidelines for token-level
identification of dialectness. They later proposed a super-
vised approach for identifying whether a given sentence is
prevalently MSA or Egyptian (Elfardy and Diab, 2013) us-
ing the Arabic Online Commentary Dataset (Zaidan and



CAMeL Tools MADAMIRA Stanford CoreNLP Farasa
Suite Type Arabic Specific Arabic Specific Multilingual Arabic Specific
Language Python Java Java with Python bindings Java
CLI 3 3 3 3

API 3 3 3 3

Exposed Pre-processing 3

Morphological Modeling 3 3

Morphological Disambiguation 3 3 3 3

POS Tagging 3 3 3 3

Diacritization 3 3 3

Tokenization/Segementation/Stemming 3 3 3 3

Lemmatization 3 3 3

Named Entity Recognition 3 3 3 3

Sentiment Analysis 3

Dialect ID 3

Parsing Work in progress 3 3

Table 2: Feature comparison of CAMeL Tools, MADAMIRA, Stanford CoreNLP and Farasa.

Callison-Burch, 2011). Their system (Elfardy and Diab,
2012) combines a token-level DID approach with other fea-
tures to train a Naive-Bayes classifier. Sadat et al. (2014)
presented a bi-gram character-level model to identify the
dialect of sentences in the social media context among di-
alects of 18 Arab countries. More recently, discriminating
between Arabic dialects has been the goal of a dedicated
shared task (Zampieri et al., 2017), encouraging researchers
to submit systems to recognize the dialect of speech tran-
scripts along with acoustic features for dialects of four main
regions: Egyptian, Gulf, Levantine and North African, in
addition to MSA. The dataset used in these tasks is differ-
ent from the dataset we use in this work in its genre, size
and the dialects covered.

Sentiment Analysis Arabic SA is a well studied prob-
lem that has many proposed solutions. These solutions
span a wide array of methods such as developing lexicon-
based conventional machine learning models (Badaro et
al., 2014; Abdul-Mageed and Diab, 2014) or deep learn-
ing models (Abu Farha and Magdy, 2019; Badaro et al.,
2018; Baly et al., 2017). More recently, fine-tuning large
pre-trained language models has achieved state-of-the-art
results on various NLP tasks. ElJundi et al. (2019) devel-
oped a universal language model for Arabic (hULMonA)
which was pre-trained on a large corpus of Wikipedia sen-
tences and compared its performance to multilingual BERT
(mBERT) (Devlin et al., 2018) on the task of Arabic SA
after fine-tuning. They have shown that although mBERT
was only trained on Modern Standard Arabic (MSA), it can
still achieve state-of-the-art results on some datasets if it’s
fine-tuned on dialectal Arabic data. Furthermore, Antoun et
al. (2020) pre-trained an Arabic specific BERT (AraBERT)
and were able to achieve state-of-the-art results on several
downstream tasks.

3.2. Software Suites
While most efforts focus on individual tasks, there are few
that provide multiple capabilities in the form of a unified
toolkit. These can be classified as Arabic specific, such as
MADAMIRA (Pasha et al., 2014) and Farasa (Abdelali et
al., 2016; Darwish and Mubarak, 2016) or multi-lingual,
such as Stanford CoreNLP (Manning et al., 2014). Below

we discuss the capabilities of the mentioned tools and we
provide a rough comparison in Table 2.

MADAMIRA provides a single, yet configurable, mode
of operation revolving around it’s morphological analyzer.
When disambiguation is enabled, features such as POS
tagging, tokenization, segmentation, lemmatization, NER
and base-phrase chunking become available. MADAMIRA
was designed specifically for Arabic and supports both
MSA and Egyptian and primarily provides a CLI, a server
mode, and a Java API.

Farasa is a collection of Java libraries and CLIs for
MSA.2 These include separate tools for diacritization, seg-
mentation, POS tagging, parsing, and NER. This allows
for a more flexible usage of components compared to
MADAMIRA.

Stanford CoreNLP is a multilingual Java library, CLI
and server providing multiple NLP components with vary-
ing support for different languages. Arabic support is
provided for parsing, tokenization, POS tagging, sentence
splitting and NER (a rule-based system using regular ex-
pressions). An official Python library is also available (Qi
et al., 2018) which provides official bindings to CoreNLP
as well as providing neural implementations for some of
their components. It is worth noting that the commonly
used Natural Language Toolkit (NLTK) (Loper and Bird,
2002) provides Arabic support through unofficial bindings
to Stanford CoreNLP.

4. Design and Implementation
CAMeL Tools is an open-source package consisting of a
set of Python APIs with accompanying command-line tools
that are thin wrap these APIs. In this section we discuss
the design decisions behind CAMeL Tools and how it was
implemented.

4.1. Motivation
There are two main issues with currently available tools that
prompted us to develop CAMeL Tools and influenced its
design:

2http://qatsdemo.cloudapp.net/farasa/

http://qatsdemo.cloudapp.net/farasa/


Fragmented Packages and Standards Tools tend to fo-
cus on one task with no easy way to glue together different
packages. Some tools do provide APIs, making this easier,
but others only provide command-line tools. This leads to
overhead writing glue code including interfaces to different
packages and parsers for different output formats.

Lack of Flexibility Most tools don’t expose intermedi-
ate functionality. This makes it difficult to reuse interme-
diate output to reduce redundant computation. Addition-
ally, functions for pre-processing input don’t tend to be ex-
posed to users which makes it difficult to replicate any pre-
processing performed internally.

4.2. Design Philosophy
Here we identify the driving principles behind the design
of CAMeL Tools. These have been largely inspired by the
designs of MADAMIRA, Farasa, CoreNLP and NLTK, and
include our own personal requirements.

Arabic Specific We want a toolkit that focuses solely on
Arabic NLP. Language agnostic tools don’t tend to model
the complexities of Arabic text very well, or indeed, other
morphologically complex languages. Doing so would in-
crease software complexity and development time.

Flexibility Provide flexible components to allow mixing
and matching rather than providing large monolithic ap-
plications. We want CAMeL Tools to be usable by both
application developers requiring only high-level access to
components, and researchers, who might want to exper-
iment with new implementations of components or their
sub-components.

Modularity Different implementations of the same com-
ponent type should be slot-in replacements for one another.
This would allow for easier experimentation as well as al-
lowing users to provide custom implementations as a re-
placement for built-in components.

Performance Components should provide close to state-
of-the-art results but within reasonable run-time perfor-
mance and memory usage. However, we don’t want this
to come at the cost of code readability and maintainability
and we are willing to sacrifice some performance benefits
to this end.

Ease of Use Using individual components shouldn’t take
more than a few lines of code to get started with. We aim
to provide meaningful default configurations that are gen-
erally applicable in most situations.

4.3. Implementation
CAMeL Tools is implemented in Python 3 and can be in-
stalled through pip.3 We chose Python due to its ease of use
and its pervasiveness in NLP and Machine Learning along
with libraries such as tensorflow, pytorch, and scikit-learn.
We aim to be compatible with Python version 3.5 and later
running on Linux, MacOS, and Windows. CAMeL Tools is
in continuous development with new features being added
and older ones being improved. As such, it is difficult to ac-
curately report on the performance of each component. In

3Installation instructions and documentation can be found on
https://github.com/CAMeL-Lab/camel_tools

this paper, we will report the state of CAMeL Tools at the
time of publishing and updates will be published on dedi-
cated web page.4

At the moment, CAMeL Tools provides utilities for pre-
processing, morphological analysis and disambiguation,
DID, NER and SA. In the following sections, we discuss
these components in more detail.

5. Pre-processing Utilities
CAMeL Tools provides a set of pre-processing utilities that
are common in Arabic NLP but get re-implemented fre-
quently. Different tools and packages tend to do slightly
different pre-processing steps that are often not well docu-
mented or exposed for use on their own. By providing these
utilities as part of the package, we hope to reduce the over-
head of writing Arabic NLP applications and insure that
pre-processing is consistent from one project to the other.
In this section, we discuss the different pre-processing util-
ities that come with CAMeL Tools.

Transliteration When working with Arabic text, it is
sometimes convenient or even necessary to use alternate
transliteration schemes. Buckwalter transliteration (Buck-
walter, 2002) and its variants, Safe Buckwalter and XML
Buckwalter, for example, map the Arabic character set
into ASCII representations using a one-to-one map. These
transliterations are used as input or output formats in Ara-
bic NLP tools such as MADAMIRA (Pasha et al., 2014),
and as the chosen encoding of various resources such as
the SAMA database (Graff et al., 2009). Habash-Soudi-
Buckwalter (HSB) (Habash et al., 2007) is another vari-
ant on the Buckwalter transliteration scheme that includes
some non-ASCII characters whose pronunciation is easier
to remember for non-Arabic speakers. We provide translit-
eration functions to and from the following schemes: Ara-
bic script, Buckwalter, Safe Buckwalter, XML Buckwal-
ter, and Habash-Soudi-Buckwalter. Additionally, we pro-
vide utilities for users to define their own transliteration
schemes.

Orthographic Normalization Due to Arabic’s complex
morphology, it is necessary to normalize text in various
ways in order to reduce noise and sparsity (Habash, 2010).
The most common of these normalizations are:

• Unicode normalization which includes breaking up
combined sequences (e.g. B to È and @), converting
character variant forms to a single canonical form (e.g.
©�, �«, and �ª� to ¨), and converting extensions to the
Arabic character set used for Persian and Urdu to the
closest Arabic character (e.g. À to ¼).

• Dediacritization which removes Arabic diacritics
which occur infrequently in Arabic text and tend to be
considered noise. These include short vowels, shadda
(gemination marker), and the dagger alif (e.g.

��
é

�
�

��P
�
Y

�
Ó

mudar∼isah̄u to �
é�PYÓ mdrsh̄).

4https://camel-lab.github.io/camel_tools_
updates/

https://github.com/CAMeL-Lab/camel_tools
https://camel-lab.github.io/camel_tools_updates/
https://camel-lab.github.io/camel_tools_updates/


• Removal of unnecessary characters including those
with no phonetic value, such as the tatweel (kashida)
character.

• Letter variant normalization for letters that are so
often misspelled. This includes normalizing all the
forms of Hamzated Alif (


@ Â, @


Ǎ,

�
@ Ā) to bare Alif ( @ A),

the Alif-Maqsura (ø ý) to Ya (ø



y), the Ta-Marbuta

( �
è h̄) to Ha ( è h), and the non-Alif forms of Hamza

( 
ð' ŵ, ø' ŷ) to the Hamza letter (Z' ’).

Table 1(c), illustrates how these pre-processing utilities can
be applied to an Arabic sentence. Specifically, we apply
Arabic to Buckwalter transliteration, letter variant normal-
ization, and tatweel removal.

6. Morphological Modeling
Morphology is one of the most studied aspects of the Ara-
bic language. The richness of Arabic makes the modeling
of morphology a complex task, justifying the focus put on
morphological analysis functionalities.

6.1. Analysis, Generation, and Reinflection
As part of CAMeL Tools, we currently provide implemen-
tations of the CALIMAStar analyzer, generator, and re-
inflector described by Taji et al. (2018). These compo-
nents operate on databases that are in the same format as
the ALMORGEANA database (Habash, 2007), which ex-
tends the BAMA databases (Buckwalter, 2002) comprising
three lexicon tables for prefixes, suffixes, and stems, and
three compatibility tables for prefix-suffix, prefix-stem, and
stem-suffix. CAMeL Tools include databases for MSA as
well as the Egyptian and Gulf dialects.

Analysis For our tool’s purposes, we define analysis as
the identification of all the different readings (analyses) of
a word out of context. Each of these readings is defined by
a lexical features such as lemma, gloss, and stem, and mor-
phological features such POS tags, gender, number, case,
and mood. The analyzer expects a word for input, and tries
to match a prefix, stem, and suffix from the database lexi-
con table to the surface form of the word, while maintaining
the constraints imposed by the compatibility tables. This
follows the algorithm described by Buckwalter (2002) with
some enhancements. These enhancements, along with the
switch of encoding to Arabic script, allows our analyzer to
better detect and handle foreign words, punctuation, and
digits.

Generation Generation is the task of inflecting a lemma
for a set of morphological features. The algorithm we use
for generation follow the description of the generation com-
ponent in ALMORGEANA (Habash, 2007). The generator
expects minimally a lemma, and a POS tag, and produces a
list of inflected words with their full analysis. If inflectional
features, such as person, gender, and case, are specified in
the input, we limit the generated output to those values. We
generate all possible values for the inflectional features that
are not specified. Clitics, being optional features, are only
generated when they are specified.

Reinflection Reinflection differs from generation in that
the input to the reinflector is a fully inflected word, with
a list of morphological feature. The reinflector is not lim-
ited to a specific lemma or POS tag, but rather uses the
analyzer component to generate all possible analyses that
the input word has, including the possible lemmas and POS
tags. Next, the reinflector uses the list of features it had for
input, along with the features from the analyzer, to create a
new list of features that can be input to the generator to pro-
duce a reinflection for every possible analysis of the input
word.
In table 1(d), we present an example of the morphological
analysis which CAMeL Tools can provide. The analysis in-
cludes but not limited to diacritization, the CAMEL Arabic
Phonetic Inventory (CAPHI), English gloss, tokenization,
lemmatization, and POS tagging.

6.2. Disambiguation and Annotation
Morphological disambiguation is the task of choosing an
analysis of a word in context. Tasks such as diacritization,
POS tagging, tokenization and lemmatization can be con-
sidered forms of disambiguation. When dealing with Ara-
bic however, each of these tasks on their own, don’t fully
disambiguate a word. In order to avoid confusion, we re-
fer to the individual tasks on their own as annotation tasks.
Traditionally, annotation tasks would be implemented in-
dependently of each other. We however, chose to use the
one-fell-swoop approach of Habash and Rambow (2005).
This approach entails predicting a set of features of a given
word, ranking its out-of-context analyses based on the pre-
dicted features, and finally choosing the top ranked analy-
sis. Annotation can then be achieved by retrieving the rele-
vant feature from the ranked analysis.
We provide two builtin disambiguators: a simple low-cost
disambiguator based on a maximum likelihood estimation
(MLE) model and a neural network disambiguator that pro-
vides improved disambiguation accuracy using multitask
learning. Table 1(e) shows how these morphological dis-
ambiguators can disambiguate a word.

MLE Disambiguator We built a simple disambiguation
model based on YAMAMA (Khalifa et al., 2016b), where
the main component is a lookup model of a word and its
most probable full morphological analysis. For a word that
does appear in the lookup model, we use the morphological
analyzer from Section 6.1 to generate all possible analyses
for the word and chose the top ranked analysis based on
the pre-computed probabilistic score for the joint lemma
and POS frequency. Both the lookup model and the pre-
computed scores are based on the same training dataset for
the given dialect.

Multitask Learning Disambiguator We provide a sim-
plified implementation of the neural multitask learning ap-
proach to disambiguation by Zalmout and Habash (2019).
Instead of the LSTM-based (long short-term memory) lan-
guage models used in the original system, we use unigram
language models without sacrificing much accuracy. This is
done to increase run-time performance and decrease mem-
ory usage.
We evaluated the CAMeL Tools disambiguators against



CAMeL Tools
MSA MADAMIRA Multitask MLE

DIAC 87.7% 90.9% 78.4%
LEX 96.4% 95.4% 95.7%
POS 97.1% 97.2% 95.5%
FULL 85.6% 89.0% 70.0%
ATB TOK 99.0% 99.4% 99.0%

Table 3: Comparison of the performance of the CAMeL
Tools Multitask learning and MLE systems on MSA to
MADAMIRA. The systems are evaluated on their accuracy
to correctly predict diacritics (DIAC), lemmas (LEX), part-
of-speech (POS), the full set of predicted features (FULL),
and the ATB tokenization.

CAMeL Tools
EGY MADAMIRA MLE

DIAC 82.8% 78.9%
LEX 86.6% 87.8%
POS 91.7% 91.8%
FULL 76.4% 73.0%
BW TOK 93.5% 92.8%

Table 4: Comparison of the performance of the CAMeL
Tools MLE systems on Egyptian to MADAMIRA. The sys-
tems are evaluated on their accuracy to correctly predict di-
acritics (DIAC), lemmas (LEX), part-of-speech (POS), the
full set of predicted features (FULL), and the Buckwalter
tag tokenization (BW TOK) (Khalifa et al., 2016b).

MADAMIRA.5 For the accuracy evaluation we used the
Dev sets recommended by Diab et al. (2013) of the Penn
Arabic Treebank (PATB parts 1,2 and 3) (Maamouri et al.,
2004) for MSA and the ARZ Treebank (Maamouri et al.,
2014) for EGY.
Table 3 provides the evaluation on MSA on MADAMIRA
using the SAMA database (Graff et al., 2009), CAMeL
Tools multitask learning system,6 and CAMeL Tools MLE
system. Table 4 provides the evaluation on EGY on
MADAMIRA using the CALIMA ARZ database (Habash
et al., 2012), following the work described by Pasha et al.
(2015) and Khalifa et al. (2016b), and the CAMeL Tools
MLE system.
We compare to Farasa’s tokenizer (Abdelali et al., 2016),
and the accuracy of their system’s ATB tokenization on the
same MSA Dev set was 98%. However, this number is not
fair to report for the sake of this evaluation because Farasa
follows slightly different tokenization conventions. For ex-
ample, the Ta ( �

H t) in words such as Aî
�
D�PYÓ mdrsthA ‘her-

school’ is not reverted to its original Ta-Marbuta ( �
è h̄) form,

unlike the convention we have adopted for ATB tokeniza-
tion.

5MADAMIRA: Released on April 03, 2017, version 2.1
6The implementation we report on is an older version that uses

TensorFlow 1.8. We are currently working on a new implementa-
tion using TensorFlow 2.1.

7. Dialect Identification
We provide an implementation of the Dialect Identification
(DID) system described by Salameh et al. (2018). This sys-
tem is able to distinguish between 25 Arabic city dialects
and MSA. Table 1(h), shows an example of the our sys-
tem’s output.

Approach We train a Multinomial Naive Bayes (MNB)
classifier that outputs 26 probability scores referring to the
25 cities and MSA. The model is fed with a suite of fea-
tures covering word unigrams and character unigrams, bi-
grams and trigrams weighted by their Term Frequency-
Inverse Document Frequency (TF-IDF) scores, combined
with word-level and character-level language model scores
for each dialect. We also train a secondary MNB model
using this same setup trained that outputs six probability
scores referring to five city dialects and MSA for which the
MADAR corpus provides additional training data. The out-
put of the secondary model is used as additional features to
the primary model.

Datasets We train our system using the MADAR corpus
(Bouamor et al., 2018), a large-scale collection of parallel
sentences built to cover the dialects of 25 cities from the
Arab World, in addition to MSA. It is composed of two
sub-corpora; the first consisting of 1,600 training sentences
and covering all 25 city dialects and MSA, and the other
consisting of 9,000 training sentences and covering five city
dialects and MSA. The first sub-corpus is used to train our
primary model while the latter is used to train our secondary
model. We use the full corpus to train our language models.

Experiments and Results We evaluate our system us-
ing the test split of the MADAR corpus. Our system is
able to distinguish between the 25 Arabic city dialects and
MSA with an accuracy of 67.9% for sentences with an av-
erage length of 7 words with an accuracy of 90% for sen-
tences consisting of 16 words. Our DID system is used in
the back-end component of ADIDA (Obeid et al., 2019) to
compute the dialect probabilities of a given input and dis-
play them as point-map or a heat-map on top of a geograph-
ical map of the Arab world.

8. Named Entity Recognition
We use a large pre-trained language model to build an
Arabic named entity recognition system targeting four
classes: Location (LOC), Miscellaneous (MISC), Organi-
zation (ORG), and Person (PERS). Table 1(g) shows an ex-
ample of the output of CAMeL Tools NER on an input Ara-
bic sentence.

Approach We used HuggingFace’s Transformers (Wolf
et al., 2019) to fine-tune AraBERT (Antoun et al., 2020) for
labeling named entities in the commonly used IOB (inside,
outside, beginning) NER tagging format. The fine-tuning
was done by adding a fully connected linear layer with a
softmax activation function to the last hidden state. We use
the representation of the first sub-token as an input to the
linear layer. We report results on the fine-tuned model.

Datasets We train on the publicly available Arabic NER
dataset ANERcorp (∼150K words) (Benajiba et al., 2007).
Since the exact ANERcorp splits of training and test are not



CAMeL Tools Benajiba&Rosso’08

Prec Rec F1 Prec Rec F1

LOC 88% 92% 90% 93% 87% 90%
MISC 68% 58% 63% 71% 54% 61%
ORG 77% 70% 73% 84% 54% 66%
PERS 89% 85% 87% 80% 67% 73%

Overall 84% 81% 83% 87% 73% 79%

Table 5: The results of the proposed system when trained
and tested on ANERcorp dataset vs. CRF-based system
(Benajiba and Rosso, 2008).

available, we followed the same split ratios they used: 5/6
for training and 1/6 for testing. We will make our exact
splits available for the wider community.7

Experiments and Results AraBERT was fine-tuned on a
single GPU for three epochs with a learning rate of 5e-05,
batch size of 32, and a maximum sequence length of 256.
We report our results in Table 5 in terms of entity-based
precision, recall and F1 score, using the CoNLL script
for NER evaluation. We compare to Benajiba and Rosso
(2008)’s CRF-based system. Overall, our system improves
over their results in terms of recall and F1 score.

9. Sentiment Analysis
We leverage large pre-trained language models to build an
Arabic sentiment analyzer as part of CAMeL Tools. Our
analyzer classifies an Arabic sentence into being positive,
negative, or neutral. Table 1(f), shows an example of how
CAMeL Tools sentiment analyzer takes an Arabic sentence
as an input and outputs its sentiment.

Approach We used HuggingFace’s Transformers (Wolf
et al., 2019) to fine-tune multilingual BERT (mBERT) (De-
vlin et al., 2018) and AraBERT (Antoun et al., 2020) on the
task of Arabic SA. The fine-tuning was done by adding a
fully connected linear layer with a softmax activation func-
tion to the last hidden state. We report results on both fine-
tuned models and we provide the best of the two as part of
CAMeL Tools.

Datasets To ensure that mBERT and AraBERT can be
generalized to classify the sentiment of dialectal tweets, we
used various datasets for fine-tuning and evaluation. The
first dialectal dataset is the Arabic Speech-Act and Senti-
ment Corpus of Tweets (ArSAS) (Elmadany et al., 2018)
where each tweet is annotated for positive, negative, neu-
tral, and mixed sentiment. The second dataset is the Ara-
bic Sentiment Tweets Dataset (ASTD) (Nabil et al., 2015)
that is in both Egyptian Arabic and MSA. Each tweet has a
sentiment label of either positive, negative, neutral, or ob-
jective. The third dataset is SemEval-2017 task 4-A bench-
mark dataset (Rosenthal et al., 2017) which is in MSA and
each tweet was annotated with a sentiment label of positive,
negative, or neutral. Lastly, we used the Multi-Topic Cor-
pus for Target-based Sentiment Analysis in Arabic Levan-
tine Tweets (ArSenTD-Lev) (Baly et al., 2019) where tweet

7Data split details are linked from https://camel-lab.
github.io/camel_tools_updates/

CAMeL Tools
AraBERT mBERT Mazajak

ArSAS 92% 89% 90%
ASTD 73% 66% 72%
SemEval 69% 60% 63%

Table 6: CAMeL Tools sentiment analyzer performance us-
ing AraBERT and mBERT compared to Mazajak over three
benchmark datasets. The results are reported in terms of
macro F1 score over the positive and negative classes.

was labeled as being positive, very positive, neutral, nega-
tive, or very negative. All the tweets in the datasets were
pre-processed using the utilities provided by CAMeL Tools
to remove diacritics, URLs, and usernames.

Experiments and Results We compare our results to
Mazajak (Abu Farha and Magdy, 2019) and we tried to
follow their approach in terms of evaluation and exper-
imental setup. We discarded the objective tweets from
the ASTD dataset and applied 80/20 random sampling to
split the dataset into train/test respectively. We also dis-
carded the mixed class from the ArSAS dataset and kept
the tweets with an annotation confidence of over 50% and
applied 80/20 random sampling to split the dataset into
train/test respectively. Additionally, we reduced the num-
ber of labels in the ArSenTD-Lev dataset to positive, neg-
ative, and neutral by turning the very positive labels to
positive and the very negative labels to negative. We will
make our exact splits available for the wider community.7

Both mBERT and AraBERT were fine-tuned on ArSenTD-
Lev and the train splits from SemEval, ASTD, and ArSAS
(24,827 tweets) on a single GPU for 3 epochs with a learn-
ing rate of 3e-5, batch size of 32, and a maximum sequence
length of 128. For evaluation, we use the FPN

1 score which
was defined by SemEval-2017 and used by Majazak; FPN

1

is the macro F1 score over the positive and negative classes
only while neglecting the neutral class. Table 6 shows our
results compared to Mazajak.

10. Conclusion and Future Work
We presented CAMeL Tools, an open source set of tools
for Arabic NLP providing utilities for pre-processing, mor-
phological modeling, dialect identification, named entity
recognition and sentiment analysis.
CAMeL Tools is in a state of active development. We will
continue to add new API components and command-line
tools while also improving existing functionality. Addition-
ally, we will be adding more datasets and models to support
more dialects. Some features we are currently working on
adding to CAMeL Tools include:

• A transliterator to and from Arabic script and Arabizi
inspired by Al-Badrashiny et al. (2014).

• A spelling correction component supporting MSA and
DA text inspired by the work of Watson et al. (2018)
and Eryani et al. (2020).

• Additional morphological disambiguators for Arabic
dialects, building on work by Khalifa et al. (2020).

https://camel-lab.github.io/camel_tools_updates/
https://camel-lab.github.io/camel_tools_updates/


• A dependency parser based on the CAMeL Parser by
Shahrour et al. (2016).

• More Dialect ID options including more cities and a
new model for country/region based identification.
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